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4 1. A Short History of Neuroscience
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Figure 1.1. An early oscillogram of the change in membrane conductance (band)
and membrane voltage (line) with time during the passage of a nerve impulse on
a squid axon. (Time increases to the right, and the marks along the lower edge
indicate intervals of 1 ms.) (Courtesy of K.S. Cole.)

a maximum value of about 100 millivolts (mV) in a fraction of a millisecond
(ms), and this initial rise is called the wave front or leading edge of the nerve
impulse. The impulse voltage then relaxes more slowly back to its resting
level over a time interval of several milliseconds. The broad band also shown
in the figure is a measure of changes of membrane permeability (or ionic
conductance) from a resting value.3

Curiously overlooked by Western scientists was an important paper that
also appeared in 1938 by the Soviet scientists Yakov Zeldovich and David
Frank-Kamenetsky [71]. Addressing the problem of flame-front propaga-
tion, they proposed a simple nonlinear partial differential equation (PDE)
for nonlinear diffusion in an active medium in which the independent vari-
ables were time and distance in the direction of propagation. In this paper,
the authors solved their nonlinear PDE for an analytic solution describing
a stable traveling wave: the flame front.

As we will see in Chapter 5, this simple equation also predicts both the
speed of a nerve impulse on a squid axon and the shape of its leading
edge. If these results had been noted by applied mathematicians and be-

3To measure ionic conductance, an ac bridge was balanced at the resting level of
membrane permeability; thus, the width of the band indicates unbalance of the bridge,
which stems from the change of permeability during the impulse.
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Figure 1.2. Comparison of the squid giant axon (left) and the sciatic nerve bundle
controlling the leg muscle of a rabbit (right). There are about 375 myelinated
fibers in the rabbit nerve, each conducting an individual train of nerve impulses
at up to 80 m/s, about four times faster than the impulse velocity on a squid
nerve. (Data from Young [70].)

the qualitative nature of nerve impulse propagation. Continuing throughout
the 1970s, this tardy yet essential effort has deepened our understanding
of several key phenomena, including all-or-nothing propagation, threshold
conditions for nerve impulse formation, impulse stability, impulse response
to variations in fiber geometry, decremental conduction, speed of periodic
impulse trains, and effects of temperature and narcotization, all of which
are considered in this book.

Presently, the propagation of a nerve impulse on a smooth fiber is a
well-understood area of mathematical biology, the salient features of which
should be appreciated by all serious students of neuroscience.

Interestingly, the sciatic nerve—first studied by Galvani in the late
eighteenth century and used as a basic preparation for much subsequent
neuroscience research—is not a smooth fiber; in fact, it is not even a single
fiber. Like all vertebrate motor nerves, the sciatic nerve is a bundle of in-
dividual fibers, each carrying a different train of impulses from the spinal
cord to a muscle, as was emphasized in a classic image prepared by J.Z.
Young from which Figure 1.2 is drawn.

In this figure, we see a squid nerve compared with a rabbit sciatic nerve
bundle on the same scale of distance showing that the rabbit nerve has
about 375 information channels to one for the squid nerve. Because rabbit
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Figure 2.1. A cartoon of a typical nerve cell, or neuron, showing dendrites that
gather incoming information from input synapses and an axon carrying outgoing
signals through the branches of the axonal tree to other neurons or muscles.

• Axons: The axon, or outgoing channel of a neuron carries information
away from the cell body and toward the output terminals. As indicated
in Figure 1.2 of the previous chapter, an axon may be a relatively large
fiber, such as the squid giant axon, or one of the many smaller fibers
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Figure 2.2. Sketches of a chemical synapse. (a) A nerve impulse arrives at the
synapse, inducing a vesicle to fuse with the presynaptic membrane. (b) The pro-
cess of exocytosis, wherein a vesicle is releasing its neurotransmitter molecules
into the synaptic cleft. (The drawings are not to scale.)
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Figure 3.1. (a) A lipid (fatty) molecule (redrawn from Goodsell [3]). (b) A
monomolecular lipid layer on water surface. (c) A bimolecular soap film. (d)
A lipid bilayer.

bright light, you will at first observe the colored interference bands of the
film that are familiar from childhood observations of soap bubbles. These
color bands indicate that the film thickness is of the order of a wavelength
of visible light (∼ 4000 Å , or 400 nm) [1]. If you watch the film for a
few minutes, however, it undergoes a dramatic change. Without breaking,
the film becomes almost completely reflectionless, which indicates that its
thickness has suddenly reduced to a value well below the wavelength of
visible light, causing it to appear black. You are now observing a bimolecular
soap film with the structure shown in Figure 3.1(c). (Within this film, a
thin layer of water remains that attracts their charged head groups.)

Because the membrane of a biological cell is totally immersed in water,
an energetically favorable structure is the lipid bilayer film, shown in Figure
3.1(d), and extended films can assume a variety of interesting geometries.
If the film is a closed surface, for example, its natural form will be a sphere
because that shape minimizes total energy, just as for soap bubbles.2 Re-

2Collections of bubbles are yet more intricate. The next time you are washing up,
you might take a careful look at a handful of soapsuds under a good light, noting that
interior divisions tend toward a fourteen-sided figure, called a tetrakaidekahedron by Lord
Kelvin. Just as the hexagon fills a two-dimensional area with a minimum boundary, this
14-gon is a space-filling shape with minimum wall area [19].
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Figure 3.3. (a) A capacitor in a vacuum. (b) A capacitor that is filled with a
material substance.

• The electrical capacitance of a lipid bilayer is about 1 microfarad
(µF) per square centimeter.

• The electrical conductivity (or ionic permeability) of a pure lipid
bilayer is very small, corresponding to that of a good insulator such
as quartz.

• Membrane permeability is very sensitive to the presence of intrin-
sic proteins. If certain proteins are dissolved in the lipid bilayer,
membrane conductivity increases by several orders of magnitude.

• With a proper choice of embedded membrane proteins, the switching
action of a nerve membrane can be reproduced [10].

Because these observations are relevant to studies of the nerve, let us
consider them in greater detail.

3.2 Membrane Capacitance

As we will see in the following chapter, the electrical capacitance of a nerve
membrane plays a key role in the dynamics of its switching; thus, it is
important for neuroscientists to understand what a capacitor is and the
nature of the electric charge that it stores.

Consider first the vacuum capacitor shown in Figure 3.3(a) in which two
parallel conducting plates of area A are separated by distance d. The plates
are insulated from each other by a vacuum, so how does electric current
manage to flow into the capacitor on the upper wire and out of it on the
lower wire? Does electric current actually flow through the vacuum?

To answer such questions, let us connect a battery of voltage V across
an uncharged capacitor with its positive (negative) terminal to the upper
(lower) wire. Initially, current will flow into (out of) the upper (lower) plate,
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Figure 3.4. An electric circuit model for a unit area of the lipid bilayer membrane
shown in Figure 3.2.

3.4 A Membrane Model

We are now in a position to assemble an electrical model for a lipid bilayer
membrane that is permeable to an arbitrary number of ionic species, taking
account of the following current components.

First, there is the capacitive component, which from Section 3.2
contributes a current density of

Jcap = C
dV

dt
,

where C = κε0/d is the capacitance per unit area of the bilayer. This
current is represented as the left-hand branch in Figure 3.4, where in the
context of Figure 3.2

V ≡ V2 − V1 .

In addition to the capacitive current, there is also an ionic current for
each species of ion that is able to pass through the membrane. Let us first
consider the sodium ion current, which is represented as the second branch
(counting from the left) in Figure 3.4.

From the previous section, sodium ion current consists of two inde-
pendent components: conduction current (which flows in response to the
voltage difference across the membrane) and diffusion current (which re-
sponds to the difference of sodium ion concentrations on the two sides of the
membrane). Although they can be independently adjusted, these two com-
ponents are linked by the Einstein relation between mobility and diffusion
constant for each ion.
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Figure 4.2. Figures related to the Hodgkin–Huxley determination of membrane
conductances. (a) The applied voltage as a function of time. (b) Measurements
of total ionic current and potassium current, from which sodium current can be
calculated. (c) Sodium and potassium conductances at V = Vj as functions of
time. (See the text for details.)

where these diffusion potentials depend on the ratios of outside to inside
ion concentrations.

To measure the individual (sodium plus potassium) components of
membrane conductivity, Hodgkin and Huxley proceeded as follows [16].

(1) As indicated in Figure 4.2(a), the space-clamped membrane voltage
was suddenly changed from the resting value (V = 0) at t = 0 to Vj , where

VNa > Vj > 0 ,

and held there under voltage clamping. At this voltage, the total ion cur-
rent, Jion(Vj , t), through the membrane was measured as a function of time,
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Figure 4.3. (a) Sketch of a squid axon. (b) A corresponding differential circuit
diagram that can be used to derive the cable equation for impulse propagation.

where i is the longitudinal (x-directed) current flowing through the nerve.
From conservation of electric charge, we also know that to first order in ∆x

i(x, t)−i(x+∆x, t) =
(

c
dV (x + ∆x/2, t)

dt
+ jion(x + ∆x/2, t)

)
∆x . (4.9)

Combining these two equations to eliminate i and taking the limit as ∆x →
0 yields the following nonlinear diffusion equation:

1
rc

∂2V

∂x2 − ∂V

∂t
=

jion
c

. (4.10)

Motivated by familiarity with a related partial differential equation that
arose in the analysis of telegraph lines, Equation (4.10) is often called the
“cable equation” by electrophysiologists, but this name is misleading. Prop-
agation of dits and dahs over a telegraph line is a linear electromagnetic
phenomenon, whereas Equation (4.10) represents nonlinear electrostatic
diffusion.6

From the perspectives of modern nonlinear science, Equation (4.10) is
a nonlinear field equation out of which emerges an elementary particle of
neural activity: the nerve impulse [35]. It is nonlinear because of the nonlin-
ear dependencies of jion on m, h, and n, which in turn depend nonlinearly
on V .

Let us now analyze the cable equation to understand how a nerve impulse
emerges from the mathematical structure that we have developed.

6Using Maxwell’s equations, one can take magnetic effects into account in the deriva-
tion of Equation (4.10), but the error involved in neglecting this correction is about one
part in 108 [33].
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to zero with increasing time as solutions of the full PDE given by Equation
(4.10). (See Sections 5.4 and 6.5.2 and Appendix D for discussions of nerve
impulse stability criteria.)
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Figure 4.5. A full-sized spike (at v = 18.8 m/s) and an unstable threshold impulse
(5.66 m/s) for the Hodgkin–Huxley axon at 18.5oC. (Redrawn from Huxley [21].)

The smaller-amplitude traveling wave solution, with a speed of 5.66 m/s,
was found by Huxley in 1959 using an electronic computing machine [21].
This solution is unstable in the sense that deviations from it diverge with
increasing time as solutions of the full PDE given by Equation (4.10).
Slightly smaller solutions decay to zero, and slightly larger solutions grow
to become the fully developed nerve impulse; thus, this unstable solution
defines threshold conditions for igniting an impulse.

In the language of modern nonlinear theory, the stable traveling wave of
greater amplitude can be viewed as an attractor in the solution space of
the PDE system of Equation (4.10); thus, solutions lying within a basin of
attraction converge to the attractor as t → +∞. The lower-amplitude un-
stable solution, on the other hand, lies on a separatrix dividing an impulse’s
basin of attraction from that of the null solution.

4.6 Degradation of a Squid Nerve Impulse

By the middle of the 1960s, electronic computing machines had devel-
oped to a level where the original Hodgkin–Huxley calculations were fairly
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Figure 4.7. Decremental propagation of an impulse on an H–H axon that is
narcotized by the factor η = 0.25 (sketched from data in [9] and [25]).

where the two solutions merge. For yet smaller values of η, no traveling-wave
solutions exist.

To appreciate the physical significance of these results, look at the (v, η)
parameter plane of Figure 4.6. The curve plotted in this plane shows the
loci of parameters where a balance is established between the rate at which
energy is generated by the ionic batteries in Equation (4.5) and the rate at
which it is dissipated by the ionic currents associated with a nerve impulse.

The upper curve indicates stable traveling-wave solutions, implying that
a small change of an impulse solution (either positive or negative) will re-
lax back to zero and restore the original wave. The lower curve indicates
unstable traveling waves, implying two different effects. An increase in am-
plitude of the solution will grow (because energy generation is greater than
dissipation) until the total solution reaches the stable solution of the upper
curve. If its amplitude is decreased, on the other hand, the impulse will
decay (because energy generation is less than dissipation) until it falls to
zero. These numerical results provide an explanation for the all-or-nothing
property of a nerve impulse noted by Adrian in 1914 [2].

Although the concept of all-or-nothing propagation holds for η > ηc, its
logical basis evaporates for η < ηc. In this regime, however, one can find
decremental propagation of a nerve impulse, as is sketched in Figure 4.7 [9,
25]. For such a decremental impulse, the rate at which energy is generated is
only slightly less than the rate of dissipation, so the solution relaxes rather
slowly to zero. As has been emphasized by Lorente de Nó and Condouris
[27], this phenomenon was long overlooked by electrophysiologists who had
concentrated their attentions on the properties of standard nerves.

These qualitative conclusions stemming from the computations of Coo-
ley and Dodge are quite general, applying to several other experimental
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Leading-Edge Models

To develop an intuitive understanding of a challenging area, it is sometimes
useful to bracket the problem, on one hand looking fully at the intricacies
and on the other taking the simplest possible perspective. Having consid-
ered a rather complete description of a squid axon in Chapter 4, we now
turn our attention to simpler models of a nerve fiber that focus attention
on the leading edge of an impulse.

Although lacking the scope and precision of the Hodgkin–Huxley formu-
lation, these models are easier to grasp and thus useful for appreciating
some fundamental aspects of nerve impulse propagation, including stabil-
ity. Furthermore, we will obtain analytic expressions for impulse velocity
and threshold conditions for impulse ignition and show how these features
depend on physical parameters of the nerve.

5.1 Leading-Edge Approximation for the H–H
Impulse

As we learned in the previous chapter, propagation in a Hodgkin–Huxley
squid axon is governed by the nonlinear diffusion equation (or “cable equa-
tion”) given in Equation (4.10), where jion is the ionic current flowing out
of the fiber per unit of distance in the x-direction. This ionic current, in
turn, has three components: sodium, potassium, and leakage.

Because the time for turn-on of the sodium current is about an order
of magnitude shorter than the times for sodium turn-off and potassium
turn-on, an attractive approximation for representing the leading edge of
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Figure 5.3. Two forms of the function f(v) for which Equation (5.5) has analytic
traveling-wave solutions. (a) A cubic function defined in Equation (5.9). (b) A
piecewise linear function defined in Equation (5.12).

as can be checked by direct substitution. (In these equations, there is no
tilde on v because the velocity is no longer in normalized units.)

2. Piecewise linear model: Shortly after the observation by Cole and Cur-
tis that the impedance of a squid membrane decreases by a factor of about
40 during the passage of a nerve impulse [2], Offner, Weinberg, and Young
proposed to model a nerve membrane by the “piecewise linear” conductance
shown in Figure 5.3(b) and defined by [11]
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Recovery Models

Propagation of a nerve impulse is often compared with the burning of a
candle, of which the leading-edge models considered in the previous chapter
provide examples. This is a flawed metaphor, however, because a candle
burns only once, spending (like H.C. Andersen’s little match girl) its entire
store of chemical energy to keep the flame bright and hot, with no possibility
of transmitting a second flame. As we have seen both from Cole’s classic
oscillogram of Figure 1.1 and the more detailed data of Figure 4.8, a nerve
impulse exhibits recovery over an interval of a few milliseconds, allowing
subsequent impulses to be transmitted by the nerve. Without this feature,
our nervous systems would be useless for processing information, and the
animal kingdom could not have developed.

In this chapter, we explore some simple models for the recovery phe-
nomenon that are useful not only for broadening our physical and
mathematical understanding of nerve impulse propagation but also for
making better estimates of nerve behavior.

6.1 The Markin–Chizmadzhev (M–C) Model

One of the simplest means for representing recovery of a propagating nerve
impulse was introduced by Kompaneyets and Gurovich in the mid-1960s
[23] and developed in detail by Markin and Chizmadzhev in 1967 [24].
This M–C model assumes the diffusion equation (or “cable equation”) with
which we began the previous chapter; thus the transmembrane voltage V
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Figure 6.1. (a) Ionic current in the M–C model as a function of the traveling-wave
variable (ξ). (b) Structure of the associated nerve impulse.

• Because V4(ξ) = 0 and V1(ξ) = C1 exp(−vrcξ), there are a total of
seven constants to determine: C1, A2, B2, C2, A3, B3, and C3. (The
impulse speed v appears as a parameter in Equation (6.5), so these
“constants” are actually functions of the traveling-wave speed.) The
boundary conditions between regions #1 and #2, #2 and #3, and #3
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is governed by the PDE1

1
rc

∂2V

∂x2 − ∂V

∂t
=

jmc(x, t)
c

. (6.1)

In this model, however, the ionic membrane current is not represented as a
voltage-dependent variable, as in Equation (5.3), but by one of the following
prescribed functions of time.

(1) If V does not reach the threshold value of Vθ, then

jmc(x, t) = 0 .

(2) If, on the other hand, V does reach the threshold value of Vθ at some
instant (which is defined as t = 0), then at x = 0

jmc(0, t) = 0 for t < 0 ,

= −j1 for 0 < t < τ1 , (6.2)
= +j2 for τ1 < t < τ1 + τ2 , and
= 0 for t > τ1 + τ2 .

Whereas Equation (5.2) is a nonlinear diffusion equation, Equation (6.1)
is a piecewise linear inhomogeneous diffusion equation, which is easier to
solve. Thus, this is evidently a helpful assumption to make, but how do we
choose the parameters (j1, j2, τ1, τ2) that define jmc(0, t)?

Recalling that the positive direction for ionic current is outward, the
early current −j1 represents the inward flow of sodium ions, whereas the
later component +j2 describes outward flow of potassium ions. Thus, τ1
and τ2 can be obtained from the waveform of the squid impulse in Figure
1.1, and it is possible to estimate j1 from the leading-edge charge Q0, which
we obtained in Equation (5.20).

Noting that j1 has the units of current per unit of distance along the
axon (amperes per centimeter), it follows that the spatial width over which
inward current flows is vτ1, where v is the impulse speed. Assuming further
that the flow of j1 across the membrane supplies the leading-edge charge—
defined in Equation (5.19)—implies j1vτ1 = Q0/τ1, or

j1 =
Q0

vτ2
1

=
Q2

0r

Vmaxτ2
1

A/cm . (6.3)

Finally, the condition

j1τ1 = j2τ2

1An even simpler version of the M–C concept is the “integrate and fire” model of
a neuron, in which the entire cell is approximated as a single switch in parallel with a
capacitor [1, 21, 22]. The capacitor integrates incoming charge until a threshold voltage
is reached, whereupon the switch closes briefly, discharging the capacitor and restarting
the process. A more realistic version is Gerstner’s “spike response model” [12, 13], which
is convenient for approximate numerical studies of large neural networks.
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Myelinated Nerves

Following the Hodgkin–Huxley formulation of nerve impulse dynamics for
the giant axon of the squid [31], most mathematical studies have focused on
smooth nerve fibers, as in the previous three chapters. Although this picture
is appropriate for the squid axon, many vertebrate nerves—including the
frog motor nerve studied by Galvani and axons of mammalian brains—are
bundles of discrete, periodic structures, comprising active nodes (also called
“nodes of Ranvier”) separated by relatively long fiber segments that are
insulated by a fatty material called myelin. In such myelinated nerves, the
wave of activity jumps from one node to the next, and should be modeled
by nonlinear difference-differential equations rather than by PDEs.

Impulse propagation on myelinated nerves (called saltatory conduction
by the electrophysiologists) is qualitatively similar to a row of falling domi-
nos or to the signal fires of coastal warning systems during the Middle Ages.
In an evolutionary context, myelinated nerve structures are useful because
they allow an increase in the speed of a nerve impulse while decreasing
the diameter of the nerve fiber. Thus, the motor nerves of vertebrates may
comprise several hundred individual saltatory fibers, each serving as an in-
dependent signaling channel [76]. The rabbit sciatic nerve shown in Figure
1.2, for example, can transmit information about three orders of magnitude
faster than a squid axon of the same diameter while expending much less
energy in transmitting an individual impulse than does a smooth fiber.

Over the past century, studies of impulse propagation on myelinated
nerves have been carried on in three different professional areas, among
which there has been less than ideal communication. Electrophysiology, of
course, is the foremost of these groups [7, 11, 33, 35, 61, 62, 68, 69], and since
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Figure 7.1. (a) A single myelinated nerve fiber (not to scale). (b) The
corresponding electric circuit diagram.

for which a corresponding electric circuit diagram is shown in Figure
7.1(b).1

In these equations, the index n indicates successive active nodes, each
characterized by a transverse voltage across the membrane (Vn). A second
dynamic variable is the current (In) flowing longitudinally through the
fiber from node n to node n + 1. Thus Equation (7.1) is merely Ohm’s
law, which relates the voltage difference between two adjacent nodes of
the current flowing between them times the sum of the inside and outside
resistances, Ri and Ro.

Equation (7.2) says that the current flowing into the nth node from the
(n − 1)th node (In−1) minus the current flowing out of it to the (n + 1)th
node (In) is equal to the following two components of transverse (inside to
outside) current leaving the node: capacitive current, C dVn/dt, and ionic
current, Iion,n, comprising mainly a sodium component [31].

The time delay for the onset of sodium ion permeability is rather short
(in the frog nerve it is about 0.1 ms), whereas the time delay for the on-

1More correctly, the passive fiber joining two active nodes should be represented by
a linear diffusion equation (see Section 9.1.1), as was approximately done by Moore et
al. [48]. In Equations (7.1) and (7.2), however, the passive internode fiber is modeled by
a single series resistance (Ri) and a single shunt capacitor (equal to the capacitance of
the myelin sheath), which is simply added to the node capacitance to obtain the total
capacitance C. Although this approximation neglects shunt conductance of the myelin
sheath, Moore et al. have shown that it has a negligible effect on conduction velocity.
Such a “Π-network approximation” for the internode fiber greatly eases computational
problems while reducing the number of parameters to be considered, thereby facilitating
interpretations of numerical results.
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Figure 7.3. Empirical conduction velocities (ve) vs. outside fiber diameters (d) for
myelinated axons of two different vertebrate species: the frog at a temperature
of 24oC (from data in [71]), and the cat at a temperature of 37.5oC (from data
in [33]).

outer fiber diameter of 14 µm, the calculated conduction velocity of 29 m/s
is in accord with the data of Figure 7.3.

Assured that the simple model of Section 7.1 is not unreasonable, we are
led to two observations of biological significance. First, failure of an impulse
on the standard frog axon is expected to occur at an internode spacing of
9.5 mm (corresponding to D∗ = 0.21), whereas the normal spacing is 2 mm.
The evolutionary design of this axon thus provides a comfortable margin of
safety against failure. Second, Figure 7.2 shows that at D = 1 the impulse
velocity of a normal frog nerve is close to the maximum possible value,
again suggesting that an optimal design has evolved.

Although the preceding results for varying D (or internode spacing s =
2 mm/D) have been obtained under the assumption that other properties
of a nerve fiber remain fixed, this is a mathematical fiction. In real nerves,
some sort of design optimization has occurred over the course of biological
evolution that simultaneously adjusts all parameters in appropriate ways.
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Figure 8.1. (a) Experiment of Katz and Schmitt to measure impulse interactions
on parallel fibers. (b) Change in threshold on fiber #2 (at point A) caused by
the presence of an impulse on fiber #1. (Redrawn from [17].)

pioneering work of Arvanitaki [1] inspired several observations of ephaptic
interactions [4, 10, 12, 14, 17, 18, 19, 25, 26, 28, 29]. More recent references
include both theoretical and experimental studies [2, 7, 8, 11, 27] and the
important review by Jefferys [15].

An early investigation by Katz and Schmitt provides particularly clear
evidence for nonsynaptic interactions [17, 18, 19]. From a variety of exper-
iments on a pair of naturally adjacent, unmyelinated fibers from the limb
nerve of a crab, these authors presented the following results.

• Using the experiment sketched in Figure 8.1(a), a reference impulse
was launched on fiber #1 from the left, traveling toward the right,
and at various later times the relative threshold on fiber #2 was
measured at point A.
Their observations are sketched in Figure 8.1(b), from which it is
seen the threshold on fiber #2 changes in a manner that is related to
the second derivative of the impulse voltage on fiber #1. (To empha-
size this relationship, the impulse voltage in Figure 8.1(a) is dashed
where its second derivative is negative, and the corresponding range
of reduced threshold in Figure 8.1(b) is also dashed.)

• If impulses are launched at about the same time on two parallel fibers
with independent impulse speeds that do not differ by more than
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Figure 8.2. Markin’s equivalent circuit for two ephaptically coupled nerve fibers
[22, 23].

the late 1970s using internal and external voltage recordings to obtain data
confirming the second of Equations (8.2). Although ephaptic interactions
are unlikely to permit direct transmission of an impulse from one nerve
fiber to another, they concluded, impulse coupling is feasible under normal
physiological conditions.

Key to the M–C description of nerve impulse propagation is the
assumption that

jion = jmc(ξ) ,

where jmc(ξ) follows the piecewise constant function shown in Figure 6.1
whenever V reaches the threshold voltage. Thus, any influence that re-
duces (increases) the time for an impulse to reach threshold will increase
(decrease) its speed.

To apply this concept, let us assume that an impulse on fiber #2 is
leading an impulse on fiber #1 by a distance δ. In other words, the impulse
on fiber #1 goes through threshold at ξ1 = 0, where

ξ1 = x − v1t ,

and the impulse on fiber #2 goes through threshold at ξ2 = 0, where

ξ2 = x − v2t − δ .

Now note two additional facts that are evident from the general shape of
a nerve impulse: (i) ahead of the point where an impulse goes through
threshold, its second space derivative is positive; and (ii) behind this point
the second space derivative is negative.

Consider the first of Equations (8.1), and assume that ξ1 ≈ 0. Because
V2 has already gone through its threshold, ∂2V2/∂x2 is negative. Thus,
the influence of V2 on impulse #1 is to increase ∂V1/∂t, thereby raising
V1 above what it would be without the interaction. This has the effect of
speeding up impulse #1 (increasing v1), which causes δ to decrease.
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determined by the I
(1)
n and I

(2)
n .) Equating the voltages about the meshes

to zero leads directly to the equations

V (1)
n − V

(1)
n+1 = (Ri + Ro)I(1)

n + Ro

[
AI(2)

n + (1 − A)I(2)
n−1

]
,

V (2)
n − V

(2)
n+1 = (Ri + Ro)I(2)

n + Ro

[
AI(1)

n + (1 − A)I(1)
n+1

]
,

where the voltages across the active nodes are related to the mesh
currents by

I
(j)
n−1 − I(j)

n = C
dV

(j)
n

dt
+ I

(j)
ion,n .

As in the previous chapter, it is analytically convenient to model the ionic
current in the cubic approximation

I
(j)
ion,n =

(
G

V2(V2 − V1)

)
V (j)

n (V (j)
n − V1)(V (j)

n − V2) ,

which was introduced in Equation (5.9).
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(a) (b)

(c) (d)

Figure 9.1. Typical dendritic trees in the hippocampus of the rat. (a) CA1 pyra-
midal cell [90]. (b) CA3 pyramidal cell [127]. (c) Interneuron [76]. (d) Granule
cell [128]. (From the Southampton–Duke Public Morphological Archive [27].)

fiber, which is more than an order of magnitude smaller than the active
conductance (g) that was considered in Chapter 5.

It is convenient to normalize this equation by measuring time in units of
c/grest and distance along the fiber in units of 1/

√
rgrest. Then Equation

(9.1) reduces to the normalized form

∂2V

∂x̃2 − ∂V

∂t̃
= V , (9.2)

where

x̃ ≡ x
√

rgrest and t̃ ≡ t
grest

c
.
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Figure 9.3. (a) A branching dendritic structure. (b) Rall’s “equivalent cylinder”
for the structure in (a).

task; thus, it is of interest to consider an unexpectedly simple case intro-
duced by Wilfred Rall in 1959 [92, 93, 94, 95]. To see how this goes, refer
to Figure 9.3(a), which represents an arbitrary dendritic branching region.

Suppose that a steady current I1 is injected into the large fiber at location
#1 on the left-hand side of the diagram from which the resulting steady
transmembrane voltage V2 is to be computed at location #2 on one of
the smaller branches. Although time derivatives have been neglected, this
remains a difficult calculation because a discontinuity (or reflection) in
the solution occurs at each branching (or bifurcation) in Figure 9.3(a).
Dealing with reflections is not a new problem; radio, microwave, acoustic,
and optical engineers have long been interested in doing so in order to
increase the efficiencies of electromagnetic, sound, or light transmissions.
How do they accomplish this?

To minimize reflections, the standard procedure is to make the charac-
teristic admittance (Y0) of the transmission system equal on both sides of
a boundary, where

Y0 ≡
√

shunt admittance/length
series impedance/length

.
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Although interest in dendritic information processing has been growing
among Western neuroscientists [3, 35, 41, 42, 51, 52, 53, 71, 73, 83, 105,
106, 107, 108, 109, 110, 119], the concept is not new. Since the 1960s, the
possibilities for dendritic computations have been pursued by a number of
researchers, many in the former Soviet Union [10, 16, 21, 50, 81, 82, 101,
122, 133]. In this section, some formulations are introduced to help the
reader evaluate these ideas.

9.3.1 Dendritic Logic
In speculating on the possibility of information processing on dendrites,
the first question to consider is whether there is experimental evidence for
dendritic action potentials. Interestingly, such evidence was provided in the
late 1960s by Llinás and his colleagues from observations on the Purkinje
cell of the alligator cerebellum [59, 61, 62]. In the mid-1970s, spikes on
Purkinje cell dendrites were shown to arise from voltage dependence of
calcium ions rather than sodium ions as in the squid nerve [60, 63, 64].
More recently, evidence has been presented for spikes on the dendrites of
pyramidal cells in the hippocampus [8, 17, 42, 69, 97, 86, 129, 136] and
the neocortex [7, 71, 85, 118]. Presently, there is little doubt that dendritic
spikes are a real neural phenomenon stemming from a variety of active
channels [52, 64, 119, 132]. (Those with a taste for numerical studies will
enjoy Chapter 15 of Wilson’s Spikes, Decisions, and Actions, which includes
several Matlab codes for computing dendritic responses from synaptic
inputs under various assumptions for active sodium and calcium channels
[135].)

Located near the base of the mammalian brain (just above the nape of
your neck), the cerebellum is a neural structure with surprisingly regular
organization that coordinates arm and leg motions. Within this structure
are a large number of Purkinje cells having planar dendritic fields and
receiving many synaptic inputs. The human Purkinje cell shown in Figure
9.5, for example, receives some 160,000 synaptic inputs from parallel fibers
[34], which are oriented perpendicular to the plane of the dendrites. Because
action potentials are known to form on Purkinje dendrites [66], we are faced
with the question: What is the function of this intricate structure?

One answer to this question is suggested by the numerical modeling of
De Schutter and Bower [31], which shows that more distal input signals
are amplified by factors of up to 5 over the purely passive calculations of
Section 9.1.1. Thus all signals arrive at the cell body with about the same
amplitude, easing constraints on the locations of particular inputs.

Another response emerges from detailed analyses of the dendritic branch-
ings using the concepts of impulse blockage that were developed in the
previous section [101]. Thus, a dendritic branching region can be viewed
as a switch that either stops or passes an impulse according to whether a
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Figure 9.5. Ramón y Cajal’s classic image of a Purkinje cell from the human
cerebellum [96].

blocking condition is satisfied. To this end, let us consider the bifurcation
shown in Figure 9.4(b) with the notation that d1 and d2 are daughter diam-
eters and d3 is the diameter of the parent branch. Extracted and enlarged
from Figure 9.5, two possibilities are indicated in Figure 9.6.6

OR Bifurcations
For the simple branch shown in Figure 9.6(a), it is seen that d1 ≈ d2 ≈ d3.
Supposing that an impulse arrives at the branch from (say) daughter #1,

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 2 .

All of the models treated in the preceding section imply that this GR is
too small for blocking of an impulse to occur. Thus incoming impulses on
either of the two daughters are able to ignite the parent. Using the jargon
of computer engineering, this can be described as an OR junction because

6The examples given in this section are for illustration only because the Golgi stain
technique used by Ramón y Cajal to obtain Figure 9.5 may not record all of the dendritic
structures.
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(b)

(a)

Figure 9.6. Details of the Purkinje cell branchings indicated in Figure 9.5. (a) An
OR bifurcation. (b) A possible AND bifurcation.

an input on one “or” the other daughter is sufficient to ignite the parent
fiber.

In evaluating the computational utility of this OR bifurcation, one should
note that an incoming impulse on one daughter will launch an outward-
going impulse on the other daughter, disabling that daughter’s segment of
the dendritic tree for a certain interval of time [107, 132].

AND Bifurcations
Computer engineers use the term “AND junction” to describe an element
for which inputs on both the first input “and” the second input acting
together are required to produce an output signal, implying that one input
acting alone is insufficient to produce an output.

If it is assumed that the dendritic trees are composed of Hodgkin–Huxley
fibers that support fully developed impulses, the condition for failure of a
single incoming impulse is

d
3/2
2 + d

3/2
3

d
3/2
1

> 12.7 .

From an examination of the various geometric configurations in the den-
dritic trees of the Purkinje cell in Figure 9.5, it is difficult to find branchings
that satisfy this condition. One of the more promising candidates is shown
in Figure 9.6(b), from which it is seen that the parent branch diameter (d3)
is about 2.5 times those of the incoming daughter branches (d1 and d2).
Thus

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 5 ,
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which is insufficient to satisfy the preceding condition (GR > 12.7) for an
AND bifurcation. There are, however, several reasons for suspecting that
this condition is too severe.

First, the action potentials on dendrites are not well described by the
standard Hodgkin–Huxley equations, because calcium channels play an im-
portant role. Using a particular calcium channel model [75], for example,
Altenberger et al. have computed a critical GR of 3.4 [6].

Second, although fast sodium channels are often present in addition to
slower calcium channels [60, 63], they have lower density (number of chan-
nels per unit area of membrane) [66, 106, 116]. Also, much of the dendritic
membrane is covered by synapses [34], which could lessen the widening
ratio necessary for blockage.

Third, changes in ionic concentrations and temperature can also lower
the safety factor for impulse propagation, thereby raising threshold condi-
tions and easing the geometrical requirements for an AND junction. Body
temperatures of mammals, for example, are typically larger than the value
of 18.5oC used in H–H calculations of critical widening and close to the
critical temperature at which active propagation fails.

Fourth, the fiber length required for an impulse to grow from threshold to
its full amplitude is the order of the active space constant, λa = 1/

√
rg. The

lengths of some dendritic segments in Figure 9.5 are not large compared
with λa, implying that voltage amplitudes of impulses arriving at a branch
may be less than their full values. This effect also lowers the geometric ratio
(GR) needed for blockage.7

Fifth, inspection of Figure 9.5 reveals several “delta-shaped” enlarge-
ments at bifurcations, which increase the total membrane capacitance and
impede impulse transmission.

Sixth, dendrites are tapered, becoming smaller as the distance from the
cell body increases [34, 132]. As we have seen in Section 9.2.1, this tends
to reduce the safety factor of an incoming spike.

Finally, the incoming impulses may not be isolated but spaced with inter-
vals as small as a few milliseconds. Khodorov reports numerical calculations
for H–H impulses (at 20oC) separated by an interval of T = 2.5 ms corre-
sponding to a normalized impulse interval T/T1 = 0.38, where T1 is defined
as in Figure 4.8. In this study, the second impulse is blocked at a widening
ratio that is less than 3:1 and greater than 1.5:1 [50], implying a critical
GR within the range

1.8 <
d
3/2
2 + d

3/2
3

d
3/2
1

< 5.2 .

7To estimate these space constants from microscope observations, note that for the
H–H parameters given in Section 5.2, the active space constant of a fiber is given by
λa = 2.2

√
d, where both λa and d are measured in microns.
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In the context of the double impulse experiments on the squid giant axon
that were introduced in Section 4.7 (see Figure 4.8), it is not difficult to
demonstrate the switching action of an active fiber branch [104]. To see
this, refer to Figure 9.7, which shows a pair of incoming impulses recorded
at point B on a branch of diameter 381µm. Because the outgoing branches
are of diameter 218µm and 544µm, the geometric ratio is

GR =
2183/2 + 5443/2

3813/2 = 2.14 .

Figures 9.7(b) and 9.7(c) show that the second impulse (recorded at point
A) becomes blocked at a critical impulse spacing of T = 2.1 ms (correspond-
ing to T/T1 = 0.36) in approximate accord with the numerical results of
Khodorov. To appreciate the implications of these observations, note that
there was no setting of the incoming impulse spacing leading to a response
between those of Figures 9.7(b) and 9.7(c)—the second impulse either ap-
peared or was blocked in an all-or-nothing manner. In other words, the
branch was observed to act as a logical switch.

To get an idea of the GRs to be expected in real dendrites, consider
Table 9.3, where branching exponents (∆) for Equation (9.20) (Leonardo’s
law) are recorded for a variety of mammalian dendrites [12]. Assuming that
the two daughter branch diameters (d1 and d2) are equal implies a ratio of
parent diameter to either one of the daughter diameters of

d3

d1
=

d3

d2
= 21/∆ ;

thus the corresponding geometric ratio is

GR =
d
3/2
2 + d

3/2
3

d
3/2
1

= 23/2∆ + 1 . (9.21)

In the last column of Table 9.3 are recorded values of GR calculated from
this equation, that suggest a range of values for which blockage might
or might not occur. (If the daughters were not assumed to be of equal
diameter, this range of GR values would be greater.)

Taking all of these considerations together, it seems reasonable to spec-
ulate that two basic elements of the computer engineer—OR and AND
switches—may be found at the branchings of real dendritic trees. A third
element of computer design is the NOT function, which Koch and his col-
leagues have shown to be achieved through inhibitory synapses that are
located closer to the cell body than the signals they aim to inhibit [52, 53].

It is a fundamental theorem of the algebra of classes that all Boolean
functions (or logical statements) can be constructed from the three elements
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Figure 9.7. Switching action in the branching region of a squid giant axon at
20.3oC [104]. (a) Geometry of the preparation, showing the point of upstream
recording of a pair of incoming impulses at B and the point of downstream
recording at A (not to scale). (b) Blocking of the second impulse. (c) Passage
of the second impulse.
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Table 9.3. The GR range for some typical dendrites calculated from observations
of branching exponents using Equation (9.21). (Apical dendrites consist of a single
tree, whereas basal dendrites comprise several trees.) (Branching exponents are
from [12].)

Cell type Branching exponents (∆) GR range

Purkinje 2.36 ± 1.2 2.3–3.5

Stellate 2.24 ± 1.12 2.4–3.5

Granule 2.58 ± 1.8 2.3–4.8

Motoneuron 1.69 ± 0.48 2.6–3.4

Pyramidal (apical) 1.99 ± 0.79 2.5–3.4

Pyramidal (basal) 2.28 ± 0.89 2.4–3.1

AND, OR, and NOT8 [19]. Thus, one is led to speculate that dendritic trees
might realize the most general logical functions of their synaptic inputs. Far
from being mere passive channels for delivering synaptic messages to the
cell body (or initial segment of the axon), in other words, dendrites may
have the ability to compute all functions that are possible in the context
of Boolean (computer) algebra. Could this really be so?

Bartlett Mel suggests that such a sweeping conclusion be approached
with caution because of the unrealistic requirements that the construction
of such dendritic computers would impose on the processes of embry-
onic growth [72]. How would a developing brain know exactly where to
place the excitatory and inhibitory synapses, thereby determining the
NOT elements? On the other hand—as Koch points out—synapses may
act in functional groups rather than as individuals, easing the task of
developmental organization [52].

9.3.2 Multiplicative Nonlinearities
The primary difficulty in confirming or rejecting speculations about den-
dritic logic is empirical. Because of their small size, it is difficult to measure
the internal voltages at selected locations along dendritic fibers [124];

8As discussed in Chapter 10, Boolean functions are defined on the two-element num-
ber system comprising “0” and “1.” Thus a function of N variables will specify either
“0” or “1” for each of the 2N combinations.
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thus neuroscientists are currently considering other means for dendritic
information processing that can be more readily observed.

One such approach is to suppose that dendritic trees do not respond to
the precise Boolean codes presented to their synaptic inputs but to average
impulse rates. How might this assumption simplify analytic formulations?

Indicating these incoming rates as Fj(t) (j = 1, 2, . . . , n), where n is the
number of synaptic inputs and t is time, the linear analyses of Section 9.1
imply an input to the cell body of

IL(t) = α1F1(t) + α2F2(t) + · · · + αnFn(t) =
n∑

j=1

αjFj(t) . (9.22)

The output pulse rate on the axonal tree might then be given by an
expression of the form

OL(t + τ) = S[IL(t)] ,

a sigmoid function, rising smoothly from 0 to 1 as its argument increases
from 0 to ∞. Of several possible expressions, a sigmoid function might take
the form

S[I] =
I2

I2 + θ2 .

In this formula, θ acts like a threshold in the sense that S ≈ 1 for I2 	 θ2

and S ≈ 0 for I2 � θ2.
Equation (9.22), however, fails to represent the nonlinear aspects of den-

dritic logic, which were discussed in the previous section. A straightforward
way to include such effects is to augment the input variable to

IΣΠ =
n∑

j=1

αjFj +
∑
j,k

βjkFjFk +
∑
j,k,l

γjklFjFkFl + · · · , (9.23)

where only one permutation of the indices is counted. Called the “sigma-pi”
(or sum of products) model by neuroscientists [52, 114], Equation (9.23) is
recognized as a power series in the n inputs that is capable of representing
any smooth (analytic) function of those inputs [134]. Thus a rather general
expression for the dependence of the outgoing impulse rate on the incoming
rates is

OΣΠ(t + τ) = S[IΣΠ(t)] ,

but one must bear in mind that this formula includes a rather large number
of parameters: n of the αs, n(n + 1)/2 of the βs, n(n + 1)(n + 2)/3! of the
γs, and so on.9

9For n synaptic inputs and a summation of rth-order products, a general formula for
the number of parameters is (n + r − 1)!/(n − 1)!r!, which is the number of ways that r
beans can be put into n jars.
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For a quadratic model

I2(t) =
n∑

j=1

αjFj(t) +
∑
j,k

βjkFj(t)Fk(t)

(9.24)
O2(t + τ) = S[I2(t)] ,

there are a total of n(n + 3)/2 parameters to be specified, which is compu-
tationally feasible up to n ∼ 100. For higher-order models, the number of
parameters grows with correspondingly higher powers of n.

Under the linear model of Equation (9.22), the response of a neuron de-
pends only on the n values of the αs, remaining insensitive to the relative
locations of these n input synapses. Among other phenomena, the quadratic
model of Equation (9.24) predicts cluster sensitivity, in which interactions
between pairs of synaptic inputs are taken into account. At least two non-
linear effects in dendritic trees can lead to cluster sensitivity: interactions
among neighboring synapses and the presence of AND bifurcations. Mel
has tested these predictions of the quadratic model against the numerical
behavior of model nonlinear dendrites [71].

In this study, the dendritic trees investigated were those of a neocortical
pyramidal cell. Because it is difficult to record from several locations within
these dendrites, a numerical model was needed, and a compartmental model
was chosen [23, 32, 44, 45, 125].

The motivating idea of a compartmental model is to simplify the full
nonhomogeneous PDE system describing a dendritic tree with a network of
membrane patches (compartments) interconnected by resistors. The mem-
brane patches are like the space-clamped ODEs considered in Section 4.2.3,
and upon interconnecting these patches with resistors, the overall network
is much like the myelinated systems described in Chapter 7.

Based on some 3000 measurements of dendritic branch lengths and
branch diameters on a single pyramidal cell, Mel constructed a dendritic
model comprising about 500 compartments [71]. The membrane dynam-
ics of each compartment included the following components, any of which
could be turned on or off during a particular computation.

• A. Excitatory passive and active synapses. In the passive synapses,
the postsynaptic conductance G(t), defined in Equation (2.4), was
assumed to be proportional to te−t/τ , as in Equation (2.6), indepen-
dent of the transmembrane voltage. For active synapses, on the other
hand, the postsynaptic conductance was proportional to

e−t/τ1 − e−t/τ2

1 + Ke−γV
,

with τ1 	 τ2 as in Equation (2.7). Here, the dependence on membrane
voltage (V ) represents the fact that active postsynaptic channels are
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Figure 9.8. Response of passive (dashed line) and sodium-active (solid line) pyra-
midal cell dendrites to synaptic inputs of varying cluster size. (From data in
reference [71].)

blocked (by magnesium ions) at voltages near and more negative than
the resting voltage, becoming unblocked at positive values.

• B. Fast sodium channels, leading to Hodgkin–Huxley spikes similar
to those described in Section 4.5.

• C. Two types of slow calcium spikes, with impulse durations of about
10 ms [52]. (Because the precise dynamics of the calcium spikes are
uncertain, different models were used to check whether the overall
dendritic behavior is sensitive to the details of this effect.)

For each numerical run, incoming trains of 100 Hz (impulses/s) were
applied to 100 randomly selected synapses, and the number of output
spikes generated by the cell body during the first 100 ms of stimulation was
recorded. Although selected randomly, the 100 synapses were constrained
to lie in contiguous “clusters” with sizes ranging from 1 (unclustered) to 15.
(If the cluster size did not divide evenly into 100, a single smaller cluster
was stimulated.) Figure 9.8 shows the qualitative behavior of this model,
where the recorded number of output spikes is averaged over 50 to 100
different computations.

In this figure, two different assumptions are made: passive, implying pas-
sive synapses with effects B and C turned off, and sodium active, implying
passive synapses with effect B on and C off.

As the cluster size is increased, the number of output spikes observed on
the passive membrane model decreases. According to Mel, this is because
inputs from nearby synapses increase the membrane permeability, thereby
shunting away some of the injected input current. In this passive case,
corresponding to the assumptions of Section 9.1.1, the number of output
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dendritic switching phenomena described in Section 9.3.1. In the course of
numerical checks of the blocking conditions predicted by Equation (9.18),
for example, a rather fine spatial step was needed to confirm the theoretical
predictions [18]. Additionally, the compartmental model used by Goldfinger
(to compare blocking conditions at abrupt widenings and at branchings)
[36] gave results at variance with the finite element studies of Altenberger
et al. [6].

In using compartmental analyses, therefore, neuroscientists must con-
sider how well the behaviors of real neural structures are represented. Might
tests based on linear assumptions (Green functions or Fourier transforms)
provide useful benchmarks for such evaluations? Perhaps the M–C model,
introduced in Chapter 6, could serve to bridge the computational gap be-
tween compartmental codes and a full PDE description of branching fibers
[80, 81, 82]. Could compartmental approximations mask dendritic logic?
Or might they overestimate threshold phenomena by introducing the pos-
sibility of failure between poorly selected compartments? Do the answers
to these questions depend on the nature of the active membrane process
(fast sodium or slow calcium) that is assumed? Such numerical studies are
expected to become ever more feasible in coming years.

Inhomogeneous Fibers
Although exploratory numerical studies have been carried out on the dy-
namic effects of changing the cross section of a Hodgkin–Huxley fiber
[15, 16, 22, 37, 48, 49, 50, 79, 108, 36, 6, 138], work remains to be done,
and the necessary computing power is now widely available. In particular,
it should be interesting to check the assumption (underlying Section 9.2.3)
that a blocking condition on (d2/d1)3/2 in Figure 9.4(a) is equivalent to
the same condition on (d3/2

2 + d
3/2
3 )/d

3/2
1 in Figure 9.4(b). Additionally,

relations between Equations (9.15) and (9.17) and numerical studies of
widening on the H–H model can be explored. How good are these approxi-
mate formulations? What might they be missing? What is the best way to
account for sodium turn-on delay? How can the time delay generated at a
varicosity be conveniently described?

Decremental Conduction
The concept of a critical point in active propagation was introduced in
Chapter 4 and discussed in Chapter 6 as the region of parameter space
beyond which action potentials cannot be supported by the nerve, but the
nonlinear dynamics in this region are not well understood. Numerical com-
putations based on the Hodgkin–Huxley (H–H) and FitzHugh–Nagumo
(F–N) models might be helpful in clarifying behavior near the critical
point, providing bases for improved analytic descriptions and theoretical
understanding. In this context, the phenomenon of decremental conduction,
discussed in Sections 4.6 and 9.1.2, merits careful theoretical investigation
aimed at understanding its nonlinear features and providing guidelines for
electrophysiologists.
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Impulse Steering
H–H, F–N, M–C, and compartmental models could also be used to study
the phenomenon of impulse steering at axonal branchings, which was
mentioned in Section 9.4 [133]. Is this a realizable phenomenon or mere
theoretical speculation? Assuming it is real, what are the experimental
conditions for getting steering started? Might it stem from dynamic insta-
bilities related to a high impulse rate on the axonal trunk, or must it be
induced by (threshold) perturbations of finite amplitude? How is impulse
steering influenced by the locations of active nodes on myelinated fibers?
How far up the tree can impulse steering occur?

Impulse Dynamics on Short Segments
Motivated by Ramón y Cajal’s classic image of Purkinje cell dendrites in
Figure 9.5, H–H and F–N models might be used to study more intricate
branchings for which interbranch segments are of the order of the active
space constant (λa = 1/

√
rg), providing realistic corrections to the idealized

estimates in Section 9.3.1. How do the finite lengths of branch segments
influence the input–output behaviors of real trees? Can one describe these
behaviors in terms of Boolean functions (as was suggested in Section 9.3.1),
or are more or less intricate representations needed?

Second Impulse Blockage
Although the observations of double impulse switching shown in Figure 9.7
[103, 104] are in approximate accord with the exploratory computations
reported by Khodorov [50], wide ranges of numerical uncertainty wait to
be resolved. Using a combination of H–H, F–N, M–C, and compartmental
models, it should now be possible to compute more precisely the ways in
which the critical impulse spacing for the second impulse block depend
upon the GR and the nature of the active channels (sodium or calcium)
for realistic dendritic models. In such calculations, it would be interesting
to include degrading effects of temperature, external ionic concentrations,
narcotization, and so on as outlined in Section 4.6.

9.7 Recapitulation

Linear diffusion of transmembrane voltage on passive models of dendritic
fibers was discussed first in this chapter, emphasizing key experimental
parameters and simplifications arising from the assumption of linearity.
The phenomenon of decremental conduction was suggested as a means by
which synaptic inputs can be amplified without giving up the powerful su-
perposition properties of linear models, and the theoretical bases for Rall’s
“equivalent cylinder model” were presented.

Active conduction of fully nonlinear impulses was then considered on
a variety of inhomogeneous fibers, emphasizing the formulation of simple
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Nets with circles are of central interest in neuroscience because biologi-
cal brains—even those of the most simple creatures—do indeed have many
internal loops of positive feedback threading through their constituent neu-
rons. As we have seen in previous chapters of this book, such closed causal
loops (or “re-entry”) lead to the emergence of new dynamic entities, the
nerve impulse being an outstanding example. With the emergence of novel
coherent states arises the need for describing their dynamics, compounding
the difficulties of mathematical formulation and analysis. Such matters are
addressed in the following two chapters.

If each model neuron in a network is allowed to compute the most general
Boolean function of its inputs, as suggested in the previous chapter, it is
straightforward to compute the number of nets with circles that can be
created from a given number of neurons and to sketch the various types of
behavior. The number of such systems grows very rapidly with the number
of constituent neurons, however, soon becoming unmanageable; thus, some
guiding perspectives are needed.

As a simple brain model that includes closed loops of causal implica-
tion (positive feedback), Hopfield’s “spin-glass” model is presented in the
context of previously noted concepts of phase-space analysis of nonlin-
ear systems [27]. The number of stable stationary states in this model
is considered as an estimate for the information storage capacity of real
brains.

The chapter closes with a brief introduction to cortical field theories, the
dynamics of which are in accord with observations of Gestalt psychology,
suggesting means for communication among the emergent states of real
brains.

10.1 Nets Without Circles

In this section, attention is restricted to nets without circles for two
reasons. First, it is evident that such network models are easier to an-
alyze and understand just because they do not give rise to emergent
entities. (There is an adage, no less true for being ancient, that one
should learn to walk before trying to run.) Second, from a mathemati-
cal perspective, there are several rather simple results on the geometric
interpretation of the pattern-classification problem and on procedures for
learning that are of general interest and may play supporting roles in the
information-processing activities of real brains.

Although it was proposed back in the 1950s that the trainable proper-
ties of nets without circles offer a basis for understanding the human brain
[4, 44, 45], this view has not been widely held since the demise of behavior-
ism as a credible psychological theory. Nonetheless, nets without circles do
comprise a class of learning machines that have been of engineering interest
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since the late 1950s for a variety of tasks, including automatic sorting of
photographs, converting handwritten characters to digitally defined letters,
recognizing speech, generating suggestions for medical diagnoses, mak-
ing weather predictions directly from atmospheric data, analyzing aerial
photographs for economic data, and so on [23, 35].

However such systems fare in the realms of engineering, the peculiar
properties of nets without circles may be employed for special purposes
in certain restricted regions of the human brain, such as processing in-
formation on the way from the retina to the primary areas of the visual
cortex or from the ears to the temporal lobes. Thus it seems prudent for
neuroscientists to be aware of what nets without circles can do.

10.1.1 McCulloch–Pitts (M–P) Networks
In their 1943 paper, McCulloch and Pitts began by assuming a class of neu-
ral networks with the following properties: the activity of any constituent
“neuron” is an all-or-nothing process; a fixed number of synapses must be
stimulated within the period of latent addition in order to ignite a “neuron,”
and this number is independent of previous activity; the only significant
delay occurs at synapses; ignition of a “neuron” is prevented by activation
of a single inhibitory synapse; and the network structure does not change
with time [36]. The term “neuron” is used here with quotation marks to
emphasize that real neurons are more intricate than the model. Although
this indication will be dropped in subsequent discussions, the reader should
keep the caveat in mind.

McCulloch and Pitts were under no illusion that their assumptions are
physiologically correct; indeed, they specifically mention that facilitation
and extinction (“in which antecedent activity temporarily alters respon-
siveness to subsequent stimulation”) and learning have been ignored. They
defended their approach, however, as a way to establish baseline estimates
of what neural networks can do.

A key aspect of the M–P formulation was their recognition that the all-
or-nothing property of a neuron (an impulse is either present or it is not
on a certain nerve at a certain time) can be viewed as a logical proposition
(this statement is either true or false), so Boolean algebra (the algebra of
classes) can be invoked to describe their model networks [3]. Thus they
obtained two main results.

First, M–P showed that their model neuron could represent the three
fundamental circuit elements of the computer engineer—the AND, OR, and
NOT gates—which we met in the preceding chapter. Second, they appealed
to the algebra of classes to show that any Boolean function can be modeled
by one or more of their networks, and each such network corresponds to
one or more Boolean functions. What is a Boolean function?

Written in the two-element number system “1” and “0” (which indicates
that a statement is true or false or that an all-or-nothing impulse is present
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or absent), the three basic operations of Boolean arithmetic are:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎣ NOT 1 = 0

NOT 0 = 1

⎤
⎥⎥⎦ .

In the context of this arithmetic, a Boolean function specifies the output
variable for each combination of input variables. Thus a particular Boolean
function of three inputs A, B, and C might be denoted as F (A, B, C) and
defined as in the following table.

A B C F (A, B, C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A Boolean expression for this particular function is

F (A, B, C) = (A AND B AND C) OR(A AND NOTB AND C)
= A AND C (10.1)

indicating in ordinary English that an output impulse will appear if either
of two input conditions occurs: there are impulses at A, B, and C, or there
are impulses at A and at C but not at B. In this formulation, “at” refers
to a location in space-time because the AND operation requires temporal
coincidence.

Because a Boolean function of N inputs has 2N input combinations for
which the corresponding output is either 0 or 1, there are evidently

22N
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distinct functions of N inputs. Each of these Boolean functions can be
defined as in the preceding table and expressed as in Equation (10.1).

In retrospect, the demonstration by McCulloch and Pitts that any pos-
sible dependence on the output of a neural network can be realized (as
engineers like to say) through a suitable combination of model neurons
may seem modest. These results are now well known to computer engi-
neers, and techniques for designing networks with a minimum number of
switching elements (AND, OR, and NOT functions) have been available
for decades [25]. In the early 1940s, however, engineers were striving to
construct telephone switching stations with networks of magnetomechani-
cal relays, and the modern digital computer was but a dream. In its day,
therefore, the M–P paper was strikingly original.

More to the point in evaluating McCulloch–Pitts networks is the recog-
nition that each nerve cell is modeled by a single switch represented by the
Heaviside step function H(I) in Equation (2.10), an assumption with two
implications.

• This is a convenient assumption to make because the linear
summation of input variables to the jth neuron

Ij =
N∑

k=1

αjkVk(t) − θj (10.2)

in Equation (2.10) keeps the threads of causality distinct, facilitating
analysis of the system [7].

• In the context of neuroscience, however, it is a dangerous assumption
because causal relations among input signals to real neurons are far
more intricate than is indicated in Equation (10.2).

10.1.2 Learning Networks
Although M–P networks can “in principle” be arranged to do whatever can
be done without circles, their design is not straightforward and requires
selection of the weighting parameters αjk and θj in Equation (10.2) for all
neurons in the net. How might a neuron manage to solve this problem?

In 1958, Rosenblatt suggested that the αjk and θj could be changed
incrementally if a particular neuron is not responding correctly [44, 45].
His training algorithm led to a class of learning networks composed of M–P
neurons with adjustable weights, which he called the perceptron [4, 5, 37].

At about the same time, an identical idea arose within the engineering
community [23, 50]. Here, the class of networks was dubbed “ADALINE”
(for ADAptive LInear NEtworks), and the constituent element was called
a “linear threshold unit” (LTU). In this stream of activity, the aim was
not to understand brain dynamics but to design computing machines that
could be trained to recognize patterns in data sets.

To be specific, let us suppose that the Boolean function of Equation
(10.1) is to be used for predicting the weather, where A = 1 indicates that
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Figure 10.1. The geometrical interpretation of the pattern-recognition task
indicated by Equations (10.1) and (10.3).

the barometer is rising and A = 0 that it is falling, B = 1 implies daytime
and B = 0 night, and C = 1 indicates that it is clear and C = 0 indicates
cloudiness. With F (A, B, C) defined as in Equation (10.1), it is reasonable
to expect that F = 1 implies that no rain is to be expected within the next
few hours.

To understand how the training algorithm works, it helps to view pattern-
recognition problems in a geometrical context. Thus, the eight values of
these three input variables can be taken as vertices of a cube, as indicated
in Figure 10.1, with the black dots indicating where F = 1 and the open
dots where F = 0. The shaded area indicates a linear discriminant plane
in pattern space on one side of which F = 1 and on the other F = 0.

Suppose that we wish to realize the logical function of Equation (10.1)
with the M–P model neuron

F̃ = H

(
3∑

k=1

αkVk(t) − θ

)
, (10.3)

where V1 ≡ A, V2 ≡ B, and V3 ≡ C. (Recall that H(x) is the Heaviside
step function, which equals 0 when x is negative and 1 otherwise.)

Two questions arise: (1) How do we choose α1, α2, α3, and θ? (2) If
these weighting parameters are incorrectly chosen, how can they be altered
so that the functions computed from Equations (10.1) and (10.3) are the
same?

To answer these questions, it is convenient to define a four-dimensional
weight vector as

W ≡ (α1, α2, α3,−θ)
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and a four-dimensional augmented pattern vector as

P ≡ (V1, V2, V3, 1) .

Then the inner product of the weight vector and the augmented pattern
vector,1

W · P =
3∑

k=1

αkVk(t) − θ ,

is just the argument of the Heaviside step function in Equation (10.3). Thus
to realize the Boolean expression of Equation (10.1) with the M–P neuron
of Equation (10.3), it suffices to choose the three αjs and θ so that the
condition

W · P = 0

corresponds to a discriminant plane lying between the vertices where F = 1
(the dark circles) and those where F = 0 (the open circles), as shown in
Figure 10.1. This answers question (1).

To answer question (2), suppose that we have mistakenly chosen the
components of the weight vector (W1) such that

W1 · P < 0

for (say)

P = (1, 1, 1, 1) ,

but all of the other vertices in Figure 10.1 lie on the correct side of the
discriminant plane. Then Equation (10.3) tells us that F̃ = 0 for V1 =
V2 = V3 = 1. In other words, if the barometer is rising, it is daytime, and
the sky is not cloudy, we should expect rain. Clearly, this is not a correct
prediction and the weight vector must be changed, but how?

If the weight vector were altered by adding an increment in a direction
orthogonal (at right angles) to P, the inner product W · P would not
change; thus, it is necessary to alter the weight vector in the direction of
P. To accomplish this, assume

W2 = W1 + cP , (10.4)

where c is a positive real constant that must be determined. Taking the
inner product of both sides of Equation (10.4) with P and requiring that
W2 · P > 0 shows that for

c > −W1 · P
P · P (10.5)

the inner product W2 · P > 0.

1The inner (or “dot”) product of two vectors is the sum of the products of their
components.
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11
Neuronal Assemblies

Although the suggestion that neurons in the human brain may act in func-
tional groups reaches back at least to the beginning of the twentieth century
(when Charles Sherrington published his The Integrative Action of the Ner-
vous System [85]), it was in Donald Hebb’s classic Organization of Behavior
that the cell-assembly concept was first carefully formulated. Largely ne-
glected for several decades [13], Hebb’s theory of neural assemblies has more
recently begun to attract broad interest from the neuroscience commu-
nity. Why, one wonders, was such a reasonable suggestion so long ignored?
Several answers come to mind.

First, Hebb was far ahead of his time. As a psychologist, moreover, he
was telling electrophysiologists and neurologists what they should be doing
when these people had much on their collective plate. Throughout most of
the twentieth century, electrophysiologists were facing numerous difficulties
in recording from single neurons. Adequate impulse amplifiers needed to be
designed and suitable microelectrodes fabricated before voltages could be
measured from even a single cell. If mere hit-or-miss recordings were to be
avoided, it was necessary to position accurately the tips of these electrodes,
knowing what cells are located where. As the levels of the observed signals
became smaller, means for shielding measurements from ambient electro-
magnetic noise were ever more in demand. With single-neuron recording
being the primary experimental focus, therefore, it is not surprising that
theoreticians refrained from embracing more complicated formulations that
required simultaneous recordings from many neurons for which empirical
support was not soon expected.
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Second, as we have seen in Chapter 9, it is difficult enough to describe
properly the dynamics of individual neurons; thus, a theory that assumed
interacting assemblies of neurons would be venturing even further out onto
the thin ice of speculation.

A third reason for the tendency to simplify the theoretical picture—in
North America, at least—was the unfortunate domination of psychology
by the beliefs of behaviorism, which focused attention on the condition-
ing of stimulus–response reflexes, thereby ignoring much that comprises
mental reality. From the behaviorist perspective, the concept of internal
cerebral states was rightly shouldered into the background because the sim-
pler ideas of “connection theory” seemed adequate to explain acceptable
psychological data.

With all of these strikes against it, how did Hebb’s theory ever manage
to see the light of day?

11.1 Birth of the Cell-Assembly Theory

During the 1940s, Hebb became impressed with several sorts of evidence
that cast doubt on behaviorist assumptions and suggested that more subtle
theoretical perspectives were needed to explain psychological facts [34].
Among such facts is the surprising robustness of the brain’s dynamics, a
well-known example of which was provided by railroad workman Phineas
Gage, who survived having a piece of iron rod go through his brain [56].
With characteristic directness, Hebb put the matter thus: How is it that a
person can register an IQ of 160 after the removal of a prefrontal lobe [32]?

His first publication on the cell assembly stemmed from observations of
chimpanzees raised in a laboratory where, from birth, every stimulus was
under experimental control. Such animals, Hebb noted, exhibited sponta-
neous fear upon seeing a clay model of a chimpanzee’s head [33]. The chimps
in question had never witnessed decapitation, yet some of them “screamed,
defecated, fled from their outer cages to the inner rooms where they were
not within sight of the clay model; those that remained within sight stood
at the back of the cage, their gaze fixed on the model held in my hand”
[35, 36, 38].

Such responses are clearly not reflexes; nor can they be explained as
conditioned responses to stimuli, for there was no prior example in the ani-
mals’ repertory of responses. Moreover, they earned no behavioral rewards
by acting in such a manner. But the reactions of the chimps do make sense
as disruptions of highly developed and meaningful internal configurations
of neural activity according to which the chimps somehow recognized the
clay head as a mutilated representation of beings like themselves.

Another contribution to the birth of his theory was Hebb’s rereading of
Marius von Senden’s Space and Sight [84], which was originally published
in Germany in 1932. In this work, von Senden gathered records on 65
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patients who had been born blind due to cataracts up to the year 1912.
At ages varying from 3 to 46 years, the cataracts were surgically removed,
and a variety of reporters had observed the patients as they went about
handling the sudden and often maddeningly novel influx of light.

One of the few generalizations over these cases, von Senden noted, was
that the process of learning to see “is an enterprise fraught with innumer-
able difficulties, and that the common idea that the patient must necessarily
be delighted with the gifts of light and colour bequeathed to him by the
operation is wholly remote from the facts.” Not every patient rejoiced upon
being forced to make sense of incoming light that was all but incomprehen-
sible, and many found the effort of learning to see to be so difficult that
they simply gave up.

That such observations are not artifacts of the surgery or uniquely hu-
man was fortuitously established through observations on a pair of young
chimpanzees that had been reared in the dark by a colleague of Hebb [81].
After being brought out into the light, these animals showed no emotional
reactions to their new experiences. They seemed unaware of the stimulation
of light and did not try to explore visual objects by touch. Hebb conjec-
tured that the chimps showed no visual response because they had not yet
formed the neural assemblies needed for perception.

Finally, Hebb pointed out that the learning curve for an individual sub-
ject in a behavioral experiment is not the smoothly rising curve shown in
psychology textbooks. This is because the textbook curves are averages
over many learning experiments, whereas the observations in a particular
experiment are influenced by whether the subject is paying attention to the
task. Thus the factor of attention (otherwise called attitude, expectancy,
hypothesis, intention, vector, need, perseveration, or preoccupation), Hebb
felt, must somehow be included in any satisfactory theory of learning.

As was noted in Chapter 1, these considerations led Hebb to propose
that nerve cells do not necessarily act as individuals in the dynamics of the
brain but often as functional groups, which he called cell assemblies, with
the following properties.

• Each complex assembly comprises a “three-dimensional fishnet” of
many thousands of interconnected cells sparsely distributed over
much of the brain.

• The interconnections among the cells of a particular assembly grow
slowly in numbers and strength as a person matures in response to
both external stimuli and internal dynamics that are tailored to the
particular experiences of the organism.

• One mechanism suggested for the growth of neuronal interconnec-
tions postulated the strengthening of dendritic contacts through use.
(That this feature has become widely known among nerve network
mavens as a “Hebbian synapse” amused Hebb because it was one of
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Figure 11.1. Diagrams related to the process of learning to see a triangle.

the few aspects of the theory that he did not consider to be original
[64].) In Chapter 9, we saw that a real neuron has several means for
altering its behavior, including changes in the geometry of dendritic
spines or branching, variations in the distributions of ionic channels
over the dendritic and axonal membranes, development of dendro-
dendritic interactions, changes in amplification levels of decremental
conduction, and so on.

• Upon ignition—effected through some combination of external stimuli
and the partial activities of other assemblies—a particular assembly
remains briefly active, yielding in a second or so to partial exhaustion
of its constituent neurons.

• During the period of time that an assembly is active, the attention
of the brain is focused on the concepts embodied in that assembly.

• As one assembly ceases its activity, another ignites, then another, and
so on, in a temporal series of events called the phase sequence, which
is experienced by each of us as a train of thought.

As a simple example of assembly formation, consider how an infant might
learn to perceive the triangle T shown in Figure 11.1(a). The constituent
sensations of the vertices are first supposed to be centered on the retina by
eye movement and mapped onto the primary visual area (V1) of the optical
lobes of the neocortex (located in the back of your head). Corresponding cell
assemblies E, F, and G then develop in the secondary visual area through
nontopological connections with area V1. The process of examining the
triangle involves elementary phase sequences in which E, F, and G are
sequentially ignited. Gradually, these subassemblies are supposed to fuse
together into a common assembly for perception of the triangle T.
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With further development of the assembly T—which reduces its thresh-
old for ignition through the strengthening of the internal connections among
E, F, and G—a glance at one corner, with a few peripheral cues, serves to
ignite the entire assembly representing T. At this point in the learning pro-
cess, T is established as a second-order cell assembly for perception of a
triangle, including E, F, and G among its constituent subassemblies.

Is there empirical evidence supporting Hebb’s theory?

11.2 Early Evidence for Cell Assemblies
Upon formulating the cell-assembly theory for brain dynamics, Hebb and
other psycholigists began the process of empirical evaluation that is cen-
tral to science. By the mid-1970s, these efforts had produced the following
results.

Robustness
In Chapter 1, we considered a social analogy for the cell-assembly con-
cept in which the brain is likened to a community and the neurons to
its individual citizens. From this perspective, the remarkable robustness
of the brain to physical damage can be understood. If a motorcycle club
gets into a fight, losing several of its members, the strength of the club is
not permanently reduced because new members can be added. Similarly,
a damaged cell assembly can recruit additional neurons to participate in
its activities. (Such recruitment of new assembly members may occur dur-
ing rehabilitation from a stroke, a lobotomy, or other forms of neurological
damage.)

Furthermore, because the cells of an assembly may be widely dispersed
over much of the brain, partial destruction of the brain does not completely
destroy any of the assemblies. Thus, the cell-assembly theory offers the
same sort of robustness under physical damage as a hologram but is more
credible because it does not require a regular structure that can reinforce
scattered waves of neural activity.

Learning a New Language
As a graduate student in the “post-Sputnik” days of the late 1950s, I had
the experience of learning to read Russian, having no prior knowledge of
the language whatsoever. This effort proceeded in stages, commencing with
the task of recognizing Cyrillic letters and associating these new shapes
with novel sounds. Upon mastering the alphabet, it became possible to
learn words comprising these letters, and with enough words, sentences
and then paragraphs could eventually be understood. Thus it appears to me
an empirical observation that language learning is a step-by-step process,
during which a hierarchically organized memory is slowly constructed.

Interestingly, the full perception of a letter or word involves the melding
of visual, auditory, and motor components, which underscores the concept
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Figure 11.2. The Necker cube.

of subassemblies being distributed widely over the brain, a point to which
we will return in the following chapter.

The general idea of hierarchical learning and memory has been rather
carefully formulated by Braitenberg and Pulvermüller [8]. Although the
acquisition of most of our basic skills lies buried in the forgotten past,
most learning seems layered, with each stage necessarily mastered before it
becomes possible to move on to the next. In the context of Hebb’s theory,
these stages involve the formation of subassemblies from which assemblies
of higher order will subsequently emerge.

Ambiguous Perceptions
No discussion of the brain can neglect the mention of ambiguous figures,
which have fascinated Gestalt psychologists for generations, and my favorite
example—the Necker cube—is shown in Figure 11.2. Attempting to “bridge
the long gap between the facts of neurology and those of psychology,”
Hebb’s theory provides an explanation for the properties of such figures [34].
Gestalt phenomena are thus understood in a visceral manner by supposing
that an assembly is associated with the perception of each orientation.
Upon regarding Figure 11.2, I sense something switching inside my head
every few seconds as the orientations change.

From the several cases of people learning to see that were cited by von
Senden [84], it is clear that the ability to perceive an object in three spatial
dimensions is itself learned, and the Necker cube is particularly interest-
ing because perceptions of its two possible orientations would seem to be
of equal likelihood. In the following section, we model the dynamics of
switching between perceptions of two such orientations, where the over-
all symmetry of the situation suggests that the parameters of the two
assemblies are identical, thereby simplifying analysis.

Stabilized Images
In Hebb’s view, some of the strongest evidence in support of the cell-
assembly theory was obtained from stabilized-image experiments, which
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Figure 11.3. Sketch of contact lens and optical apparatus mounted on the eyeball
of a reclining observer. The wire is connected to a small lamp that illuminates
the target. The thought balloon shows sample sequences of patterns perceived
by the subject with images that are stabilized on the retina by the apparatus.
In the upper row a triangle is the target, and in the lower row, the target is a
square (after a photograph in Pritchard [77]).

were carried out at McGill University in the early 1960s [35, 36, 64, 76, 77].
The experimental setup is sketched in Figure 11.3, where a simple geo-
metric figure (e.g., a triangle or a square) is projected as a fixed image
onto the retina. The subjects are asked to relax and simply report what
they see, and because this is an introspective experiment, typical results
are displayed in a thought balloon.

At first, subjects report seeing the entire figure, but after a few moments
the figures change. Habituation effects (perhaps electrochemical changes in
the stimulated retinal neurons) cause entire parts of the figures to disap-
pear or to fall out of perception. It is the manner in which perceptions of
the figures alter that is of particular interest. Subjects reported that the
component lines or angles (i.e., subassemblies) of a triangle and a square
would jump in and out of perception all at once. These observations are
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as expected from Hebb’s original formulation of the theory and the learn-
ing sequence for a triangle indicated in Figure 11.1; thus stabilized-image
experiments confirm a prediction of the theory.

Learning Environments for Animals
According to Hebb’s theory, adult thought processes involve continuous
interactions among cell assemblies, which in turn are organized by sen-
sory stimulation and internal interactions during the learning period of a
young animal. How does adult behavior depend on opportunities for per-
cept formation during development? Experiments show that rats reared in a
rich perceptual environment—a “Coney Island for rats”—are notably more
intelligent as adults than those raised in restricted environments, which pro-
vides yet another confirmation of the theory [64, 78]. As is anticipated from
the cell-assembly theory, this positive influence of perceptual stimulation
occurred only during youthful development; increased stimulation of adults
is less effective in increasing rodent smarts.

Similar experiments with Scottish terriers showed even more striking
differences, again as expected from the cell-assembly theory [89]. This is
because the fraction of the neocortex that is not under the influence of
sensory inputs—the associative cortex—is larger for a dog than a rat. Thus,
the internal organization of the dog’s brain should play a greater role in its
behavior. Terriers reared in single cages, where they could not see or touch
other dogs, had abnormal personalities and could neither be trained nor
bred. Other studies showed that dogs reared in such restricted environments
did not respond to pain, as if they were lobotomized [62].

Sensory Deprivation of Humans
In his original formulation of the cell-assembly theory [34], Hebb specu-
lated that perceptual isolation would cause emotional problems because
the phase sequence needs the guidance of meaningful sensory stimulation
to remain organized in an intelligible manner. To test this aspect of the the-
ory, experiments on perceptual isolation were performed by Heron and his
colleagues in the 1950s [37, 64]. In these studies, the subjects were college
students who were paid to do nothing. Each subject lay quietly on a com-
fortable bed wearing soft arm cuffs and translucent goggles, hearing only a
constant buzzing sound for several days. During breaks for meals and the
toilet, the subjects continued to wear their goggles, so they averaged about
22 hours a day in total isolation.

Many subjects took part in the experiment intending to plan future work
or prepare for examinations. According to Hebb [35], the main results were
that a subject’s ability to solve problems in his or her head declined rapidly
after the first day as it became increasingly difficult to maintain coherent
thought, and for some it was difficult to daydream. After about the third
day, hallucinations became increasingly complex. One student said that his
mind seemed to be hovering over his body like a ball of cotton wool. Another
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reported that he seemed to have two bodies but did not know which was
really his. Such observations are in accord with a variety of anecdotal re-
ports from truck drivers, shipwreck survivors, solitary sailors, long-distance
drivers, and the like that extended periods of monotony breed hallucina-
tions. (Reporting on his famous solo flight across the Atlantic Ocean, for
example, U.S. aviator Charles Lindbergh noted “vapor-like shapes crowding
the fuselage, speaking with human voices, giving me advice and important
messages” [50].)

After the perceptual isolation experiments were concluded, subjects ex-
perienced difficulties with visual perception lasting for several hours and
were found to have a significant slowing of their electroencephalograms or
brain waves. They also seemed more vulnerable to propaganda. Although
the specific results of these experiments were not predicted by the cell-
assembly theory, the disorganizing effect of sensory deprivation on coherent
thought had been anticipated.

Structure of the Neocortex
While presenting a plausible theory for the dynamics of a brain, Hebb’s
classic book contains but one lapse into mathematical notation: he discusses
in some detail the ratio

A

S
≡ total association cortex

total sensory cortex

for various mammalian species [34]. This ratio relates the area of the neo-
cortex that is not directly tied to sensory inputs—the associative (A)
regions—to the area of the sensory (S) regions, which are under direct
environmental control from eyes, ears, and senses of touch and smell. If
this ratio is zero, all of the cortex is under sensory control, and neces-
sary conditions for behaviorist psychology are satisfied. On the other hand,
larger values of the ratio imply increasing opportunities for the cortex to
construct abstract cell assemblies with dynamics beyond direct control of
the senses.

In general, Hebb pointed out, this A/S ratio increases as one moves
through mammalian species from rat to dog to primate to human, in general
agreement with two aspects of brains’ behaviors. First, as most would agree,
the character of a human’s inner life is significantly more intricate than that
of a chimp, which in turn is more than for a dog or a rat. Second, the time
required for primary learning (until adulthood is reached) increases with
the A/S ratio. Human infants are essentially helpless and remain so for
several years as they slowly build the myriad assemblies upon which the
complexities of their lives will eventually be based.
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11.3 Elementary Assembly Dynamics

In this section, some simple models of cell-assembly dynamics are presented
that describe the average behavior of a relatively large number of interact-
ing model neurons. Because these descriptions are restricted to very simple
representations of the neurons—little like the more realistic picture that
was developed in Chapter 9—they should be viewed as indicating lower
bounds on the possible behaviors of real neural systems. The generaliza-
tion of such analyses to more realistic neural models is a challenge for
current neuroscience research, and some such attempts are described in
Section 11.5.

11.3.1 Ignition of an Assembly
To model the dynamics of an individual neural assembly as it turns on
(ignites) or turns off (becomes extinguished), we can imagine a large mass
of randomly connected McCulloch–Pitts (M–P) neurons as described by
Equation (2.10), a problem that goes back to the 1950s [3, 26, 28, 79, 86,
87, 90]. In developing a simple formulation, it is convenient to make the
following assumptions and definitions of additional variables.

• Time (t) is defined on a discrete lattice, with the duration of each
interval equal to the synaptic delay τ .

• F (t) represents the fraction of neurons that are firing at time t.

• I is the number of input connections to each neuron. These are
received randomly from outputs of other neurons in the assembly.

• The refractory times of the neurons are shorter than the synaptic
delay.

With these definitions, we can write the probability of a neuron receiving
exactly j input signals at time t as(

I!
j!(I − j)!

)
F j(1 − F )I−j ,

an expression that can be understood as follows.1

(1) I!/j!(I − j)! is the number of different ways that j input signals can
be selected from among I input channels.

(2) F j is the probability of having signals appear on j of the input
channels.

1The alert reader will recall that we met the same expression in Equation (2.5) of
Chapter 2 describing the probability for k synaptic vesicles to release their transmitter
substance through n presynaptic sites.
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Figure 11.4. Qualitative behavior of the probability of a neuron firing in the next
time increment P (F ) as a function of F , the current firing rate, assuming that
1 < θ < I.

(3) (1 − F )I−j is the probability of not having signals on the other I − j
input channels.

Because the M–P model neuron gives an output signal when its inputs
are equal to or greater than the threshold θ, the probability of a neuron
firing in the next increment of time is given by the summation

P (F ) =
I∑

j=θ

(
I!

j!(I − j)!

)
F j(1 − F )I−j . (11.1)

Although this expression appears unwieldy, its qualitative behavior is
straightforward; thus for

1 < θ < I ,

P (F ) is the sigmoid function of F sketched in Figure 11.4.2

The condition

P (F ) = F , (11.2)

2To see this, note that P (F ) ∼ B(I, θ)F θ near F = 0, where B(I, θ) ≡ I!/θ!(I − θ)!
is a binomial coefficient. Similarly P (F ) ∼ 1 − B(I, θ − 1)(1 − F )I−θ+1 near F = 1.
Because direct calculation shows that P (F ) is a monotone increasing function, it must
have the shape indicated in Figure 11.4.
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which is satisfied for three values of F , indicates stationary solutions of
the system because these are the values of F for which the probability of
firing in the next time increment is equal to the present firing rate. Let us
consider these three stationary solutions in detail.

1. The minimum stationary condition F = 0 corresponds to none of
the neurons firing. This is a stable solution because if F is increased
slightly from 0, Figure 11.4 shows that the corresponding increase in
P (F ) is less than that of F , implying that the activity will relax back
to zero.

2. The maximum stationary condition F = 1 corresponds to all of the
neurons firing at their maximum rates. This is also a stable solution
because if F is decreased slightly from 1, the corresponding value of
P (F ) is greater than F , implying that the activity will rise back to
one.

3. The stationary condition at F = F0 corresponds to an intermediate
firing rate, where F0 increases from 0 to 1 as θ increases from 1 to I.
In contrast to F = 0 and F = 1, this intermediate stationary level
is unstable. To see this, note from Figure 11.4 that if F is increased
slightly above F0, the increase in P (F ) is greater than that of F ,
causing F to rise even more in the subsequent time increment. If F is
decreased slightly below F0, on the other hand, the decrease of P (F )
is more than that of F , causing F to fall even more in the subsequent
time increment.

In the context of nonlinear system theory, therefore, a cell assembly
shares properties of the Hodgkin–Huxley nerve impulse that were discussed
in Section 4.6. Thus the stationary state at F = 1 can be viewed as an at-
tractor, as can the null state at F = 0. In these terms, the intermediate
stationary state at F = F0 defines a separatrix lying on the boundary
between the basins of these two attractors.

In other words, cell-assembly activity emerges from a net of intercon-
nected neurons, much as a nerve impulse emerges from the Hodgkin–Huxley
equations for a squid axon. Both exhibit the interrelated properties of all-
or-nothing response and threshold, providing a basis for the hierarchical
structures of assemblies shown in Figure 11.1 and to be considered in the
following chapter.

From the perspectives of Chapter 1, the ignition of an assembly can be
represented by the following positive feedback diagram:

Firing rate: F
↓ ↑

Probability of firing: P (F )
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Above the level of ignition (F = F0), positive feedback causes P (F ) to
grow faster than F , so activity increases until the stable stationary state
at F = 1 is reached. What is the time course of this growth?

Because the function P (F ) indicates the level of activity at time t + τ ,
it was noted in the previous chapter that the discrete formulation of the
dynamics is roughly equivalent to the ordinary differential equation

dF

dt
=

P (F ) − F

τ
, (11.3)

where t is now considered to be a continuous variable.3 For F0 < F < 1, it
is evident from Figure 11.4 that the right-hand side of this ODE has the
same qualitative features as the right-hand side of Equation (1.3), which
was used to derive the Verhulst curve for population growth shown in Figure
1.3.

Thus, F (t)—the dependence of the firing rate on time during assembly
ignition—is given implicitly by the integral relation∫ F (t)

Finit

dF ′

P (F ′) − F ′ =
t

τ
. (11.4)

Here, Finit > F0 is the initial value of F at t = 0, which may have been
established by inputs from other assemblies, external sensory inputs, or
some combination of the two. (Although one actually calculates t as a
function of F , it can be seen from Figure 11.4 that F (t) → 1 as t → ∞.)

To model its qualitative features, Equation (11.3) can be written as

dF

dt
≈ −1

τ
F (F − F0)(F − 1) , (11.5)

an ODE that is interesting to compare with the representation of a space-
clamped patch of nerve membrane developed in Chapter 5. In that case,
the reader will recall, transmembrane voltage obeys an ODE of the form

dV

dt
= −

(
G

C

)[
V (V − V1)(V − V2)

V2(V2 − V1)

]
, (11.6)

where C/G is an active time constant for the membrane, and a cubic ap-
proximation is used to model the transmembrane current that is plotted in
Figure 5.1. Thus, we see a mathematical relationship between the switching
of a patch of membrane and the switching of an assembly, although they
are at quite different levels of description. This correspondence is of central
importance for the perspectives being developed in this book and will be
further discussed in the following chapter.

3Beware the analytic sleights of hand here. Time was assumed to be a discrete variable
in order to derive an expression for P (F ) in Equation (11.1), and now it is redefined as
a continuous variable in order to use that expression in an ODE.



270 11. Neuronal Assemblies

Once an assembly has been ignited, Equation (11.5) indicates that it
remains firing forever, but this overlooks habituation effects, inhibitory
inputs from other assemblies, and external sensory inputs, all of which
may reduce the firing rate and increase the ignition threshold F0. (Similarly,
Equation (11.6) neglects the recovery effects on a nerve fiber stemming from
potassium ion current, which are treated in Chapter 6.) The time course of
the extinction dynamics is again given more precisely by Equation (11.4),
but now Finit is less than F0 at t = 0, and it is seen from Figure 11.4 that
F (t) → 0 as t → ∞.

This analytic formulation is tidy, but can we believe it? Should real nerve
networks be expected to behave at all like the variables in these equations?
Because the candid answer is that I do not know, it seems appropriate to
underscore some areas of present concern with the hope that they will be
selected for further study.

First, I repeat that we do not yet know how to accurately model a
single nerve cell, thus the McCulloch–Pitts representation may miss es-
sential neural properties. In particular, the preceding formulation reduces
the communication among neurons to passing information about their av-
erage firing rates, an assumption that overlooks important aspects of neural
dynamics. Perhaps real neurons talk to each other in languages that are
based on time codes, space codes, or some subtle combinations thereof.
Perhaps they use chemical or ephaptic interactions as a sort of body lan-
guage. Over longer distances, cell assemblies might communicate via the
information waves that were considered in the previous chapter. Finally, it
could be that assemblies engage in activities beyond our present ken.

However assemblies interact, an important aspect of neural behavior that
has been neglected in the preceding analysis is the fact that synaptic influ-
ences can be inhibitory as well as excitatory. We will see in the following
section that inhibition plays a key role in determining the ways in which
two or more cell assemblies behave.

11.3.2 Inhibition among Assemblies
At the time of Hebb’s original formulation of the cell-assembly theory, there
was no experimental evidence for inhibition among cortical neurons, so
he conservatively assumed only excitatory interactions. By 1957, however,
cortical inhibition had been observed, so Peter Milner, a colleague of Hebb’s
at McGill University, developed a “Mark II” version of the theory [63]. The
most striking feature of this revised theory is that it allows independent
assemblies to develop from an undifferentiated mass of model neurons.

To evaluate the effect that synaptic inhibition among cortical neurons
might have on cell-assembly dynamics, it is convenient to represent the
behavior of an individual assembly as simply as possible. To this end, let
us set θ = 1 in Equation (11.1), whereupon P (F ) = 1− (1−F )I . For I = 2
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(two inputs for each neuron), this expression becomes

P (F ) = 2F − F 2 ,

with the same qualitative behavior for larger values of I.
Under these simplifying assumptions (θ = 1, I = 2), Equation (11.3)

reduces to
dF

dt
= F (1 − F ) ,

where time is measured in units of the synaptic delay (τ). This is just the
Verhulst equation with solution

F (t) =
F (0)et

1 + F (0) (et − 1)
,

which follows from integration of Equation (11.4) and is displayed in Figure
1.3 for several initial values. The same growth equation describes both the
firing rate of a cell assembly and the population of Belgium. Again, we
find that identical mathematical formulations are useful at widely different
levels of description.

Thus motivated, let us model the dynamics of two identical neural
assemblies with inhibitory interactions by the coupled ODE system

dF1

dt
= F1(1 − F1) − αF2 ,

(11.7)
dF2

dt
= F2(1 − F2) − αF1 ,

where 0 ≤ F1 ≤ 1 and 0 ≤ F2 ≤ 1 because F1 and F2 represent the fraction
of neurons in each assembly that are firing. When positive, the parameter
α introduces an inhibitory interaction between the two assemblies because
the −αF2 term in the first equation reduces dF1/dt and similarly for the
second equation.

To see how these equations model the role that inhibition plays in the
formation of cell assemblies, let us recall a bit of history. As digital com-
puters became available for scientific problems in the mid-1950s, Frankel
reviewed several approaches to the numerical studies of brains, concluding
that Hebb’s cell-assembly theory was the most promising [17]. Rochester
et al. [82] then began to study the growth of cell assemblies in a group of
99 McCulloch–Pitts style model neurons, allowing only excitatory interac-
tions as had originally been proposed by Hebb [34]. Although they found
a diffuse reverberation with a period on the order of the synaptic delay,
assemblies did not develop.

This disappointing result follows directly from Equations (11.7). How?
If we let α be negative, only excitatory interactions among the neurons are
allowed. In this case, as is seen from Figure 11.5(a), all points on the (F1, F2)
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Figure 11.5. (a) A phase-plane plot from Equations (11.7) with α < 0 (only
excitatory interactions). (b) A similar plot for α > 1/3 (excitatory and inhibitory
interactions).

phase plane move to (1,1), and no individual assemblies are permitted to
ignite. In other words, all neurons end up firing at their maximum rates.

Rochester et al. then talked with Milner, who was revising Hebb’s the-
ory to include inhibition [63]. Thus inspired, they modified their computer
model to include the growth of both excitatory and inhibitory interactions
among 512 M–P neurons, with six neurons being externally driven [82]. Cell
assemblies were then observed to form with excitatory interactions devel-
oping among cells in the same assembly and inhibitory interactions among
different assemblies. How can this be seen in the context of our model?

Upon introducing inhibition in Equations (11.7) by making α > 0, one
finds a singular point at

F1 = F2 = 1 − α ,

where the time derivatives are zero. For 0 < α < 1/3, this singular point is
stable, but for α > 1/3, it becomes unstable, as shown in Figure 11.5(b).
Stable states of the system are then at either

(F1, F2) = (1, 0) or (0, 1) .

Thus, with sufficiently large inhibition, Equations (11.7) suggest that as-
semblies can be individually ignited in accord with both the numerical
observations of Rochester et al. [82] and the theoretical considerations of
Milner’s “Mark II” cell-assembly theory [28, 63].

At this point in the discussion, you should revisit Figure 11.2 and ex-
perience how your perception switches back and forth between the two
orientations of the Necker cube. Although it is easy to see the cube in ei-
ther orientation, note that you cannot perceive both orientations at the
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same time. (How rapidly can you switch between perceptions of the two
orientations? Might the speed of these transitions be taken as a measure of
how well your brain is working?)

Now, consider Equations (11.7) with α > 1/3 and the corresponding
phase-plane diagram shown in Figure 11.5(b). Evidently, these equations
model the switching on and off of assemblies that correspond to the
dynamics of those in your head as you regard the Necker cube.

From an engineering perspective, the interactive dynamics of two assem-
blies are like a “flip-flop” circuit widely used in the design of information
storage and processing systems [27]. With a cell assembly, however, the
bit of information being switched on or off is not the voltage level of a
transistor but an intricate psychological perception embodied in the con-
nections among thousands of neurons scattered about the brain that have
developed in response to the lifelong experiences of the organism. Although
this has been a “bottom-up” discussion of the brain’s dynamics, it suggests
the utility of “top-down” approaches. Regarding assembly firing rates as
order parameters for higher level representations of the brain’s dynamics,
for example, Haken and his colleagues have been able to model a variety
of psychological experiments [29, 30, 31].

To represent more than two assemblies, Equations (11.7) can be
generalized to

dF1

dt
= +F1(1 − F1) − αF2 − αF3 − · · · − αFn ,

dF2

dt
= −αF1 + F2(1 − F2) − αF3 − · · · − αFn , (11.8)
· · ·

dFn

dt
= −αF1 − αF2 − αF3 − · · · + Fn(1 − Fn) ,

where 0 ≤ Fj ≤ 1 for j = 1, 2, . . . , n. In this n-assembly model, interest-
ingly, all of the previous analysis (for n = 2) can be carried through. Thus,
there is a singular point for positive α (the inhibitory case) at

F1 = F2 = · · · = Fn = 1 − (n − 1)α ,

which is stable for

α < αc = 1/(2n − 1)

and unstable for

α > αc = 1/(2n − 1) .

Below this critical value of inhibition (αc), all of the assemblies can become
simultaneously active. It turns out that the switching time (τsw) of this
instability is

τsw =
1

(2n − 1)α − 1
,



274 11. Neuronal Assemblies

counterintuitively implying that the rate at which a neural system can
change from one perception to another increases with inhibition (α). This
result is in accord with Hebb’s suggestion that we humans are more intelli-
gent than our fellow mammals in part because we can switch our attention
more quickly from one assembly to another [35, 36].

Another aspect of intelligence, however, is the total number of assemblies
that can be remembered.

11.4 How Many Assemblies Can There Be?
Having considered some of the evidence for the existence of cell assemblies,
it is interesting to ask how many of them can be stored in a human brain.
This is a difficult question to answer because—as we have seen in Chapter
9—there is not yet a clear understanding of what the individual neurons
are doing, but it is possible to make certain lower estimates. To this end,
let us review three considerations.

First, it is presently necessary to use a McCulloch–Pitts style model in
which each neuron is represented by a single switch. Evidently, conclusions
based on this unrealistic assumption can provide only lower bounds on the
possible number of assemblies.

Second, it is not correct to estimate the number of assemblies by divid-
ing the number of neurons in the brain by the number of neurons in an
assembly. Why not? Recall the social analog for cell assemblies, which was
presented in Chapter 1. Just as a particular person in a city may be a mem-
ber of more than one social assembly, so may a single neuron participate
in several different cell assemblies.

Finally, any estimate of the maximum number of assemblies should ac-
count for the fact that the brain is hierarchically structured. Thus, complex
assemblies comprise simpler assemblies, which in turn are composed of yet
simpler ones, and so on.

In an important paper that appeared in the mid-1960s, Charles Legéndy
assessed human brain capacity from a simple model [47]. Although the
basic structure of his work is presented here, additional statistical details
are in the original publications [48, 49].

To introduce hierarchical character, Legéndy assumed that the brain
is already organized into subassemblies and modeled their organization
into assemblies. In the spirit of Hebb’s theory, an assembly and one of its
subassemblies variously represent

a setting and a person who is part of it, a word and one of its
letters, an object and one of its details.

To avoid complications of spatial organization, interconnections among
assemblies are taken to be evenly distributed over the brain. (Following a
familiar caricature of a mathematician’s approach to biology, this is the
assumption of a “spherical brain”.)
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Like individual neurons, subassemblies and assemblies have excitation
thresholds that must be exceeded for ignition. Whereas the threshold
for a subassembly is assumed to be a certain number of active neurons,
the threshold for an assembly is a certain number of active subassem-
blies. Legéndy considered the subassemblies to be already formed by
weak contacts, whereas assemblies develop from subassemblies through the
development of latent into strong contacts among neurons.

To proceed further, let us introduce the following notation.

• N is the number of neurons in the brain.

• A is the maximum number of assemblies that can form in the brain.

• n is the number of neurons in a subassembly.

• y is the number of subassemblies in an assembly.

• a is the number of strong (latent) contacts per neuron.

• m is the maximum number of strong contacts from an assembly to
one of its subassemblies.

Assuming that half of the strong (latent) contacts make output (ax-
onal) connections and the other half make input (dendritic) connections,
the number of output contacts from an assembly is nya/2. Those outputs
connecting to a particular subassembly reach a fraction n/N of the neurons
in the brain; thus

m =
n2ya

2N
.

The maximum number of assemblies are stored in the model when about
half of the latent connections have been converted into strong contacts.
Why half? Think of a black and white photograph. If all of the pixels are
all white or all black, the image conveys very little information. It is when
about half of the pixels are black and the others are white that the most
information is being stored, and so it is with the conversion from latent to
strong contacts. Thus

A ∼ Na

2my
.

In ordinary English, this equation says that the maximum number of as-
semblies in the brain is given by half of the total number of strong (latent)
connections in the brain (Na/2) divided by the number of strong (latent)
contacts in a single assembly (my).

Combining the previous two equations yields an estimate for the max-
imum number of assemblies that can be stored in the brain:

A ∼
(

N

ny

)2

. (11.9)
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Table 11.1. The number of cell assemblies (A) in a brain versus the number of
neurons in the brain (N) and the number of neurons in an assembly (ny). These
values are estimated from Equation (11.9).

N = 1010 N = 1011

ny = 103: 1014 1016

ny = 104: 1012 1014

ny = 105: 1010 1012

Some values of the maximum number of assemblies (A) implied by this
estimate for different values of the number of neurons in a brain (N) and in
a subassembly (n) are given in Table 11.1. Because the number of neurons in
the brain is variously estimated as from ten to a hundred billion [9, 12, 39],
these two values are selected in the upper row of the table. The values for ny
are not empirically established and are expected to vary widely according
to the intricacy of the concept perceived. (Palm has suggested that “a total
assembly should have somewhere around 104 neurons with a working range
from a few thousand to several tens of thousands” [73].) Lower values for
ny would increase estimates of the number of assemblies that can be stored
in a brain.

From these approximate values, it appears that

A > 109

is a comfortable lower bound on the maximum number of assemblies stored
in the human brain. Equal to the number of seconds in 30 years, 109 is also
in accord with estimates by Griffith based on the rate at which the brain
is able to absorb information [28].

Finally, it is interesting to compare Equation (11.9) with the maximum
number of patterns (pm) that can be stored in an attractor network from
Equation (10.9) of Section 10.2.2. Although 109 is again a rough lower
bound on the number of attractors that emerge for a brain comprising
1010 to 1011 neurons, the bases for these two estimates differ; in particular,
A ∝ N2, whereas pm ∝ N .

An explanation for this difference is that under the analysis of Section
10.2.2, every neuron is assumed to be firing 50% of the time. Thus, p codes
of length N were found to introduce noise of amplitude

√
p/N into the

retrieval task, which limits the number of stored codes to O(N). Under
Legéndy’s analysis, on the other hand, a particular neuron fires only when
assemblies in which it participates are ignited, which leads to smaller av-
erage firing rates in closer accord with empirical observations or cortical
activity.
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To this end, Louie and Wilson used implanted multielectrodes to record
from hippocampal CA1 pyramidal cells of rats (see Figure 9.1), which are
known to be “place cells” that tend to fire when the animal is in a particular
location [96]. The rats were trained to run around a circular track in search
of food, and recordings were made during the actual awake activity (RUN)
and also during shorter periods of “rapid eye movement sleep” (REM) [97].

Only those cells judged to be “active” (with firing rates greater than 0.2
Hz) were included in the analysis, leading to impulse train recordings from
between 8 and 13 electrodes for a particular experiment. With bin sizes of
1 s and RUN recording times up to 4 minutes, the RUN-REM correlation
was computed for each electrode as in Equation (11.11) and then averaged
over the electrodes.

Such computations of RUN-REM correlation showed no similarity be-
tween the two measurements, but this fails to account for the possibility
that the time scale of the REM signal could differ from that of awake ac-
tivity (RUN). Stretching out (or slowing down) the REM data by a factor
of about 2, on the other hand, gave sharply defined correlation peaks that
could not be ascribed to happenstance. The authors claim that these results
demonstrate that “long temporal sequences of patterned multineuronal ac-
tivity suggestive of episodic memory traces are reactivated during REM
sleep.”

11.8 Recapitulation

This chapter opened with a survey of Donald Hebb’s seminal formulation
of the cell-assembly hypothesis for the robust storage and retrieval of in-
formation in the human brain and emphasized key aspects of the theory.
Early evidence in support of Hebb’s theory was reviewed, including the
hierarchical nature of learning, perceptions of ambiguous figures, stabilized
image experiments, sensory deprivation experiments, and anatomical data
from the structure of the neocortex.

A simple mathematical model for interacting cell assemblies was then de-
veloped that describes ambiguous perceptions and suggests the importance
of inhibitory interactions among cortical neurons for assembly formation
and switching.

This model implies that cell assemblies emerge from intricate closed
causal loops (subnetworks) of positive feedback threading sparsely through
the neural system. Assemblies exhibit all-or-nothing response and threshold
properties (just like the Hodgkin–Huxley impulse or an individual neuron);
thus, an assembly is also an attractor. Interestingly, speed of switching from
one assembly to another is found to increase with the level of interassembly
inhibition. Under simple assumptions, a generous lower bound on the num-
ber of complex assemblies that can be stored in a human brain is estimated
as about one thousand million—the number of seconds in 30 years.


