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Periodic symmetry

Every function g(t) may be made T -periodic with an
overlap and add OLA operation

~g(t) = 1Xn=�1 g(t� nT )

n and integer, T the period

Functions periodic in one domain (e.g., time) are
“sampled” in the other domain (e.g., frequency)

Convergence of this expression is an issue
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Review of nomenclature

FT type time limits freq. limits

DTFT 48 h[n℄ �1 � n � 1 H(ej!) �� � ! � �H(ej!) = 1Xn=�1h[n℄e�j!n

z Transform 95 h[n℄ �1 � n � 1 H(z) z in ROCH(z) � 1Xn=�1h[n℄z�n

Fourier Transform 143 x(t) �1 � t � 1 X(j
) �1 � 
 � 1X(j
) �Z 1�1x(t)e�j
tdt

C/D Transform 143 xs(t) = �1 � t � 1 Xs(j
) �
s2 � 
 � 
s2Xs(j
) � 1Xn=�1x(t)Æ(t�nT ) t = nT Fs � 1T Fmax � 
N2�1T 1Xk=�1X (j
� jk
s) 
s � 2�T 
s > 2
N
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Periodic sampling 140
Starting from a continuous-time signal x(t), a sampler
determines a discrete-time signal x[n℄ � x(t = nT )

xs(t) = 1Xn=�1 x(nT )Æ(t� nT ):
C/D

x(t) x[n℄ = x(nT )

Æ(t� nT )

x[n℄ is sampled, periodic in frequency 
~Xs(j
) = 1T 1Xk=�1X�j
� jk2�T �
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Periodic sampling
Every periodic function g(t) = g(t� nT ) may be
expanded in harmonics, at frequencies !k = 2�k=T

g(t) = g(t� nT ) = 1Xk=�1Gkej2�fkt �e�j2�kn=T�| {z }1
From Fourier series formula:

Gk � 1T Z Tt=0 f(t)e�j2�kt=Tdt

Periodic impulses: page 143, Eq. 4.51Xn=�1 Æ(t�nT ) = 1T 1Xk=�1 ej2�kt=T !2�T 1Xk=�1 Æ�
� k2�T �
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Basic symmetry
Periodic impulses 143, Eq. 4.5 and Munson notes 25.21Xn=�1 Æ(t�nT ) = 1T 1Xk=�1 ej2�kt=T$2�T 1Xk=�1 Æ�
� k2�T �

This is the Poisson Summation Formula PSF
PSF is a very important result
Based on Fourier series expansion of impulse-train
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Applications of PSF

Let w(t)$W (j
).
Modulation formula:Xn w(nT )Æ(t� nT )$ 1T 1Xk=�1W �j
� jk2�T �

Multiply by w(t) on left, convolve W (j
) on right

Overlap-add formula:1Xn=�1w(t� nT )$2�T 1Xk=�1W �j 2�kT � Æ�
� k2�T �

Convolve w(t) on left, multiply W (j
) on right
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Frequency domain nomenclature

Details in working with 
 and !:ej
0t !2�Æ(
� 
0)sin(2�500t) !j� [Æ(
� 1000�)� Æ(
 + 1000�)℄

ej
0nT !2�T Xk Æ�
� 
0 � k2�T �

A frequency of 200 Hz has a radian frequency of
0 = 400�, which corresponds to a normalized
frequency of !0 = 400�=Fs = 400�T .

Delta scaling jajÆ(ax) = Æ(x) for any a 6= 0. Try a = �j as
an example. Example 4.1 148
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Pulse train modulation

General case of time modulationXn w(nT )Æ(t� nT )$ 1T 1Xk=�1W �j
� jk2�T �

Image

Continuous time Discrete time

Fourier Transform pair DTFT pair

W (j
) : : :: : :W (j
)

 


x[n℄
n

x(t)
t
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Effect of increased sampling rate

When T is halved (T ! T=2, Fs doubled,):Xn w(nT )Æ(t� nT )$ 1T 1Xk=�1W �j
� jk2�T �

the images move out:

Image

Discrete time

Image

Discrete time

1X SAMPLING 2X SAMPLING 

W (j
) : : :


x[n℄
n

W (j
): : : 


x[n℄
n

: : : : : :
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Effect of decreased sampling rate
When T is doubled (T ! 2T , Fs halved):1Xn=�1w(t� nT ) = 1T 1Xk=�1W �j 2�kT � ej2�kt=T
the images move in.

Overlap in the spectrum W (!) is called aliasing

Image

Discrete time

Image

Discrete time

 1X SAMPLING 0.5X SAMPLING

: : :


x[n℄
n

: : : 


x[n℄
n

: : : W (j
)W (j
) : : :

Allen – April 19, 2004 – p.11/45



Harry Nyquist

Born in Sweden;
Three famous theorems
named after him:
The Nyquist

1. Sampling Thm.,
(Nyquist 1928)

2. Thermal noise Thm.,
(Nyquist 1932) and

3. Feedback stability Thm.
(Nyquist 1934)
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Windowing the images
What happens when images are removed by windowing
in frequency?

x(t) = sin(!n)�n ? 1Xn=�1 x[T ℄Æ(t� nT )

Image

Continuous time Discrete time

Fourier Transform pair DTFT pair

: : :: : :


 


x[n℄) x(t)
n

x(t)
t

W (j
)W (j
)
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Nyquist sampling theorem 1928

Any signal x(t) may be uniquely represented by its
samples x[nT ℄ if it is sampled at 
s, defined as more
than twice its highest frequency 
N 146


s = 2�T > 2
N
Note the somewhat confusing definitions in the book
146 regarding the terms Nyquist frequency � 
N ,
versus the Nyquist rate � 2
N .
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Some issues to think about

The proof of the Sampling Theorem is based on
convolution with sin(!t)=�t, namely the formula: 150

^xreconstructed(t) = sin(�t=T )�t=T ?x[n℄ � 1Xn=�1x[n℄sin[�(t=T � n)℄�(t=T � n)

This low-pass reconstruction filtersin(�t=T )�t=T
is also called the interpolation filter, as it interpolates
the signal between samples.
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Some issues to think about

In practice convolution by a “perfect” filter

^xreconstructed(t) = sin[�t=T ℄�t=T ? x[n℄
is noncausal, and therefore cannot be implemented.

A casual low-pass filter is used in practice.

What are the practical implications of this?

How will ^x(t) differ from the starting x(t) at the input to
the ideal C/D followed by D/C conversion process?

Namely what is the RMS error going to look like?

In practice this works because the ear cannot hear the
phase distortion
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Poisson Summation Formula

Case of impulse:1Xn=�1 Æ(t� nT ) = 1T 1Xk=�1 ej2�kt=T
General case of OLA comes from convolution on left byw(t): 1Xn=�1w(t� nT ) = 1T 1Xk=�1W �j 2�kT � ej2�kt=T

w(t) is a continuous time functionW (j 2�kT ) is W (j
)$w(t), sampled at 
k � 2�k=T
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Nyquist’s famous problem

Find the Johnson thermal noise

Transmission line terminated in resistors

�
+ +

�i(t; T )vB(t; T ) vB(t; T )
Length L = 

R R

z0 = R

Stored energy

Etotal = 1z0 Z Lx=0 v2B(x� t) + v2B(x+ t)dx
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Nyquist’s 2d famous problem

At t = 0, remove the resistors

Length L = 

z0 = R

P1n=0 vB(t� n2L=)

Stored energy

Etotal = 1z0 1Xn=0 v2B(t�n2L=) �! 12�z0 1Xk=�1 ���VB �k2� 2L����2

Nyquist’s Johnson-noise formula follows: V 2B = 4kTR
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DT processing of CT signals 4.4
Basic model of C/D!D/C processing$ C/D/C 153-154

C/D system
Discrete−time

D/Cx(t) yr(t)x[n℄ = x(nT )

TD=C = 1=FsTC=D = 1=Fs

y[n℄

Ideal reconstruction (antialias) filter in D/C

yr(t) = 1Xn=�1 y[n℄ sin[�(n=T � n)℄�(t=T � n)

This basic structure describes almost every telephone,
for more than 30 years

Allen – April 19, 2004 – p.20/45



Two basic type of C/D/C systems

There are two basic categories of C/D/C systems:

Real-time processing:
Any application where 1 sample in gives 1 sample
out is a real-time method

Non-real-time processing:
non-real-time I applications are those where input

time and output time are different,
or
non-real-time II where the computation time takes

so much time that the processing cannot keep up
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Real-time (RT) processing examples

Today there are a great many examples of real-time
systems:

cell phones, CD players, hearing aids, video
conferencing over a wide-band channel (i.e., the
Internet)

Sometimes we find these systems to fall out of real time
(i.e., cell phones and video)
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Non-real-time (NRT) processing examples I

Cases of non-real-time applications where the input and
output rates differ:

Examples: pagers, fax machines, . . .

These make you wait
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Non-real-time processing examples II

Cases of non-real-time applications where the
computation time is greater than real-time

video-conferencing over phone lines, cell-3G
(3d generation cell), some classes of
speech-De-noising and music encoding such as
MPEG audio and video

Allen – April 19, 2004 – p.24/45



OLA processing
For many C/D/C processing schemes RT and NRT,
OLA frequency domain processing is used

This method is based on the OLA formula1Xn=�1w(t� nR) = 1R 1Xk=�1W �j 2�kR � ej2�kt=R

Letw(n) be a low-pass filter.R small such that W (2�k=R) � 0 for k � 1.jW (
)j
=0 � R
Under these conditions1Xn=�1w(t� nR) = 1RW (0) = 1
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OLA formula
From the last slide:

1 = 1Xn=�1w(t� nR)
Typically R � L=2, where L is the length of window w(t),
Expand signal s(t) into smooth OLA blocks

s(t) = 1Xn=�1w(t� nR)s(t) � 1Xn=�1 sn(t)

Define the windowed signal assn(t) � w(t� nR)s(t)
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From frequency to time by OLA

Expand signal s(t) into smoothed OLA blocks

s(t) = 1Xn=�1w(t� nR)s(t) � 1Xn=�1 sn(t)
As before:sn(t) � w(t� nR)s(t)Sn(j
) � Ffsn(t)g where Ff g: Fourier Transform) sn(t) � F�1fSn(j
)g

Thus

s(t) = 1Xn=�1 sn(t) = 1Xn=�1F�1fSn(j
)g
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Aliasing 4.1-4.3 147-149
Example of aliasing of a 110 Hz tone:

0 0.2 0.4 0.6 0.8 1
−1

0

1

y[
n]

Time [s]

Aliasing: every 11th sample of y[n]

−150 −100 −50 0 50 100 150
0

1

2

Frequency [Hz]

F
max

−F
max

110 [Hz]10

Sample period Ts = 0:01 [s]) Fs = 1=Ts = 100 Hz;f = 10 [Hz]: y[n℄ = sin(2�f nTs) = sin(2�10n=100)f = 110 [Hz] stems:

y[n℄ = sin�2�110n100 � = sin�2�100 + 10n100 � = sin�2�10n100�
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Aliasing 4.1-4.3 147-149
Example of decimation-aliasing of a tone:

0 0.2 0.4 0.6 0.8 1
−1

0

1

y[
n]

Time [s]

Aliasing: every 11th sample of y[n]

−150 −100 −50 0 50 100 150
0

1

2

Frequency [Hz]

F
max

−F
max

110 [Hz]10

Sample period Ts = 0:01 [s]) Fs = 1=Ts = 100 Hz;f = 10 [Hz]) y[n℄ = sin(2�fnTs) = sin(2�10n=100)

For the blue curve T ! 11T .sin(2�fnT ) = sin(2�f 0nT 0) = sin(2�f 0n11T )

Thus 11f 0 = f , f 0 = f=11:
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Down-sampling 158

Suppose we cut the bandwidth by 2 in the frequency
domain with an ideal low-pass filter

We may then reduce Fs = 1=T at the output by 2x,

^Sn(ej!) = Sn(ej!)( 1; ! < �=20 otherwise

without aliasing, thusTD=C = 2TC=D

Alternate samples are dropped in this processing,
called down-sampling
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Ideal differentiator 158
Suppose we wish to differentiate a continuous input
signal y(t) = dx(t)dt
This causal frequency response corresponds toH(j
) = j

Thus Heff(j
) = ( j
; j
j < �=T0; j
j � �=T

It may be shown that note the noncausal nature of h[n℄

h[n℄ = ( 0; n = 0os�nnT ; n 6= 0:
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Impulse-invariance 160
Relate h(t) and H(j
) to H(ej!)

C/D D/Csystem
Discrete−time

Continuous−time

LTI system

x(t) yr(t)x[n℄ y[n℄

h(t), H(j
)

x(t) y(t)

Heff(j
) = H(j
)

TC=D TD=C

With impulse invariance the mapping from discrete to
the continuous domain is define byh[n℄ = Th(nT )
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Example of impulse-invariance 162

A common continuous-time impulse response, and
corresponding Laplace Transform:

h(t) = es0tu(t) ! 1s� s0 = H(s)
From impulse-invariance note error in book 4.8 162

h[n℄ = Th(nT ) = ATes0Tnu(n) ! AT1� es0T z�1 � H(z)

This common example must alias since H(z) is not
bandlimited
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Upsampling by linear interpolation I
When upsampling, we need to interpolate the new
samples (Matlab help upsample, interp)

0 5 10 15 20 25 30
−1

0

1

0 10 20 30 40 50 60
−1

0

1

0 10 20 30 40 50 60
−1

0

1
y[n+1] =(y[n]+y[n+2])/2

0 10 20 30 40 50 60
−0.05

0

0.05

E
rr

or

This may be done by linear interpolation, but at a cost.
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Upsampling by linear interpolation II
Frequency response of a linear interpolator

0 5 10 15 20 25 30
−1

0

1

0 10 20 30 40 50 60
−1

0

1

0 10 20 30 40 50 60
−1

0

1
y[n+1] =(y[n]+y[n+2])/2

0 10 20 30 40 50 60
−0.05

0

0.05

Er
ro

r

Even “stems” from linear interpolation Red curve is
the exact;
The error is of the form (note �1n = e�j�n):[1 + (�1)n℄ ej!0n=2 !; 2�Æ(!�!0)+2�Æ(!�!N�!0)
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Upsampling by linear interpolation III
Distortion is audible

10
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4
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−20
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0
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20
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π 
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)

F
s
=1e4

f
0

F
s
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3
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4
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−20

10
0
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20

lin
 in

te
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F
s
−f

0
F

s
=2 104

f
0

10
3

10
4

10
0

FREQUENCY (Hz)

er
ro

r=
|S

(f
)−

S
i(f

)|

|error| = 5%
2 F

s
=104

The error due to interpolation is 5% at f0

There is an unwanted tone at Fs=2� f0
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DT processing of analog signals 4.8 185

DT processing with A/D and D/A

C/D system
Discrete−time

D/C

Anti−

filter
aliasing and

hold

Sample

converter
A/D

converter
D/A

system
Discrete−time

T T T

reconstruction
Compensated

filter

x(t) yr(t)x[n℄ = x(nT )

TCD = 1=Fs

y[n℄
TDC = 1=Fs

^yr(t)x(t) xa(t) x0(t) ^y[n℄

~Haa(j
)

yDA(t)^x[n℄

~Hr(j
)

Basic signal definitions
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Traditional C/D conversion

Traditional converter requires a high order filter

Shaped noise floor

Spectral noise floor

‘‘Traditional’’ filter
jH(s)X(j
)j [dB]

jX(j
)j [dB]


N
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Some issues

Analog prefilter is very expensive, large, requires laser
trimmed resistors

Phase response distorts the waveform (not necessarily
a problem)

Needs to be a very large order (i.e., >100 dB/oct)

Multibit converters have linearity and “glitches”

The oversampled sigma-delta �-� converter solved all
these problems, plus others
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Architecture of oversampled A/D 187

Basic definitions:

C/D

T = 1M
� �
N
�

M
Sharp

antialiasing

filter

cutoff = �=M

Simple
antialiasing

filter ^x[n℄

Downsample by M
xd[n℄x(t) xa(t)

The simple antialiasing filter has a gradual i.e., 1=f

or 1=f2 lowpass rolloff
Sampling is done at very high rate e.g., M = 1000

The steep antialiasing filter is then implemented in
the DT domain
DT downsampled by M gives xd[n℄
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Oversampling C/D conversion I

Modern C/D conversion: 768x (3� 28) oversampled �-�
http://courses.ece.uiuc.edu/ece310/Allen/sigmadelta.html

Spectral noise floor

Shaped noise floor

jH(s)X(j
)j [dB]




jX(j
)j [dB]




“Simple” filter: i.e.H(s) = ss�s0
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Oversampling C/D conversion II

After sampling: X(j
) �! Xs(j
)
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Aliasing

Aliasing

DT Antialiasing filter
Downsampling high order

���

2�

^X(ej!)



N�
N

2
N

Xs(j
)

! = 
T

^Xd(ej!)

! = 
T��� 2�

Gain=T

Allen – April 19, 2004 – p.42/45



Amplitude Quantizer
Digital signals are both discrete in time and amplitude

Values ^x[n℄ are two’s complement integer “fraction” with

value �1a0 :�PBn=1 an2�n� Example: 1.01011 =

-(1/4+1/16+1/32)

010

001

000

111

110

101

100

011

2�
3�

��
�2�

�4�
�3�

�

xm

5/21/2-1/2 3/2

^x[n℄ = Q(x)

2’s complement numbers�^x = 1 + j^xj

Example: 111 = 001+1 = 110+1

K = 2Bz = max(min(K � x); K � 1);�K)Q(z) = round(z)=K
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Quantization noise 4.51 195
Error for a 3 and 8 level quantizer

0 50 100 150
−1

0

1
0.99*cos(2*pi*2.4*(0:N−1)/N);

0 50 100 150
−1

0

1

0 50 100 150

−0.2

0

0.2

0 50 100 150

−5

0

5

x 10
−3
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Analog Devices AD-1835A

5 V Stereo Audio 3.3 V Tolerant Digital Interface

Differential Output

Up to 192 kHz Sample Rates

256x, 512x, and 768x Fs Mode Clocks

16-20-24 Bit Word Lengths�-� Modulators with "Perfect Differential Linearity"
ADCs:-95 dB THD+N, 105 dB SNR+Dynamic Range
DACs:-95 dB THD+N, 108 dB SNR+Dynamic Range

4 DAC’s and 1 ADC (Stereo) on 1 52-pin package
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