Sampling of continuous-time signals *Chap: 4.1-4.8; Pages: 140-201*

Jont Allen

ECE-310

Periodic symmetry

Every function g(t) may be made T-periodic with an overlap and add OLA operation

$$\tilde{g}(t) = \sum_{n=-\infty}^{\infty} g(t - nT)$$

n and integer, T the period

- Functions periodic in one domain (e.g., time) are "sampled" in the other domain (e.g., frequency)
- Convergence of this expression is an issue

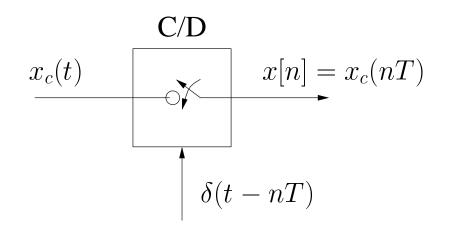
Review of nomenclature

FT type	time	limits	freq.	limits
DTFT 48	h[n]	$-\infty \le n \le \infty$	$H(e^{j\omega})$	$-\pi \le \omega \le \pi$
$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$				
z Transform 95	h[n]	$-\infty \leq n \leq \infty$	H(z)	z in ROC
$H(z) \equiv \sum_{n=-\infty}^{\infty} h[n] z^{-n}$				
Fourier Transform 143	$x_{c}(t)$	$-\infty \leq t \leq \infty$	$X_c(j\Omega)$	$-\infty \leq \Omega \leq \infty$
$X_c(j\Omega) \equiv \int_{-\infty}^{\infty} x_c(t) e^{-j\Omega t} dt$				
C/D Transform 143	$x_s(t) =$	$-\infty \leq t \leq \infty$	$X_s(j\Omega)$	$-\frac{\Omega_s}{2} \leq \Omega \leq \frac{\Omega_s}{2}$
$X_s(j\Omega) \equiv$	$\left \sum_{n=-\infty}^{\infty} x_c(t)\delta(t-nT)\right $	t = nT	$F_s \equiv \frac{1}{T}$	$F_{\rm max} \equiv \frac{\Omega_N}{2\pi}$
$\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j\Omega - jk\Omega_s \right)$			$\Omega_s \equiv \frac{2\pi}{T}$	$\Omega_s > 2\Omega_N$

Periodic sampling 140

Starting from a continuous-time signal $x_c(t)$, a sampler determines a discrete-time signal $x[n] \equiv x_c(t = nT)$

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT).$$



• x[n] is sampled \Leftrightarrow periodic in frequency Ω

$$\tilde{X}_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j\Omega - jk \frac{2\pi}{T} \right)$$

Periodic sampling

• Every periodic function g(t) = g(t - nT) may be expanded in harmonics, at frequencies $\omega_k = 2\pi k/T$

$$g(t) = g(t - nT) = \sum_{k = -\infty}^{\infty} G_k e^{j2\pi f_k t} \underbrace{\left(e^{-j2\pi kn/T}\right)}_{1}$$

From Fourier series formula:

$$G_k \equiv \frac{1}{T} \int_{t=0}^T f(t) e^{-j2\pi kt/T} dt$$

Periodic impulses: page 143, Eq. 4.5

$$\sum_{n=-\infty}^{\infty} \delta(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j2\pi kt/T} \longleftrightarrow \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - k\frac{2\pi}{T}\right)$$

Basic symmetry

Periodic impulses 143, Eq. 4.5 and Munson notes 25.2

$$\sum_{n=-\infty}^{\infty} \delta(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j2\pi kt/T} \leftrightarrow \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - k\frac{2\pi}{T}\right)$$

- This is the Poisson Summation Formula PSF
- PSF is a very important result
- Based on Fourier series expansion of impulse-train

Applications of PSF

- Let $w(t) \leftrightarrow W(j\Omega)$.
 - Modulation formula:

$$\sum_{n} w(nT)\delta(t-nT) \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} W\left(j\Omega - jk\frac{2\pi}{T}\right)$$

Multiply by w(t) on left, convolve $W(j\Omega)$ on right

Overlap-add formula:

$$\sum_{n=-\infty}^{\infty} w(t-nT) \leftrightarrow \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} W\left(j\frac{2\pi k}{T}\right) \delta\left(\Omega - k\frac{2\pi}{T}\right)$$

Convolve w(t) on left, multiply $W(j\Omega)$ on right

Frequency domain nomenclature

• Details in working with Ω and ω :

$$e^{j\Omega_0 t} \longleftrightarrow 2\pi \delta(\Omega - \Omega_0)$$

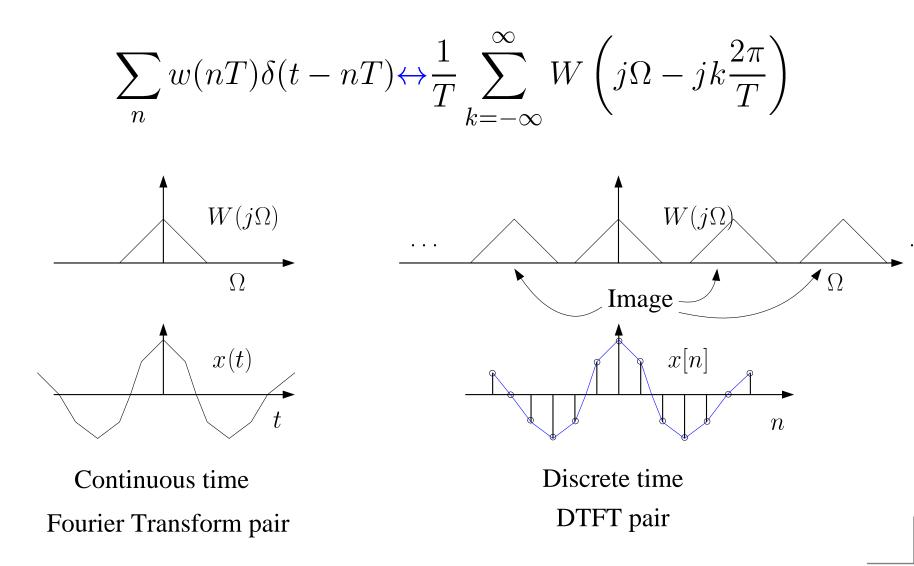
 $\sin(2\pi 500t) \longleftrightarrow j\pi \left[\delta(\Omega - 1000\pi) - \delta(\Omega + 1000\pi)\right]$

$$e^{j\Omega_0 nT} \longleftrightarrow \frac{2\pi}{T} \sum_k \delta\left(\Omega - \Omega_0 - k\frac{2\pi}{T}\right)$$

- A frequency of 200 Hz has a radian frequency of $\Omega_0 = 400\pi$, which corresponds to a normalized frequency of $\omega_0 = 400\pi/F_s = 400\pi T$.
- Delta scaling $|a|\delta(ax) = \delta(x)$ for any $a \neq 0$. Try a = -j as an example. Example 4.1 148

Pulse train modulation

General case of time modulation

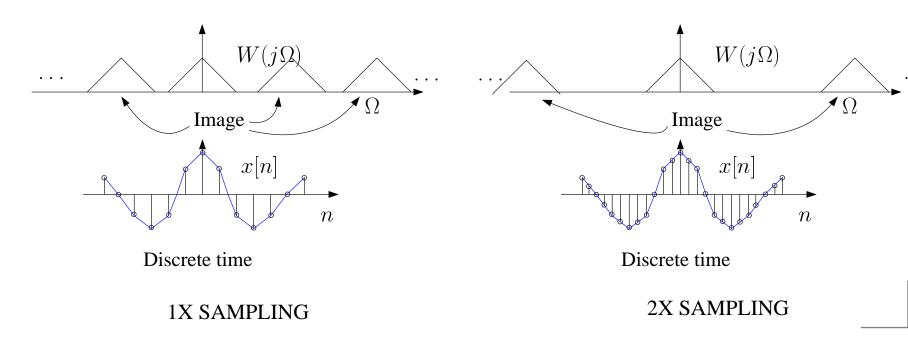


Effect of increased sampling rate

• When T is halved ($T \rightarrow T/2$, F_s doubled,):

$$\sum_{n} w(nT)\delta(t-nT) \leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} W\left(j\Omega - jk\frac{2\pi}{T}\right)$$

the images move out:



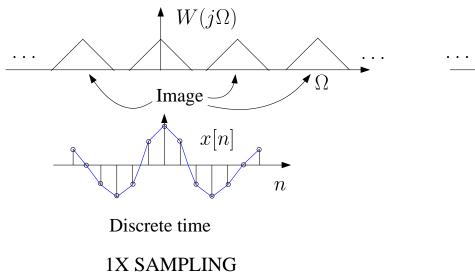
Effect of decreased sampling rate

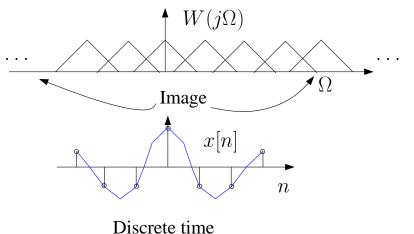
• When T is doubled ($T \rightarrow 2T$, F_s halved):

$$\sum_{n=-\infty}^{\infty} w(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} W\left(j\frac{2\pi k}{T}\right) e^{j2\pi kt/T}$$

the images move in.

• Overlap in the spectrum $W(\omega)$ is called aliasing





Harry Nyquist

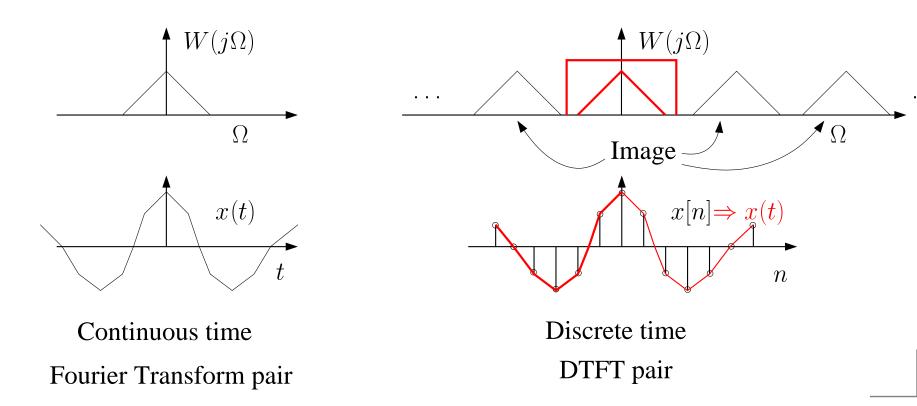
Born in Sweden; Three famous theorems named after him: The Nyquist

- 1. Sampling Thm., (Nyquist 1928)
- 2. Thermal noise Thm., (Nyquist 1932) and
- Feedback stability Thm. (Nyquist 1934)

Windowing the images

What happens when images are removed by windowing in frequency?

$$x_c(t) = \frac{\sin(\omega_c n)}{\pi n} \star \sum_{n = -\infty}^{\infty} x[T]\delta(t - nT)$$



Nyquist sampling theorem 1928

• Any signal x(t) may be uniquely represented by its samples x[nT] if it is sampled at Ω_s , defined as more than twice its highest frequency Ω_N 146

$$\Omega_s = \frac{2\pi}{T} > 2\Omega_N$$

• Note the somewhat confusing definitions in the book 146 regarding the terms Nyquist frequency $\equiv \Omega_N$, versus the Nyquist rate $\equiv 2\Omega_N$.

Some issues to think about

• The proof of the Sampling Theorem is based on convolution with $sin(\omega_c t)/\pi t$, namely the formula: 150

$$\hat{x}_{\text{reconstructed}}(t) = \frac{\sin(\pi t/T)}{\pi t/T} \star x[n] \equiv \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t/T-n)]}{\pi(t/T-n)}$$

This low-pass reconstruction filter

$$\frac{\sin(\pi t/T)}{\pi t/T}$$

is also called the interpolation filter, as it interpolates the signal between samples.

Some issues to think about

In practice convolution by a "perfect" filter

$$\hat{x}_{\text{reconstructed}}(t) = \frac{sin[\pi t/T]}{\pi t/T} \star x[n]$$

is noncausal, and therefore cannot be implemented.

- A casual low-pass filter is used in practice.
- What are the practical implications of this?
- How will $\hat{x}(t)$ differ from the starting x(t) at the input to the ideal C/D followed by D/C conversion process?
- Namely what is the RMS error going to look like?
- In practice this works because the ear cannot hear the phase distortion

Poisson Summation Formula

Case of impulse:

$$\sum_{n=-\infty}^{\infty} \delta(t - nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{j2\pi kt/T}$$

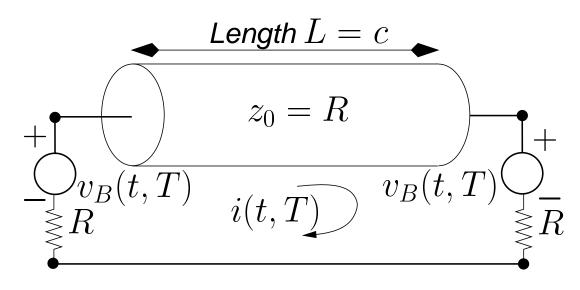
General case of OLA comes from convolution on left by w(t):

$$\sum_{n=-\infty}^{\infty} w(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} W\left(j\frac{2\pi k}{T}\right) e^{j2\pi kt/T}$$

- w(t) is a continuous time function
- $W(j\frac{2\pi k}{T})$ is $W(j\Omega) \leftrightarrow w(t)$, sampled at $\Omega_k \equiv 2\pi k/T$

Nyquist's famous problem

- Find the Johnson thermal noise
- Transmission line terminated in resistors

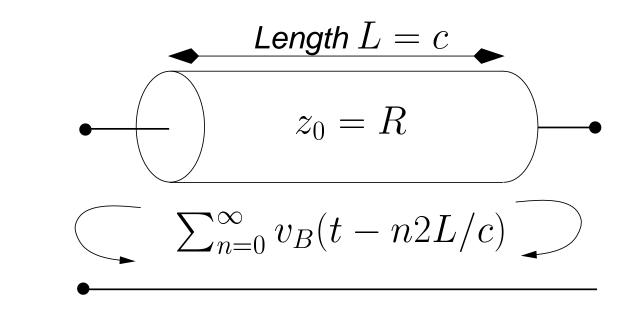


Stored energy

$$E_{total} = \frac{1}{z_0} \int_{x=0}^{L} v_B^2(x - ct) + v_B^2(x + ct) dx$$

Nyquist's 2^d famous problem

• At t = 0, remove the resistors



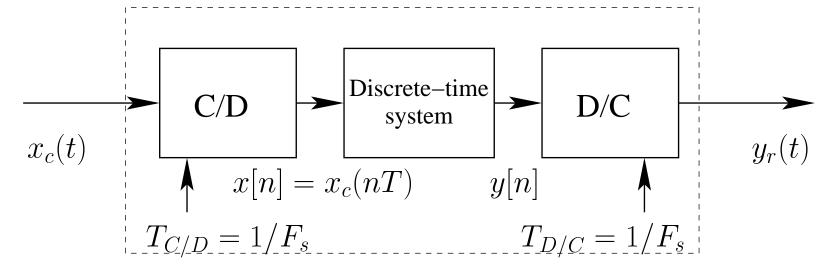
Stored energy

$$E_{total} = \frac{1}{z_0} \sum_{n=0}^{\infty} v_B^2 (t - n2L/c) \longrightarrow \frac{1}{2\pi z_0} \sum_{k=-\infty}^{\infty} \left| V_B \left(k 2\pi \frac{c}{2L} \right) \right|^2$$

Nyquist's Johnson-noise formula follows: $V_B^2 = 4kTR$

DT processing of CT signals 4.4

■ Basic model of C/D→D/C processing ↔ C/D/C 153-154



Ideal reconstruction (antialias) filter in D/C

$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\sin[\pi(n/T-n)]}{\pi(t/T-n)}$$

This basic structure describes almost every telephone, for more than 30 years

Two basic type of C/D/C systems

- There are two basic categories of C/D/C systems:
- Real-time processing:
 - Any application where 1 sample in gives 1 sample out is a real-time method
- Non-real-time processing:
 - non-real-time I applications are those where input time and output time are different,

or

non-real-time II where the computation time takes so much time that the processing cannot keep up

Real-time (RT) processing examples

- Today there are a great many examples of real-time systems:
 - cell phones, CD players, hearing aids, video conferencing over a wide-band channel (i.e., the Internet)
- Sometimes we find these systems to fall out of real time (i.e., cell phones and video)

Non-real-time (NRT) processing examples

- Cases of non-real-time applications where the input and output rates differ:
- Examples: pagers, fax machines, ...
- These make you wait

Non-real-time processing examples II

- Cases of non-real-time applications where the computation time is greater than real-time
 - video-conferencing over phone lines, cell-3G
 (3^d generation cell), some classes of speech-De-noising and music encoding such as MPEG audio and video

OLA processing

- For many C/D/C processing schemes RT and NRT, OLA frequency domain processing is used
 - This method is based on the OLA formula

$$\sum_{n=-\infty}^{\infty} w(t-nR) = \frac{1}{R} \sum_{k=-\infty}^{\infty} W\left(j\frac{2\pi k}{R}\right) e^{j2\pi kt/R}$$

- Let
 - w(n) be a low-pass filter.
 - R small such that $W(2\pi k/R) \approx 0$ for $k \geq 1$.

$$|W(\Omega)|_{\Omega=0} \equiv R$$

Under these conditions

$$\sum_{n=-\infty}^{\infty} w(t - nR) = \frac{1}{R}W(0) = 1$$

OLA formula

From the last slide:

$$1 = \sum_{n = -\infty}^{\infty} w(t - nR)$$

• Typically $R \leq L/2$, where L is the length of window w(t),

• Expand signal s(t) into smooth OLA blocks

$$s(t) = \sum_{n = -\infty}^{\infty} w(t - nR)s(t) \equiv \sum_{n = -\infty}^{\infty} s_n(t)$$

Define the windowed signal as

 $s_n(t) \equiv w(t - nR)s(t)$

From frequency to time by OLA

• Expand signal s(t) into smoothed OLA blocks

$$s(t) = \sum_{n = -\infty}^{\infty} w(t - nR)s(t) \equiv \sum_{n = -\infty}^{\infty} s_n(t)$$

As before:

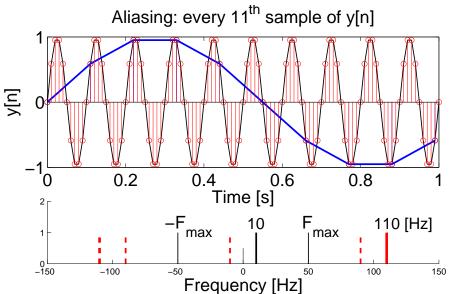
•
$$s_n(t) \equiv w(t - nR)s(t)$$

• $S_n(j\Omega) \equiv \mathcal{F}\{s_n(t)\}$ where $\mathcal{F}\{\}$: Fourier Transform
• $\Rightarrow s_n(t) \equiv \mathcal{F}^{-1}\{S_n(j\Omega)\}$
• Thus

$$s(t) = \sum_{n=-\infty}^{\infty} s_n(t) = \sum_{n=-\infty}^{\infty} \mathcal{F}^{-1}\{S_n(j\Omega)\}$$

Aliasing 4.1-4.3 147-149

Example of aliasing of a 110 Hz tone:

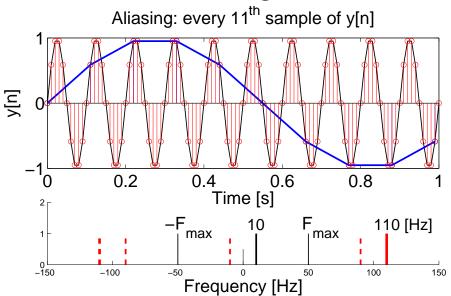


- Sample period $T_s = 0.01$ [s] $\Rightarrow F_s = 1/T_s = 100$ Hz;
 - $f = 10 \text{ [Hz]: } y[n] = \sin(2\pi f \ nT_s) = \sin(2\pi 10n/100)$
 - f = 110 [Hz] stems:

$$y[n] = \sin\left(2\pi \frac{110n}{100}\right) = \sin\left(2\pi \frac{100+10n}{100}\right) = \sin\left(2\pi \frac{10n}{100}\right)$$

Aliasing 4.1-4.3 147-149

Example of decimation-aliasing of a tone:



- Sample period $T_s = 0.01$ [s] $\Rightarrow F_s = 1/T_s = 100$ Hz;
 - $f = 10 \, [\text{Hz}] \Rightarrow y[n] = \sin(2\pi f n T_s) = \sin(2\pi 10n/100)$
 - For the blue curve $T \rightarrow 11T$.

 $\sin(2\pi f nT) = \sin(2\pi f' nT') = \sin(2\pi f' n 11T)$

• Thus 11f' = f, f' = f/11.

Down-sampling 158

- Suppose we cut the bandwidth by 2 in the frequency domain with an ideal low-pass filter
- We may then reduce $F_s = 1/T$ at the output by 2x,

$$\hat{S}_n(e^{j\omega}) = S_n(e^{j\omega}) \begin{cases} 1, & \omega < \pi/2 \\ 0 & \text{otherwise} \end{cases}$$

without aliasing, thus

$$T_{D/C} = 2T_{C/D}$$

 Alternate samples are dropped in this processing, called down-sampling

Ideal differentiator 158

Suppose we wish to differentiate a continuous input signal

$$y_c(t) = \frac{dx_c(t)}{dt}$$

This causal frequency response corresponds to

 $H_c(j\Omega) = j\Omega$

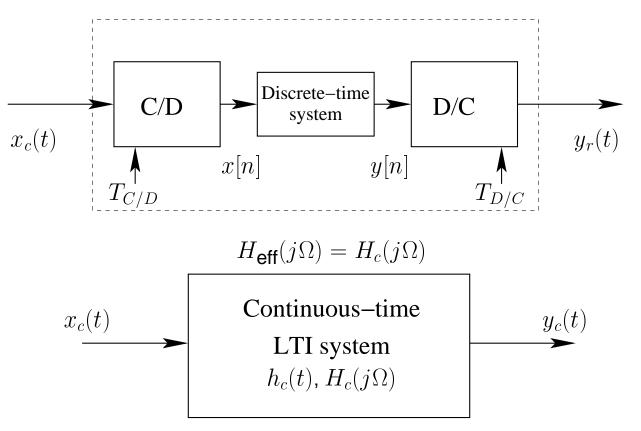
$$H_{\text{eff}}(j\Omega) = \begin{cases} j\Omega, & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

It may be shown that note the noncausal nature of h[n]

$$h[n] = \begin{cases} 0, & n = 0\\ \frac{\cos \pi n}{nT}, & n \neq 0. \end{cases}$$

Impulse-invariance 160

• Relate $h_c(t)$ and $H_c(j\Omega)$ to $H(e^{j\omega})$



With impulse invariance the mapping from discrete to the continuous domain is define by

$$h[n] = Th_c(nT)$$

Example of impulse-invariance 162

A common continuous-time impulse response, and corresponding Laplace Transform:

$$h_c(t) = e^{s_0 t} u(t) \longleftrightarrow \frac{1}{s - s_0} = H_c(s)$$

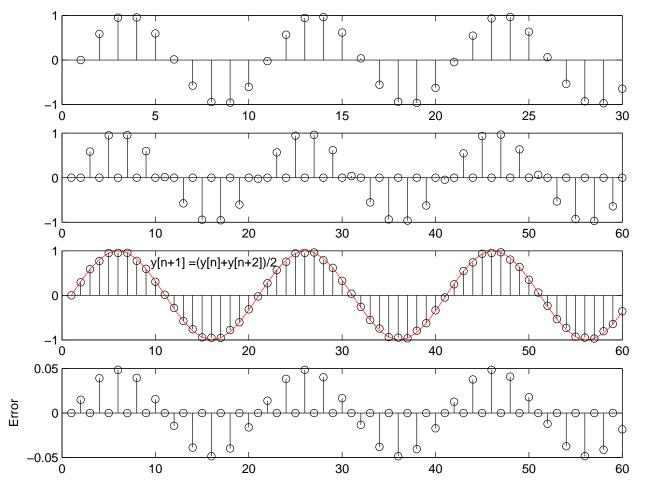
From impulse-invariance note error in book 4.8 162

$$h[n] = Th_c(nT) = ATe^{s_0Tn}u(n) \longleftrightarrow \frac{AT}{1 - e^{s_0T}z^{-1}} \equiv H(z)$$

This common example must alias since H(z) is not bandlimited

Upsampling by linear interpolation I

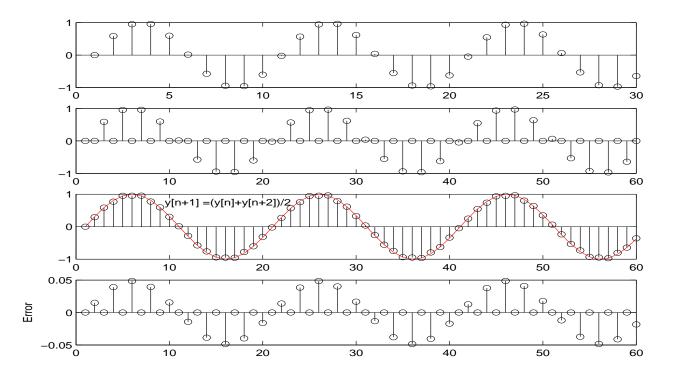
When upsampling, we need to interpolate the new samples (Matlab help upsample, interp)



This may be done by linear interpolation, but at a cost.

Upsampling by linear interpolation II

Frequency response of a linear interpolator

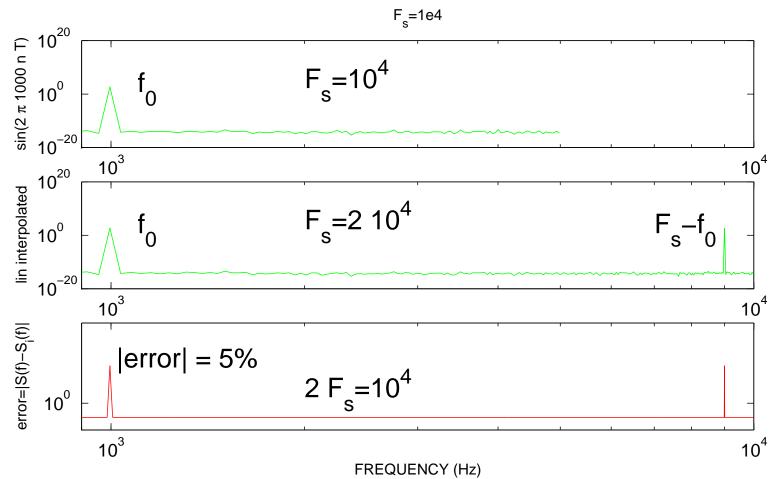


- Even "stems" from linear interpolation Red curve is the exact;
- The error is of the form (note $-1^n = e^{-j\pi n}$):

$$[1 + (-1)^n] e^{j\omega_0 n} / 2 \longleftrightarrow; 2\pi\delta(\omega - \omega_0) + 2\pi\delta(\omega - \omega_N - \omega_0)]$$

Upsampling by linear interpolation III

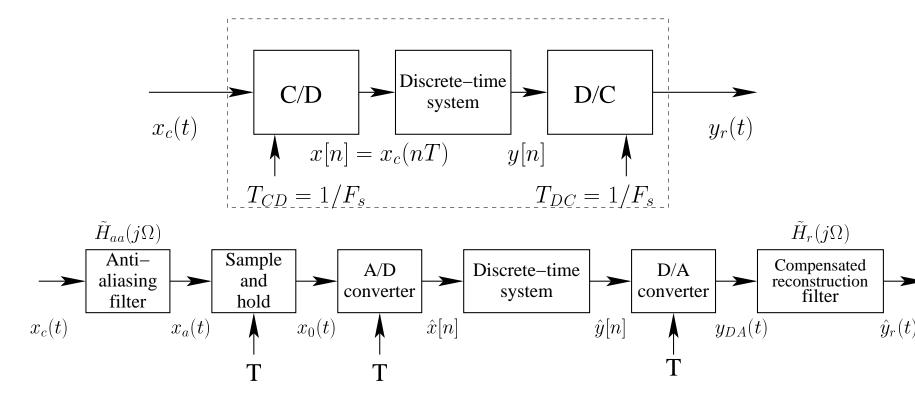
Distortion is audible



- The error due to interpolation is 5% at f_0
- There is an unwanted tone at $F_s/2 f_0$

DT processing of analog signals 4.8 185

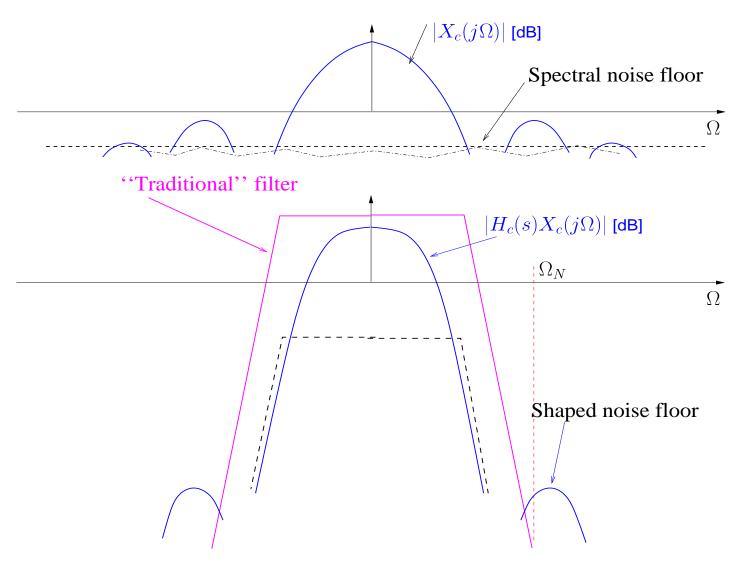
DT processing with A/D and D/A



Basic signal definitions

Traditional C/D conversion

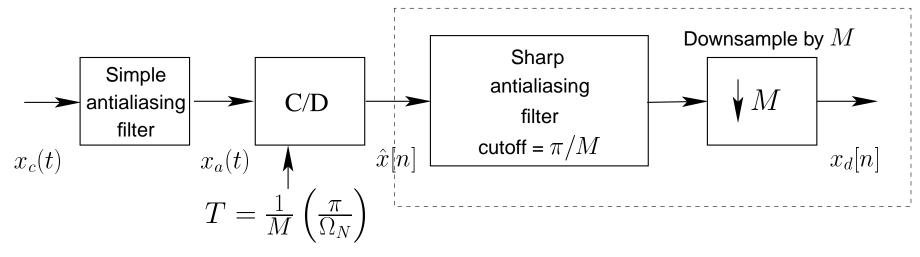
Traditional converter requires a high order filter



Some issues

- Analog prefilter is very expensive, large, requires laser trimmed resistors
- Phase response distorts the waveform (not necessarily a problem)
- Needs to be a very large order (i.e., >100 dB/oct)
- Multibit converters have linearity and "glitches"
- The oversampled sigma-delta Σ - Δ converter solved all these problems, plus others

Architecture of oversampled A/D 187

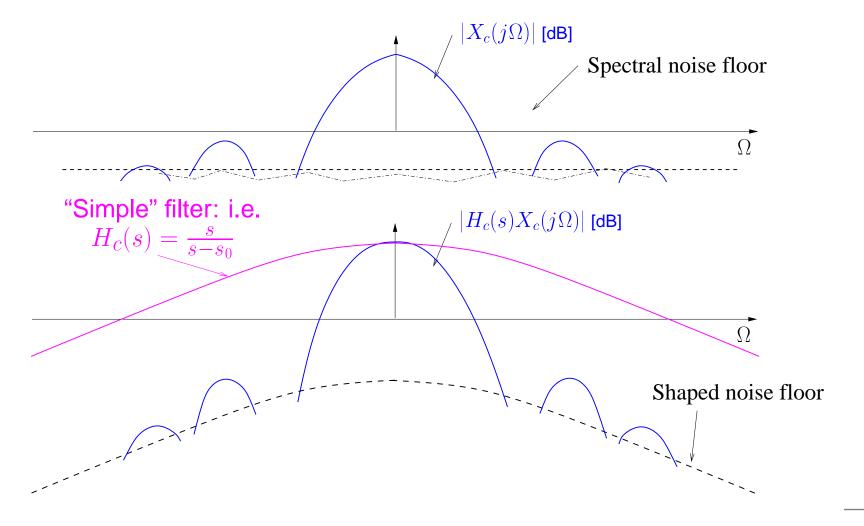


- The simple antialiasing filter has a gradual i.e., 1/for $1/f^2$ lowpass rolloff
- Sampling is done at very high rate e.g., M = 1000
- The steep antialiasing filter is then implemented in the DT domain
- DT downsampled by M gives $x_d[n]$

Oversampling C/D conversion I

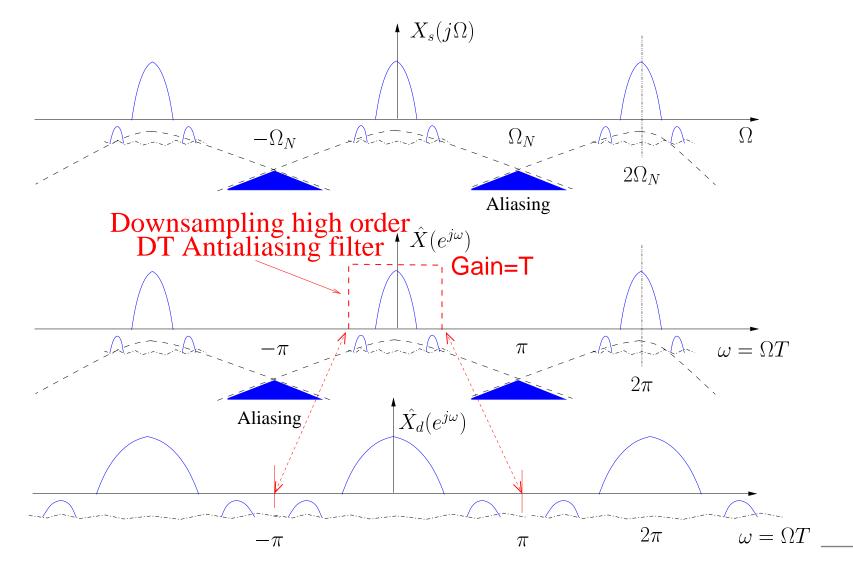
• Modern C/D conversion: 768x (3×2^8) oversampled Σ - Δ

http://courses.ece.uiuc.edu/ece310/Allen/sigmadelta.html



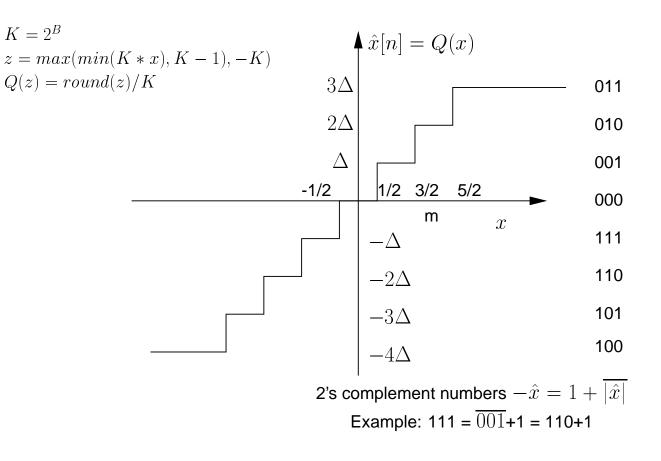
Oversampling C/D conversion II

• After sampling: $X(j\Omega) \longrightarrow X_s(j\Omega)$



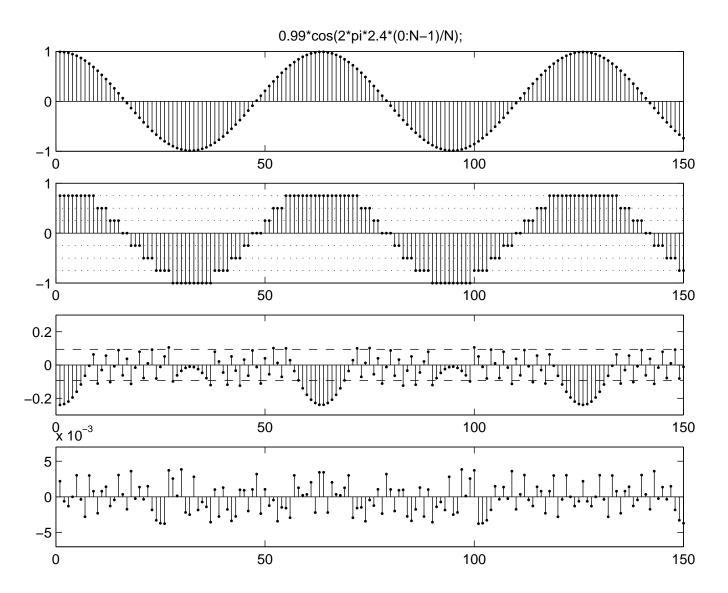
Amplitude Quantizer

- Digital signals are both discrete in time and amplitude
- Values $\hat{x}[n]$ are two's complement integer "fraction" with value -1^{a_0} . $\left(\sum_{n=1}^{B} a_n 2^{-n}\right)$ Example: 1.01011 = -(1/4+1/16+1/32)



Quantization noise 4.51 195

Error for a 3 and 8 level quantizer



Analog Devices AD-1835A

- 5 V Stereo Audio 3.3 V Tolerant Digital Interface
- Differential Output
- Up to 192 kHz Sample Rates
- 256x, 512x, and 768x F_s Mode Clocks
- 16-20-24 Bit Word Lengths
- ∑-△ Modulators with "Perfect Differential Linearity" ADCs:-95 dB THD+N, 105 dB SNR+Dynamic Range DACs:-95 dB THD+N, 108 dB SNR+Dynamic Range
- 4 DAC's and 1 ADC (Stereo) on 1 52-pin package

References

Nyquist, H. (1928). "Thermal agitation of electric charge in conductors," *Phy. Rev.* pages 110–113.

Nyquist, H. (1932). "Regeneration theory," *Bell System Tech. Jol.* **11**:126–147. Молодкарн В-642.

Nyquist, H. (1934). "Stabilized feed-back amplifiers," *Elec. Eng.* **53**:1311–1312.