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Periodic symmetry

- .

# Every function ¢(¢) may be made T-periodic with an
overlap and add OLA operation

i) = 3 gt —nT)

n=-—oo

n and integer, T the period

# Functions periodic in one domain (e.g., time) are
“sampled” in the other domain (e.g., frequency)

#® Convergence of this expression is an issue

o -
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Review of nomenclature

FT type time limits freq. limits
DTFT 48 h[n] —co<n<oco H(ew) —r<w<T
H(el?) = Z h[n]e @™
z Transform 95 hn] —o0 < n < H(z) z in ROC
H(z)= ) hln]z™"
Fourier Transform 143 xe(t) —o0 <t< oo Xc(592) —o0 <N < 0
Xc(592) E/ zo(t)e I dt
C/D Transform 143 zs(t) = —o0 <t < s(JQ) —% <0< %
X.(jQ) = > " @ (t)6(t—nT) t =nT Fs =4 Frax = 2K
. OOX Q — jkQ Qs = 27 Qs > 20
T Z c (72 — JkQs) S= T s > 23N

k=—o0
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Periodic sampling 140

f # Starting from a continuous-time signal x.(t), a sampler T
determines a discrete-time signal z[n] = z.(t = nT)

zs(t) = Y wo(nT)5(t — nT).

n=—oo

C/D
To(t) z(n] = x.(nT)

o

\j

o(t —nT)

# z|n|Is sampled < periodic in frequency 2
S I — L2
L Xs(]Q)_T Z Xc (]Q_]k?> J

k=—00
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Periodic sampling

Every periodic function ¢(t) = g(t — nT') may be T
expanded in harmonics, at frequencies w; = 27k/T

g(t) =g(t —nT) Z G, o) 27 [it ( —]27Tkn/T)

k——OO ~ N~
1

From Fourier series formula:

1 1 .
Gr== [ [f(t)e B2/ g
T Ji=o

Periodic impulses: page 143, Eq.

O O

i 5(t—nT):% Z eI2mRT >277j Z 5<Q—k2%>
n=—00 k=—00 k=—o0 J
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Basic symmetry
f # Periodic impulses 143, Eq. and Munson notes 25.2 T

o

i 5(t—nT):% Z ejZﬂkt/THQ% i 5(&2—1{?)

n=—0oo k=—00 k=—00

s This is the Poisson Summation Formula PSF
s PSF is a very important result
s Based on Fourier series expansion of impulse-train

o -
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Applications of PSF
-

® Letw(t)«W(iQ).
o Modulation formula:

o

;w(nTﬁ(t—nT)H% S W(jQ—jk%)

k=—00

Multiply by w(t¢) on left, convolve W (;€2) on right
s Overlap-add formula:

i w(t—nT)HQ% i W @#) 5 <Q—k2%>

n—=——odo k=—00

L Convolve w(t) on left, multiply W (5€2) on right J
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Frequency domain nomenclature

-

# Detalils in working with €2 and w: T
e/l 5275(Q — Qo)

sin (27500t )«—jm [§(£2 — 10007) — §(2 4+ 10007)]

QenT 2T 2T
PO E -y — k—
€ k 5( 0 k )

# A frequency of 200 Hz has a radian frequency of
(29 = 4007, which corresponds to a normalized
frequency of wy = 4007/ Fs = 4007T'.

# Delta scaling |a|d(ax) = d(x) forany a # 0. Try a = —j as
an example. Example 4.1 148

o -
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Pulse train modulation

f ® General case of time modulation T
S w(nT)o(t — nT)es i w (o — k2T
n I k=—o0 I

Y NN
& ] \/Image\/ ]
/N W i, m g

t T

Continuous time Discrete time

Fourier Transform pair DTFT pair
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Effect of Increased sampling rate

f #® When T is halved (T" — T/2, F; doubled,): T
S w(nT)o(t — nT)es f: w (o — k2T
n I k=—00 L

the images move out:

Discrete time Discrete time

1X SAMPLING 2X SAMPLING
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Effect of decreased samplingrate

f # When T is doubled (T' — 2T, F, halved): T
= ] — 2k
B _ el j2mwkt/T
n;mw(t nT) Tk;mW(? i )e

the images move In.
s Overlap in the spectrum W (w) is called aliasing

I W (59) W(5Q)
\/ Imagez/ ‘2 \/ Image\/ ‘2
ALY D
N .
Discrete time Discrete time

1X SAMPLING 0.5X SAMPLING
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Harry Nyquist

T
Born in Sweden:

Three famous theorems
named after him:

The Nyquist

1. Sampling Thm.,
(Nyquist 1928)

2. Thermal noise Thm.,
(Nyquist 1932) and

3. Feedback stability Thm.
(Nyquist 1934)
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Windowing the images

f # What happens when images are removed by windowingT
In frequency?

zo(t) = ””i‘:;”) x 37 w[T16(t —nT)
‘ W (i) bW (0
X AN

Continuous time Discrete time
Fourier Transform pair DTFT pair
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Nyquist sampling theorem 1928

f # Any signal z(¢) may be uniquely represented by its T
samples z[nT] If it Is sampled at €2, defined as more
than twice its highest frequency Qy 146

2T
QS — ? > ZQN
# Note the somewhat confusing definitions in the book

146 regarding the terms Nyquist frequency = Qy,
versus the Nyquist rate = 2Q .

o -
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Someissuesto think about

f # The proof of the Sampling Theorem is based on T
convolution with sin(w.t)/nt, namely the formula: 150
sin(mt/T) sin|m(t/T —n)]

ii'reconstructed(t) — 7Tt/T *:IZ[TL] — Z x[n] W(t/T — ’fl)

n——oo

# This low-pass reconstruction filter

sin(mt/T)
nt/T

IS also called the interpolation filter, as it interpolates
the signal between samples.

o -
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°

°

°

Someissuesto think about

In practice convolution by a “perfect” filter T
. sin|mt/T
-Treconstructed(t) = W[t/fz/j ] *:I?[TL]

IS noncausal, and therefore cannot be implemented.
A casual low-pass filter is used in practice.
What are the practical implications of this?

How will z(¢) differ from the starting z(¢) at the input to
the ideal C/D followed by D/C conversion process?

Namely what is the RMS error going to look like?

In practice this works because the ear cannot hear the
phase distortion

-
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Poisson Summation For mula

f # Case of impulse: T

0

i 5(t . TLT) _ % Z 6j27rkt/T

n=—oo k=—00

#® General case of OLA comes from convolution on left by
w(t):

Z w(t —nT) = % Z %4 <]#> eI 2mkt/T

n=—oo k=—00

w(t) IS a continuous time function
» W(] 275 is W (jQ)<>w(t), sampled at Q, = 27k /T

o -
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Nyquist’s famous problem

-

® Find the Johnson thermal noise

® Transmission line terminated In resistors
Length L = ¢ -

20 —
tT tT
i(t,T) ) vl

# Stored energy

1 L
Eiptal = pou v (x — ct) + vi(x + ct)dw
=0

o -
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Nyquist’s 2¢ famous problem

f ® Attt =0, remove the resistors T
Length L=c

<
(S uslt—n2L/c) )

# Stored energy

1 o0 1 > C 2
n=0 k=—00

L » Nyquist's Johnson-noise formula follows: V3 = 4kTR J
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DT processing of CT signals4.4

f # Basic model of C/D—D/C processing <+ C/D/C 153-154T

= cb = en = DIC
wc(t) y'r<t>
b afn] =a(nT)  ylnl A
_ _TQ/_D_ . 1/Fs ____________________ ID,/ C — 1/ F S_

# Ideal reconstruction (antialias) filter in D/C

sm[ (n/T —n)
Z Y = T — )

n=-—oo

# This basic structure describes almost every telephone,
L for more than 30 years J
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Two basic type of C/D/C systems

- .

#® There are two basic categories of C/D/C systems:

# Real-time processing:
s Any application where 1 sample in gives 1 sample
out is a real-time method
#® Non-real-time processing:

s non-real-time | applications are those where input
time and output time are different,

or

s nhon-real-time Il where the computation time takes
so much time that the processing cannot keep up

o -
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Real-time (RT) processing examples

- .

# Today there are a great many examples of real-time
systems:

s cell phones, CD players, hearing aids, video
conferencing over a wide-band channel (i.e., the
Internet)

# Sometimes we find these systems to fall out of real time
(i.e., cell phones and video)

o -
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Non-real-time (NRT) processing examples

- .

o Cases of non-real-time applications where the input an
output rates differ:

# Examples: pagers, fax machines, ...
#® These make you walit



Non-real-time processing examples||

f o Cases of non-real-time applications where the T
computation time is greater than real-time

s Vvideo-conferencing over phone lines, cell-3G

(3¢ generation cell), some classes of

speech-De-noising and music encoding such as
MPEG audio and video

o -
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OLA processing

f # For many C/D/C processing schemes RT and NRT, T
OLA frequency domain processing is used

o This method is based on the OLA formula

0

Z w(t —nR) = % Z 4% <]%> eI 2mkt/ B

n=——o0 k=—00

s Let
s w(n) be alow-pass filter.
s R small such that W(2nk/R) ~ 0 for k£ > 1.
s [W(Q)|g—g =R

o Under these conditions

O

Z w(t—nR):%W(O)zl

n=-—oo

-
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OLA formula

f ® From the last slide: T

o

1= Z w(t —nR)

n=-—oo

# Typically R < L/2, where L is the length of window w(t),
# Expand signal s(¢) into smooth OLA blocks

o o

s()= )  w(t—nR)s(t)= Y  sp(t)

n=—oo n=-—oo

# Define the windowed signal as
sp(t) = w(t —nR)s(t)

o -
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From freguency totime by OLA

f # Expand signal s(t) into smoothed OLA blocks T
s()= Y wt—nR)st)= )  su(t)
# As before:

® sp(t) =w(t—nR)s(t)

s S,(jQ) = F{sn(t)} where F{ }: Fourier Transform
o = sp(t) = FHS,(iQ)}

s Thus

o

s()= Y sut)= > F %)}

n=—oo n=—oo
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Allasing 4.1-4.3 147-149

f # Example of aliasing of a 110 Hz tone: T

Allasmg every 11" sample of y[n]

0 02' 04' 06 08 1
2 Time [s]
- 10 F 110 [Hz]
maX . max .
T
-50 0 50 100

Frequency [Hz]
#® Sample period 75 = 0.01 [S] = Fs = 1/Ts = 100 Hz;
s f=10[Hz]: y[n] = sin(2x f nTy) = sin(27w10n/100)
s [ =110 [Hz] stems:

, 110n . 100 + 10n . 10n
yln] =sin | 2r—— | = sin | 27 = sin | 2m——
100 100 100

o -
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Allasing 4.1-4.3 147-149

f # Example of decimation- aliasing of a tone: T

Allasmg every 11" sample of y[n]

-F 10 F 110 [Hz]
max . max .
-50 0 50 l(‘)O

Frequency [Hz]

#® Sample period 75 = 0.01 [S] = Fs = 1/Ts = 100 Hz;
s f=10[Hz] = y[n| = sin(27 fnTs) = sin(2710n/100)
s For the blue curve T' — 117
sin(27 fnT) = sin(27 f'nT’) = sin(27 f'nl1l1T)

s Thus11f' = f, f' = f/11.
u / B
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Down-sampling 158
- o

#® Suppose we cut the bandwidth by 2 in the frequency
domain with an ideal low-pass filter

o We may then reduce F; = 1/T at the output by 2x,

1, w<mn/2
0 otherwise

Sn(e?¥) = Sp(e?*) {
without aliasing, thus

Ipic=21¢/p

o Alternate samples are dropped in this processing,
called down-sampling

o -
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| deal differentiator 158

Suppose we wish to differentiate a continuous input T
signal

ye(t) = di;t(t)
This causal frequency response corresponds to
He(j$2) = j§2
Thus |
R PN
It may be shown that note the noncausal nature of hA|n|

0, n =0
h[n] — { COSTN n # O
nl > .

-
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| mpulse-invariance 160

f ® Relate h.(t) and H.(jQ) to H(e/¥) T
c/D _»Disg;estt(;;ime_> D/C =
T(t) Y (1)
) t[n] yln A
Terp Ipsc

2o(t) Continuous—-time 0
— > LTI system =

he(t), He(j42)

# With impulse invariance the mapping from discrete to
the continuous domain is define by

o hin] = The(nT) .
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Example of Iimpulse-invariance 162

- .

# A common continuous-time impulse response, and
corresponding Laplace Transform:

1
he(t) = e®tu(t) +— P H.(s)

# From impulse-invariance note error in book 4.8 162

hin] = The(nT) = ATe** 1™ u(n) +— — = H(z)

# This common example must alias since H(z) Is not
bandlimited

o -
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Upsampling by linear interpolation |

f’

When upsampling, we need to interpolate the new

samples (Matlab help upsample, interp)

-
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This may be done by linear interpolation, but at a cost. J



Upsampling by linear interpolation ||

f.o Frequency response of a linear interpolator T
p[]5 E2RES Il
YL BEINE _ ]
ARE: EARES AR
JUE N ol

AT S Al
U w

e Lls SARPRARE
Pl SN AR V S Y VX

Error

s Even “stems” from linear interpolation Red curve Is
the exact;

s The error is of the form (note —1" = e=7/™):

L 1+ (=1)"] ejwon/Q R 27r5(w—w0)—|—27r5(w—wN—wo)J
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Upsampling by linear interpolation |11
f o Distortion is audible

F =1e4
20
I T T T T T T T T

— 10
S V|
% 10° fo Fs—lO
5 107 — \
20 10 10
- 10 . .
& P
% 100 fO FS_Z 10 FS_fO
= 107 — - \
_ 10 10
z lerror| = 5% A
? 2 F =10 ‘ _
10 | | | T
FREQUENCY (Hz)
#® The error due to interpolation is 5% at f
® There Is an unwanted tone at F/2 — f J

Allen — April 19, 2004 — p.36/4"



DT processing of analog signals 4.8 185

-

o

# DT processing with A/D and D/A

Discrete—time

—> C/D —— system —> D/C S
xc(t) yr(t)
b afn) =an?)  yl] A
Tep=1/F,  Tpc=1/Fs
H,u(§92) H,(j9)
Anti— Sample . i C d
— aliasing == and == Coﬁ\//IZrter_> Dlsgrestteen:lme_> COE\//'(Aa\rter reg(r)nnps?rnuscatlitgn —
filter hold y filter
zo(t) za(t) ¢ z(t) ¢ #[n) ijln) * ypa(t) in(t
T T T

# Basic signal definitions
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Traditional C/D conversion

- .

# Traditional converter requires a high order filter
| Xe(5€2)] [dB]

Spectral noise floor

“Traditional’ filter

\ | Hc(s)Xc(j€2)] [dB]
/ /\)T o

Shaped noise floor

/
’ o
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°

Some 1ssues

=

Analog prefilter is very expensive, large, requires laser
trimmed resistors

Phase response distorts the waveform (not necessarily
a problem)

Needs to be a very large order (i.e., >100 dB/oct)
Multibit converters have linearity and “glitches”

The oversampled sigma-delta >-A converter solved all
these problems, plus others

-
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Architecture of oversampled A/D 187
-

® Basic definitions:

777777777777777777777777777777777777777777777777777777777777

Downsample by M
: Sharp
Slmplg | antialiasing
— antialiasing|—>| C/D —> flter > + M =
filter ; ; ff' / M
" cutoff = 7
z.(t) T4(t) % zin] rqn]

_ 1 S 3
= ()

s The simple antialiasing filter has a gradual i.e., 1/f
or 1/f* lowpass rolloff

s Sampling is done at very high rate e.g., M = 1000

s The steep antialiasing filter is then implemented in
the DT domain

L s DT downsampled by M gives z4[n] J
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Oversampling C/D conversion |

- .

# Modern C/D conversion: 768x (3 x 2%) oversampled 2-A

http://courses.ece.uiuc.edu/ece310/Allen/sigmadelta.html

| X(j92)| [@B]

/ Spectral noise floor

“Simple” filter: i.e. [H.(s)X

52

Hls) = 525 P
7

| [dB]

/ O
/\ ~mmTTTTTT /\ Shaped noise floc

-
-
-
-
-
-
- J
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Oversampling C/D conversion ||

-

#® After sampling: X (jQ) — X(jQ)

- AI .
Downsampling hlgfh ord(/a\}r joy o
DT Antialiasing filter| ¢

B

|
o (AT /\‘\ T EetT D w=QT
— X ~ y N ~
Aliasing/ Xy(e)
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Amplitude Quantizer

Digital signals are both discrete in time and amplitude T
Values z|n] are two’s complement integer “fraction” with
value —1%. (Zle anQ—”) Example: 1.01011 =
-(1/4+1/16+1/32)

K =28 Lai]
z =max(min(K xz), K — 1), - K) zln] = Q(z)
Q(z) = round(z)/ K IA 011
24 010
A 001
-1/2 1/2 3/2 5/2 - 000
m T
—A 111
—2A 110
—3A 101
—_— /N 100

2's complement numbers —% = 1 + |Z|

Example: 111 = 001+1 = 110+1
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Quantization noise 4.51 195

Error for a 3 and 8 level quantizer

0.99*cos(2*pi*2.4*(0:N-1)/N);

. HHHHHT.” . ﬂllHH' HHH“I: . I r.T””HHH HHHHHT.,l
i |||H““l o 111 i

° 50 100 150
0.2
_OIZ Mﬂl 1 11 I I_L _111 ‘L 1_1 L_l IHHHHUL 1_11 1_1 } ]‘11_ Il] Ll 1 LIMIWQ 1 1 j I 1‘
%107 50 100 -

O_I,. ]. Ir 1! .l. LT.T h[l 1t 1 T]T‘ IT..I H I..Tl .T]T 1 11 lh‘ T.TJ .l‘ It rl ‘[ ‘I‘ ]. Ir 1! ‘l. ‘.T.T_
L g I R D R 0 I R D

! !
0 50 100 150



© o o o o 0

°

Analog Devices AD-1835A
-

5V Stereo Audio 3.3 V Tolerant Digital Interface
Differential Output

Up to 192 kHz Sample Rates

256X, 512x, and 768x F, Mode Clocks
16-20-24 Bit Word Lengths

>>-A Modulators with "Perfect Differential Linearity"
ADCs:-95 dB THD+N, 105 dB SNR+Dynamic Range
DACs:-95 dB THD+N, 108 dB SNR+Dynamic Range

4 DAC’s and 1 ADC (Stereo) on 1 52-pin package

-
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