Periodic symmetry

Every function g() may be made -periodic with an overlap and add

Review of nomenclature

FT type	time	limits	freq.	limits	
DTFT 48	h	\leq			

Periodic sampling 140

Periodic sampling

Every periodic function g(

Periodic impulses 143

Applications of PSF

Let () $(j\Omega)$. Modulation formula:

$$\begin{array}{c} \blacksquare \\ () (-) \\ = -\infty \end{array} \begin{array}{c} \infty \\ j\Omega - j \\ = -\infty \end{array}$$

Pulse train modulation

General case of time modulation

Effect of increased sampling rate

Effect of decreased sampling rate

,

■ When is doubled (

Harry Nyquist

Nyquist sampling theorem 1928

Some issues to think about

Poisson Summation Formula

Nyquist's 2^d famous problem

 \blacksquare At = , remove the resistors

DT processing of CT signals 4.4

Two basic type of C/D/C systems

- There are two basic categories of C/D/C systems:
- Real-time processing:
 - Any application where 1 sample in gives 1 sample out is a real-time method
 - Non-real-time processing:
 - non-real-time I applications are those where input time and output time are different,

or

 non-real-time II where the computation time takes so much time that the processing cannot keep up

Non-real-time

From frequency to time by OLA

Expand signal ()

Aliasing 4.1-4.3 147-149

Example of decimation-aliasing of a tone:

Down-sampling 158

Ideal differentiator 158

Suppose we wish to differentiate a continuous input signal

$$y() = ----()$$

Upsampling by linear interpolation I

When upsampling, we need to interpolate the new samples (Matlab help upsample, interp)

Upsampling by linear interpolation II

I Frequency response of a linear interpolator

DT processing of analog signals 4.8 185

Traditional C/D conversion

Traditional converter requires a high order filter

Oversampling C/D conversion I

Modern C/D conversion: 768x (8) oversampled -

http://courses.ece.uiuc.edu/ece310/Allen/sigmadelta.html

Amplitude Quantizer

- Digital signals are both discrete in time and amplitude
- Values [are two's complement

Quantization noise 4.51 195

Error for a 3 and 8 level quantizer

Analog Devices AD-1835A

References

Nyquist, H. (1928). "Thermal agitation of electric