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Chapter 2 – The Vibrating String

(2.1) For simple harmonic oscillator (one mass), the goal was to find the single function x(t) that
would describe the entire history of the motion.

For a finite number of N masses connected by various springs, x1(t), x2(t),..., xN(t) functions would
be needed.

The vibrating string is a system that has an infinite number of masses (infinitely many parts), each
of which may move in a different way.

(2.2 – 2.3) Each section of the string is an infinitesimally small mass taking up an infinitesimally
small segment, dx.

Consider a long, uniform string:
total mass: ms (kg)
length: L (m)

mass per unit length: s
L

m
L

ρ =  (kg/m)   -linear mass density

This means that each dx element will have a total mass of L dxρ .

Let’s assume that the string is stretched tight with a tension, T, and then is plucked or displaced in
the middle. A vibration or small disturbance will travel down the string in both directions.

The tension, T, acts as the restoring force (N) for the displacement, ( ),y x t , which is a function of
both the position along the string and time (see above figure).
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So, let’s work out the Equation of motion for the displacement of the string:
1st some assumptions:

(1) T is large enough so that we can neglect gravity
(2) No loss (due to friction or acoustic radiation)
(3) Neglect stiffness (transverse motion allowed - like floppy string not wire)
(4) Displacement is small enough that T is still approx. constant along length

Now, let us examine the forces exerted on a particular dx segment. When the string is at rest (no
displacement) the tensions at x and x + dx are equal in magnitude and opposite in direction. The net
force is zero.

When the string has curvature, the tension acts in slightly different directions at x and x + dx, thus
pulling the dx segment in such a direction to try to straighten it out.

θ

dy

dx

y

y + (∂y/∂x)dx

x + dxx

T

T

Looking at the vertical component of the incremental force on the dx segment:
sin siny x dx xf T Tθ θ+∆ = −

If we apply a Taylor series expansion of ( ) siny x dxf x dx T θ ++ =  we have:

( ) ( )
2

2
2

1
...

2y y
x x

f f
f x dx f x dx dx

x x
 ∂ ∂ + = + + +  ∂ ∂   

( ) sin
sin ...y xf x dx T T dx

x
θ

θ
∂

+ = + +
∂

so that
sin

yf T dx
x

θ∂
∆ =

∂
.

For small θ , cos 1θ ≈ so that
sin

tan sin
cos

y
x

θ
θ θ

θ
∂

= = ≈
∂

and
2

2y
y y

f T dx T dx
x x x
∂ ∂ ∂

∆ = =
∂ ∂ ∂

.
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Now, using Newton’s second law for constant mass (f=ma) then

Lm dxρ= and
2

2

y
a

t
∂

=
∂

.

Equating the two forces gives:

2 2

2 2L
y y

T dx dx
x t

ρ
∂ ∂

=
∂ ∂

2 2

2 2 2

1y y
x c t

∂ ∂
=

∂ ∂
  where 2

L

T
c

ρ
=

This is called the one-dimensional wave equation.

(2.4) General Solution of the Wave Equation:

A general solution to the 1D wave equation is:
( ) ( ) ( )1 2,y x t y ct x y ct x= − + + .

(2.5) What does this mean physically?
Well, let’s assume that the phase portions of our functions are constant (ct x const± = ).
If we differentiate our phase then

cdt dx±
or

dx
c

dt
= ± .

In other words, the ‘+’ phase represents a wave traveling in the positive direction and the ‘-‘ phase
represents a wave traveling in the negative direction both with a speed c.

(2.6) Initial Values and Boundary Conditions

The particular functions y1(ct-x) and y2(ct+x) are determined by the type of excitation

For example, with stringed instruments you can have the following excitations
(a) striking - piano
(b) plucking - harp or guitar
(c) bowing - violin or cello

In the real world the strings are held at both ends so we must deal with boundary conditions that
affect the waves that will exist on the string.

Also, note that in the case of a driven system the steady-state response is at the driving frequency.

(2.7) Reflection at a Boundary

If we have a string that is rigidly supported at the boundary (x = 0) then the total displacement in the
y-direction must be zero. Looking at the general solution then reveals:
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( ) ( ) ( )1 20, 0 0 0y t y ct y ct= − + + = .
This means that a wave is reflected from the boundary and that wave must sum with the incident
wave to zero. In other words, if the incident wave has positive displacement, then the reflected wave
must have displacement equal and opposite in magnitude to the incident wave.

Let’s look at another case: A finite-length string supported freely at x = 0.
In this case the force at the end of the string will be zero so ( )0 sin 0f x T θ= = = .

Since sin
y
x

θ
∂

≈
∂

 then if we let w ct x= −  and v ct x= + , using the chain gives

1 2 1 2

0 0

0
x x

y y y yy w v
x w x v x w v= =

∂ ∂ ∂ ∂∂ ∂ ∂   = + = − + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
so

1 2

0 0x x

y y
w v= =

∂ ∂   =   ∂ ∂   
but at x = 0, w = v so

1 2y y∂ = ∂ which implies  1 2y y=

(2.8) Forced Vibration of an Infinite String

Next, let’s consider a string of infinite length driven at one end by an oscillator. This means there is
no boundary at the other end so we have a solution for a positive going wave only (no reflected
wave). In other words:

( ) ( )1,y x t y ct x= −
so that at x = 0,

( )0, j ty t Ae ω= % .

Since our solution is of the form  ( )1y ct x−  this means that

( ) ( )
1 0 jk ct j ty ct Ae Ae ω− = =% %

where 
2

k
c
ω π

λ
= =  and is called the wavenumber or propagation constant and is inversely

proportional to the wavelength, λ . Therefore,
( ) ( ) ( ) ( )

1, jk ct x j t kxy x t y ct x Ae Ae ω− −= − = =% % .

TIME OUT:
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Some important definitions about wave motion:

The wave propagates in the x direction as viewed in the panel on the left.
The wavelength, λ, is defined as the distance over which the sinusoid varies by 2π  or one cycle.
Temporally, the period, Tp,  is related to the wavelength as is defined as the time required for the
sinusoid to vary by 2π  or one cycle.
Since distance = speed x time, then, pcTλ =

Recall speed: 
L

T
c

ρ
= .

The frequency (Hz) is defined as the number of cycles per second:
1

p

c
f

T f
= → .

The radian frequency, ω, (radians/sec):
2

2
c

f
π

ω π
ω

= → .

The wavenumber, k, (radians/meter):
2

k
c
ω π

λ
= = .

TIME IN: (Back to the driven string)

The applied driving force on the string must be equal to the transverse component of the tension
force so that:

[ ] 0
0

sin
x

x

y
f T T

x
θ

=
=

∂ = − = −  ∂ 
%

so
( )

0

j t kxj t

x

f Fe T Ae
x

ωω −

=

∂ = = −  ∂ 
% %

j t j tf Fe jkTAeω ω= =% %
or

F
A

jkT
=%
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Our solutions are then:

( )
( )

,
j t kxFe

y x t
jkT

ω −

=

and

( ) ( ), j t kxdy F
u x t e

dt kT
ωω −= = .

Recall that,

c
k
ω

= and 2
LT cρ=

so

( ) ( ), j t kx

L

F
u x t e

c
ω

ρ
−= .

Let’s discuss the concept of cause-effect.

Cause: Voltage E Field Force
Effect: Current H Field Velocity

Impedance → 
Cause
Effect

Input mechanical impedance:

( )0 0,m

f
Z

u t
=

%%
%

( )
0

0

j t

m L
j t k

L

Fe
Z c

F
e

c

ω

ω
ρ

ρ
−

= =%

Note: the mechanical impedance of the infinite string is a real quantity, which means it is purely a
resistive load.

Power, Energy, etc. → Cause x Effect

Instantaneous Input Power:

{ } ( ){ }Re Re ,i f u o tΠ = % %

{ } ( )
2

0 2Re Re cosj t kj t
i

L L

F F
Fe e t

c c
ωω ω

ρ ρ
− 

Π = = 
 

Units:
2N m J

N W
s s sN
m

 
 

= ⋅ = = 
 ⋅ 
 
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Average Input Power:

0

1 T

idt
T

Π = Π∫  (Take the average over one cycle).

2 2
2

0

1 1
cos

2

T

L L

F F
tdt

T c c
ω

ρ ρ
Π = =∫ .

Now

( ) ( )00, j t k

L

F
u t e

c
ω

ρ
−=

so that

( )0 0,
L

F
U u t

cρ
= =

which gives
2
0

1
2 LcUρΠ =

(2.9) Forced Vibration of a Finite String

Case I.
Let’s consider a finite-length string fixed at one end (x = L) and driven at x = 0 under steady-state
conditions by j tFe ω .
What kind of wave is going to reflect off of the fixed end?
In this case we are going to have reflections at both ends so we need a solution with both positive
and negative going waves:

( ) ( ) ( ), j t kx j t kxy x t Ae Beω ω− += +% %% .

We want to use our boundary conditions to solve for the 2 unknowns, A%  and B% . At the end x = 0,
the driving force must = the vertical tension force so,

0
y

x

y
f T

x =

∂ = −  ∂ 
%

Substituting our solution gives
( ) ( )( )

0

j t kx j t kxj t

x
Fe T jkAe jkBeω ωω − +

=
= − − +% %

( )F jkT A B= −% %
The boundary condition at the fixed end is simply ( ), 0y L t =  at all times so that (wlg)

0jkL jkLAe Be− + =% %
So now we have 2 equations and 2 unknowns, let’s solve:

–

2 cos

–
2 cos

jkL

jkL

Fe
A

jkT kL

Fe
B

jkT kL

=

=

%

%

This gives us a solution:
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( ) ( )

( ) ( )( )( ) – ( )

( , )
2 cos 2 cos

–
2 cos

sin[ ( – )]
cos

jkL jkL
j t kx j t kx

j t k L x j t k L x

j t

Fe Fe
y x t e e

jkT kL jkT kL
F

e e
jkT kL

F k L x
e

kT kL

ω ω

ω ω

ω

−
− +

+ − −

−
= +

=

=

%

The solution above is called a standing wave. What we have is the string as a non-propagating sine-
wave that oscillates its amplitude according to j te ω . We have two distinct features of the standing
wave called the node and antinode.
The node is defined where the amplitude is always zero:

sin[ ( – )] 0k L x =

or ( – )k L x qπ=  where 0,1,2,...
kL

q
π

= ≤

so that the nodes are defined at positions

q

q
x L

k
π

= −

but recall that 
2

k
π
λ

=  so 
2q

q
x L

λ
= − .

The antinode is defined where the amplitude is at a maximum:

sin[ ( – )] 1k L x = .

Below is a plot of the standing wave:

x

λ/2

nodes antinodes

x = L

The nodes are separated by 
2
λ

 as are the antinodes. The antinodes are located at
4 2

x L n
λ λ

= − − .

If we change the frequency of the driver the positions of the nodes and antinodes will change (when
we change the frequency,ω, we change the wavelength, λ. This is illustrated in the figures below:
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0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f = 800 Hz

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f = 600 Hz

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f = 300 Hz

The amplitude of the antinodes can is also a function of the frequency of the driver and has some
very interesting effects at the resonant frequency. Recall that:

sin[ ( – )]
( , )

cos
j tF k L x

y x t e
kT kL

ω=%
the amplitude of the standing wave is mediated by the cos kL  term. When

( )2 1
2

kL n
π

= − for n = 1,2,3,… (odd multiples of 
2
π

)

then
cos 0kL = .

The resonant frequency, rf , is defined as:

( )2
2 1

2
rf L

n
c

π π
= −

( )2 12
4

r
r

n cf L
f

c L
π −

= =

At the resonance the amplitude theoretically approaches infinity (of course in reality, losses would
prevent any system from having infinite amplitude).
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We can also define an antiresonant frequency where the amplitude of the standing wave is at a
minimum. In that case,

cos 1kL = ±
so that

kL nπ= for n = 1,2,3,…

giving the antiresonance frequency:

2ar

nc
f

L
=

The input mechanical impedance:

( )0 0,m

f
Z

u t
=

%%
%

where

( )
0

sin
0,

cos
j t

x

dy F kL
u t j e

dt kT kL
ωω

=

 = = 
 

%%

( )0, tan j tF
u t j kL e

kT
ωω=%

giving

0
cot

cot
tan

j t

m L
j t

Fe kT kL
Z j c kL

F jj kL e
kT

ω

ω
ρ

ωω
= = = −% .

Recall that the mechanical impedance is the resistance plus the reactance: m m mZ R jX= +%
Resonance frequencies of any mechanical system are defined in general as those frequencies for
which the input mechanical reactance, mX , goes to zero:

0 cot 0m LX j c kLρ= − =%
when

2 1
2

n
kL π

−
= , n = 1, 2, 3, ...

or
( )2 1

4r

n c
f

L
−

= .

At resonance frequencies the input mechanical impedance goes to zero.
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π/2 π 3π/2 2π
kL

resonances

antiresonances

Zm0

At very low frequencies  sin kL  →  kL and cos kL → 1

0

1
– –m L

T
Z j c j

kL L
ρ

ω
≅ =%

*************************** Example 2.1 ***************************
Standing waves on a forced, fixed string

A forced, fixed string with a length of 1 m, a tension of 2 N, and a linear density of 0.02 kg/m
(yielding a speed of 10 m/s) is driven at frequencies of 15 and 7.5 Hz.  The wavelengths are 2/3 and
4/3 m and the propagation constants are k = 3π  and 3π/2 for the two frequencies, respectively.

If the string is fixed at x = L = 1 m and is driven in the y direction by a force of amplitude F at x = 0,
then the displacement in the y direction as a function of x and t is given by

sin[ ( – )]
( , ) cos[ ]

cos[ ]
F k L x

y x t t
kT k

ω=

where k is the propagation constant,  T is the tension, ω is the angular frequency and t is time.
Choosing values of F of 6π  and 3π  for the two frequencies, respectively, yields

sin[ ( – )]
( , ) cos[  ]

cos[ ]
k L x

y x t t
k

ω=
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Examining the function at each frequency for values of t = τ/8, 3τ/8, τ/2 and τ, where τ is the period
(denoted by T in the plots) gives the following results.

The results at 15 Hz (an antiresonance frequency) are plotted below.  Note that at 15 Hz, cos[k] = –1
and the amplitude will be at a minimum (this is an antiresonance frequency).

String Displacement at 15 Hz

t = T/8
t = T/2
t = 3 T/8
t = T

1.5

1

0.5

0

–0.5

–1

–1.5

0 0.2 0.4 0.6 0.8 1 1  2

x (m)

The results at 7.5 Hz are plotted below.   Note that 7.5 Hz is a resonance frequency, cos[k] = 0, and
the amplitude will be a  maximum (theoretically it is infinite, but roundoff error gives the finite
values plotted below).

String Displacement at 7.5 Hz

t = T/8
t = T/2
t = 3 T/8
t = T

6E+15

4E+15

2E+15

0

–2E+15

–4E+15

–6E+15

0 0.2 0.4 0.6 0.8 1 1  2

x (m)

********************************************************************
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(2.10) Normal Modes of the Fixed, Fixed String

In this case we are looking at a string rigidly supported on both sides (x = 0 and x = L) so that the
displacement at each end is y = 0. This is reminiscent of a guitar string.
First we assume a solution with both positive and negative going waves:

( ) ( ) ( ), j t kx j t kxy x t Ae Beω ω− += +% %%
Using our boundary conditions allows us to solve for the 2 unknowns.
At x = 0,

( )0, 0j t j ty t Ae Beω ω= + =% %%
or

B A= − %% .
At x = L,

( ) ( ) ( ), 0j t kL j t kLy L t Ae Beω ω− += + =% %%
or

0jkL jkLAe Be− + =% % .
Substituting in for B% gives

0jkL jkLAe Ae−− =% %
2 sin 0jA kL =%

There is an obvious trivial solution of 0A =%  where there is no motion, but we seek the nontrivial
solution where

sin 0kL =
or

kL nπ= for n = 1,2,3,…
(Note: n = 0 is also a trivial solution since that would mean no motion of the string, also).
Thus, only discrete frequencies are solutions. Those frequencies are given by:

2 nf L
n

c
π

π/ = /

      
2 2 2

n
n

n

c nc
f n or L n

L f
λ

= = =      multiples of λ/2

Back to our solution, for each n we have :
( ) ( ) ( ), n n n nj t k x j t k x

ny x t Ae Aeω ω− += −% %%
( ) ( ) ( ), 2 sin sinn nj t j t

n n n ny x t jA k x e A k x eω ω= − =% %%
So lets replace nA%   with n n nA A jB= −%  (where An and Bn are real values).

( ) ( ) ( ), sin nj t
n n n ny x t A jB k x e ω= −%

The real part of the solution is:
( ){ } ( ) ( ){ }Re , Re sin nj t

n n n ny x t A jB k x e ω= −%
( ){ } ( ) ( )[ ]{ }Re , Re sin cos sinn n n n n ny x t A jB k x t j j tω ω= − +%
( ){ } ( ) ( )Re , cos sin sinn n n n n ny x t A t B j t k xω ω= +%
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These functions are called eigenfunctions or normal modes and their solutions, An and Bn, are
determined from the initial conditions, that is, ( ), 0y x  and ( ),0u x .
There are also unique frequencies, called eigenfrequencies:

   
2 2

n
n

c
f n

L
ω

π
= = ,    n = 1,2,3,…

For n = 1, the solution is called the fundamental mode and its equivalent frequency is called the
fundamental frequency.
For n = 2, the second harmonic frequency is called the first overtone.
For n = 2, 3, 4, ..., the eigenfrequencies are called overtones.
The complete solution is the sum of all the individual modes of vibration:

( ){ } ( ) ( )
1

Re , cos sin sinn n n n n
n

y x t A t B j t k xω ω
∞

=

= +∑%
To determine the constants, we use the initial conditions:

( ){ } ( )
1

Re , 0 sinn n
n

y x A k x
∞

=

= ∑%
and

( ){ } ( )
1

Re , 0 sinn n n
n

u x B k xω
∞

=

= ∑ .

The two constants can then be determined by applying the Fourier theorem:

( )

( )

0

0

2
( , )sin

2
( , )sin

L

n n

L

n n
n

A y x o k x dx
L

B u x o k x dx
Lω

=

=

∫

∫
As an example, let’s look at the plucked string. Suppose we have a string and the string is set into
vibration by displacing the string a height, h, at its center (x = L/2). The displacement function at
time t = 0 would look like:

y(x,0)

x

h

L/2 L0
0

The other initial condition is u(x, 0) = 0, which directly yields Bn = 0.
Insertion into the Fourier transform equation yields:
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( )2

8
sin , odd

2

0, even

n

n

h n
A n

n

A n

π

π

 =     
= 

or more specifically

1 2

8h
A

π
=                3

1

1
9

A
A

= −                       5

1

1
25

A
A

=      etc…


