Chapter 10 — Pipes, Resonators, and Filters

(20.1) Introduction

We will be discussing in this chapter the behavior of sound in rigid walled pipes, resonators and
filters. The behavior of sound will be strongly dependent on the properties of the driver (sourcein
the pipe), the length of the pipe, the cross-sectiona area of the pipe, any obstructions or branches of
the pipe and the way the pipe terminates. In the development in this chapter we will be focusing on
wavelengths of sound that are sufficiently large so that the sound can be approximated as a
collimated plane wave. This chapter applies to:

Musical instruments
brasses
woodwinds
organ pipes

Ducts
Ventilation systems

Mufflers and silencers

(10.2) Resonance in Pipes

We will start our discussion with simple pipes. We'll ook at the resonance features of pipes, power
radiated from open-ended pipes, standing wave patterns and the absorption of sound in pipes.

piston source Ll

| |
Q ©

Now we' ve defined the specific acoustic impedance

Specific Acoustic Impedance at a point
_ acousticpressure _ p
particlevelocity u

Pa N/m? Nxs
= = MKS Rayl
m/s m/s m3 ( )

Unit;

In this section we will look at another couple of impedances
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1. Acoustic Impedance on a surface
2. Mechanical Impedance (Radiation Impedance)

Acoustic Impedance on a surface
acousticpressure _

P
volumevelocity E
_acousticpressure _ p
~ A(particlevelocity) Au
Pa_ N/m? N
m?(m/9 m?(m/s) m®

Z, =

Unit:

M echanical Impedance (Radiation |mpedance)
_ effectiveforce

m B .
particlevelocity
.. N N:s
unit: — =
m/s m

Let’s consider the case where a (radius) << | P plane waves are propagated (each point in the
pipeis approximately at constant phase). Therefore a standing wave exists in the pipe so that

B = Al k(L) 4 B il -k(L-x)

Let’s apply the boundary conditions @ x = 0 and x = L. The continuity of force and particle speed
must hold at the boundaries so that combined this yields continuity of mechanical impedance. From
the above definition:
2,=F
u

where
F=pS

From Chapter 5 for a plane wave

+ pos. goin
u(x,t):J_rL Pos-g _ g
r,c — neg.going
so
Z, =F_ *r,cS
u
So, defining the impedance at each end:
x=L
- A+B
yan :rocsfIg
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~ AejkL + ge- jkL
Z 0 = I’OCS —_———
m Ae]kL _ Be— jkL

Combining these two relations allows us to eliminate A and B giving

Z.
m_ + j tan(kL
r,CS Jtan(kL)

ZNmO —
r,CcS

7
1+ M tan(kL
JrOCS (kL)

Of course we can represent the impedance in a complex form such that ZLLS =r+ jxor
roC
Z r(tanz(kL)) +1) - gxtanz(kL) +(r 24 - 1) tan(kL) - XB
r.cS (r +x)?tan?(kL) - 2xtan(kL) +1

0

At resonance and antiresonance the input reactance is zero so (chapter 3.7)

xtan®(kL) +(r 24 x? —1) tan(kL)- x
(r +x)2tan’(kL) - 2xtan(kl) +1

resonance ® small input impedance (resistance)
antiresonance ® large input impedance (resistance)

S0, Let'slook at afew special Cases

Casel: Rigidcapatx=L

As expected:
Z, =¥ and Zn ooy
r,CS
So,
) ZT:LS +jtan(kL)‘
Zno_= Lo = j cot(kL)
r,CS

2 px
r S

7z
1+ j—/tan(kL
JrcS (kL)

0

The reactance is not necessarily zero. However,
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cos(KL)

cot(kL) =0 = Sn(k)

for knL:(Zn—l)% for n=1,23Y% (oddmultiplesof p/2)

and our resonance frequencies are given by

n

f:(2n-1)£ or I_:(2n4-1)|

resonance @ f - E 54—CL1/4 i.e., at odd harmonics where f, = i is the fundamental

4L 4L
frequency. The input mechanical impedance is zero at resonance. Also, we have a pressure antinode
@ x = L and apressure node @ x = 0. Isit logical for the mechanical impedance to be zero at the

driver?

Case 2: Open ended pipe

zZ =7 radiation impedance. Some energy will be radiated into surrounding

flanged
two cases (subcases)

unflanged

Flanged (some musical instruments)
For] >>a or kasmdl and for the flange large relativeto | then this can be

approximated as a baffled piston source in the low frequency limit. So,
R’ xr

1 2, 8
5 = =r cS(ka) +jr cS—(ka)
In - 4 _2° S :—(ka)2+jika:r+jx
r,cS r,cS r,CcS 2 3p

we obtained this from eq (7.5.11) for the baffled piston source.
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. T . Z
Noting that r << x and substituting into the expression for —™- we get

I .CS
- ﬂﬂtan(kL) .
Z., _ I,.CS aJx+jtan(kL)
r,cS 1+ yan tan(kL) 1- xtan(kL)
r,CS

0
Again, at resonance the reactance = 0 which means that

—x = tan (KL)
yielding:

tan(np - k,L) = 8 i

Sk =0
p Oy

kasmall

kal
2
which means that

8
=k L+—
m =Kk, aDkna

giving us as our resonant frequencies:

f = C C

n n
2L+ia 2Leff

or L, :nlz

for unflanged (I state without derivation) ZmLS = % (ka)®+j 0.6 ka giving
roC
n c¢ nc

kkhkkkkhkhkhkhkkkkkkkkkkkkkkkkkk*x Example 10 1 kkhkkhkkkkkkhkkkkkkkkkkkkkkkkkk*x

Consider an open-ended pipe (air), withL=1m, a=1cm=0.01m

flanged unflanged
=L +0.
Leff =L+ i a LEff boa
=1+ (0.849)(.01) =1.006 m
=1.0085 m
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_ c
L

fr
f. = n(170.05) Hz for flanged and f_ = n (170.5) Hz for unflanged

Unflanged
f,= 1705 Hz

NS

Flanged
f, = 170.05
f, = 340.1 f,= 3410 Hz
f, = 510.2 f,= 5114 Hz
343 1 _ 34,300

=== — r

Check
\ | >>afor 1st 3 or more harmonics
KA AKR KRRk dAdA I T A AR ARk hhhddArA A ARk hkhhdhdhdhdhdhhhhkhkhkhhhkhkhkh),dhdhdk%k%x%k

(10.3) Power Radiation from Open-Ended Pipes

Previoudy we found
A+B

Z, =r,S B
rearranging
Zy
B _r,cS
A Z, +1

r,cS
Note: thisisjust a pressure reflection coefficient

So, the Power transmission coefficient is
B 2

T, =1-

Let'sexaminefor| >>a (ka<<1)

Flanged
Zm- zl(ka)z + J ika
[CS 2 3

giving
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1 8ka

. 1-Lga
g Lola i
A il B

2 Ko

sinceka << 1 we can see that immediately% » - 1 when we throw out all ka terms. If we keep the

terms and substitute in we get for T

‘1- ETORL: | R ORCHEL: - RPEE R
TP =1- 2 33 =1- 2 3D 2 33
1+ kay+ 28 1 L@+ 88 14ty (59
2 3p 2 3p 2 30
1 as&ao 1 aeSkao
ki = (k b
:§L+2(a)tl 3 5 §l 2 a)H D
1 aeBkao 1 aé%kao
ki = (k cra
?*z(a)a 3 5 g“z(a)tl 3
2(ka)2
akaao
ki
§1+ ( )’ H 83|0 P
» 2(ka)2

T, » 2(ka)? issmall since ka << 1 (also recall that B/A » —1). What does this mean about waves
reflected from the open end of the pipe (flanged)? So, small amounts of energy will be radiated
from the pipe when a is small. This coincides with what we saw earlier for small sources as
inefficient radiators of acoustic energy.

Unflanged

The impedance for the unflanged is ZLLS = %{(ka)2 + j 0.6 ka for the open end. So
r,C
2

1 .
1- =(ka)?- j0.6ka 2
T, =1-|—3 = (k) @ka)?
1+=(ka)? +j0.6ka| €4 1(m2Y 2
7 (ka)"+] §L+Z(ka) q +[0.6ka]

Thisis % radiation of flanged pipe.
Why?

Oelze ECE/TAM 373 Notes - Chapter 10 pg 7



Flanged end provides a better impedance match.
Later we will look at horns which provide an even better match (i.e. exponential horn).

There are some interesting behaviors near a resonance frequency. So let’s ook at the case where
w =w, +Dw (the resonance frequency plus some small perturbation of the resonance). Recall that

the input impedance is given by

- Zn + jtan(kL)
Z,o IS

ro,CS

7 .
1+ j— +j tan(kL
] rcS j tan(kL)
Looking again at our two cases (flanged and unflanged).

Unflanged

1 . .
5 —(ka)?*+ j0.6ka+ j tan(kL
7 o gkayt] j tan(kL)

€S 1. 0.6katan(kL) + | %(ka)ztan(kL)

at resonance the reactance is zero so
Z, 1 2
@-(k,a
rocS 4 (k" )
near resonance

Zo » 1 (kna)2 + jtan DkL
r,cS 4

but tan DKL » D(L:% 0

Zmo »l(kna)2+ J DwL
roS 4 c
The reactance is no longer zero (as expected for off resonance behavior)

It is aso important to define the quality factor of the radiator. The quality factor (or Q of the
resonator) is defined as

w
Q=—-o"
W, - W,
where w, and w, are the two angular frequencies, above and below resonance, respectively, at
which the average power has dropped to one-half its resonance value. The Q factor is a measure of
how the system responds to near resonance excitation. For the open ended unflanged pipe the half-
power points (frequencies) are defined from

1 2 C
=(k.a) —=.
4( ) L

W, =W, *

Thisgivesa Q of
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w, _ 2 LL+0.6a

W,-W, npa a
it isimportant to note that the Q at the nth resonance varies with 1/n. So what does this mean for
larger resonances (larger values of Q)?

Power radiated at resonance is given by (recall 7.5.6 for acoustic sources)

_1 21 F?
P _ERmoU _ERmoZZ

mo

2 F? @ +06a¢
(np)2 I’OCS% a 5

The radiated power isinversely proportional to n®. So what happens at higher resonances?
WhyuseR ,andZ ,ingteadof R andZ  ?

P,=

Nolossin pipe b power input to pipeis radiated.

kkkkkkkhkhkhkhkhhhhhhdhdhdhdhdhdhhdhd*k Example 10 2 kkhkkhkkhkkkkkhkkkkkkkkkkkkkkkkkk*x

For an unflanged pipelet L =1 m,a=0.01 mand 0.1 m, then

_n_c
" 2L+0.6a

W, _2LL+06a
" w,-w, mpa a
o =t

b -2 F? a+06as
" (gp)2r0c38 a g

Parameter a=0.01m a=01m
f, 170.5Hz 161.8 Hz
Q 6404 67.48
Df, 0.0266 Hz 2.4 Hz
P.,r,cS/F? 512.7 5.69

Why is power greater for smaller radius when translessi onis Iéor smaller radius?

The incident power is much greater because F was constant for this calculation, as opposed to U
being constant!

kkhkkhkkhkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkkkx*x
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(10.4) Standing Wave Patterns

Similar to case examined previously for the reflection of waves from an interface between two
fluids at normal incidence.

Solet'schoose A= A and B =Be' where A and B arereal and positive. We can do this because

we are concerned mainly with the ratio of EA in the impedance. So,

We can then define the standing wave ratio in the pipe as

swr=2*E
A- B
which is also defined as the pressure at the node divided by the pressure at the antinode.
Likewise the magnitude of the pressure reflection coefficient in the pipeis
B_ SWR-1

A SWR+1

We can determine Z_, from (1) SWR and (2) location of 1st node (x1)

S\NRIDE
A

And the phase angle can be determined from the distance of the first node fromtheend at x = L.:
f=2k(L-%)-p (A good HW question or test question?)

kkhkkkkhkhkhkhkhkhkkhkkkkkkkkkkkkkk*x Example 10 3***************************

The standing wave ratio in some pipe with a termination giving an unknown impedance is measured
to be SWR = 2 and the first node at the driven frequency is 3/8 of a wavelength from the end.
Determine the impedance at x = L?

ANSWER:

3l

L- = sof =2k(L-x)-p =2k%- p=£3|—

g P~

p.

N

B_SWR-1 2-1 1
A SWR+1 2+1 3

Therefore,
P
z 1+Bei 1416
= A - S _=08+j06
FoCo 1. 2 1- éej_z
A 3
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In acoustics we can measure the impedance of a terminating material. We simple put a plug of some
material we wish to measure the impedance of and determine the impedance from the position of
the nodes and standing wave ratio.

kkhkhkkkhhkkkhkkhhkkhkkhkhhkhkkhhkhkhkhhkhkkhhhkhkhhkhkhkhhkhkhhkhkhkhhkhkkhhhkhkhhkhkkhkhhkhkhhkkhkkkkhkkkkk*x*%

(10.5) Absorption of Sound in Pipes

Recall that for the lossless case of a pipe with arigid cap we had

VA
m_ + j tan(kL
st ( )‘

Z~mO - 0 _
"0 14 j L tan(kL)
roCcS Z, ®¥
forrigid cap
b1
j tan(kL)

With loss we simply say that our wavenumber is complex so that k =k - ja . Substituting into the
lossless solutions obtained previoudly for pipe yields:

Zn_y j tan(kL)

Zuo _ ToCS
oS 14 A tan(RL)
roCS Z,,®¥
forrigid cap
_1_
jtan(kL)

The input impedance is then given by
Z o =-jrocScot(kL)
or rearranging and using some trig identities and cosh and sinh identities gives:

.a
Zwo _ - M1 coskU)sin(kL) + jsinh(a L)cosh(a L)
r,cS 138 & sin’(kL)cosh?(a L) + cos®(kL)sinh?(a L)
&k g

Now typically %<<1 adal«lso

Z.o ,_aL- jeos(kl)sin(ki)
FoCS sin*(kL) +(a L)2 cos” (kL)

P j cot(kL)

a=0
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ZmO:anO-'-jme
R, isnolonger O

Pipewitha =0

Pipewitha ®* 0

KXo
peS 1
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The power dissipated by the pipeis given by

o lpaRy 1 F? _ sin’(k)+(al) cos’(k)
20 7z 2reS (aL) +cos’(K)sin® (kL)

At Resonance cos(kL) =0 kL=(2n- 1)% giving

_1F* 1 asemember 6
"T2r,Sal gal<<ly

At Antiresonance sin(kL) =0 kL =np giving
2
=t F AL
21 ,CS
Near a resonance frequency we again define
w =w, +Dw
and
k=Mt DV on P apwl
2 c
giving
Zwo »al+ jDWL
r,CS C

We have a half power point when
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DWE:aL or Dw=ca.
C

So our Q for the lossy pipe is given by

Standing wave in pipe (rigid cap)

X L
where P_ is defined as the amplitude of reflected wave

Why isthisthe case? Let’s ook at the total acoustic pressure given by

pP= 2F>L{cosz[k(L- x)] cosh?[a (L - X)]

+sin? [k(L- )]sinh?[a (L~ 0]}
for alossy pipe. We have Nodesat k(L- x) =(2n-D)p/2 n=12,3%
This gives a relative maximum amplitude of

2 =2sinha (L - )] » 2a (L- )

L

We also have Antinodes occurring at k(L- X)=mp n=0,1,2%
This gives a relative minimum amplitude of

Hg—ax =2coshfa(L - )] » 2 +[a(L - WF
L

We can experimentally measure the magnitude and location of the minima (or maxima) and
compute the value for a !!!

However, a for this case includes losses at the boundaries of the pipe in addition to the absorption
in the fluid.
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