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(10.6)  Combined Driver-Pipe System
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for combined system let’s look at the differential equation of this diagram in terms of displacement

of the mass in front of the driver. According to Newton’s 2nd Law, 
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Converting things to the particle velocity
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For resonance of system (pipe and driver) occurs when the reactance goes to zero

( ) ( )0Im Im 0m md mZ Z Z= + =% % %

For rigid termination at x = L, the reactance at zero means that
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The above equation defines where the resonances occur. However, it is not easy to solve for the
resonances, i.e. find the frequency values where the above equation holds. Typically, the resonant
frequencies are found by solving graphically..

*************************** Example 10.4 ***************************

Let’s compare the behavior between a pipe with driver light and flexible relative to surrounding
fluid with a driver that is stiff and heavy relative to the surrounding fluid.
Using the graphical technique:

0 1π 2π 3π 4π 5π 6π
kL

(b)

0

0

0 1π 2π 3π 4π 5π 6π
kL

(a)

Figure 10.6.2  Graphical solution for the resonance frequencies of a rigidly terminated
pipe of 1 m length and l cm radius driven by:  (a) a light, flexible driver with a = 0.04 and
b = 2.57; and (b) a heavy, stiff driver with a = 0.25 and b = 32.

*****************************************************************
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 (10.7)  The Long Wavelength Limit

So far we have looked at λ large compared to diameter of pipe but not necessarily long
compared to the length of the pipe.

We can also have λ large compared to all dimensions → behaves as lumped acoustic element
with time dependent parameters but nearly the same throughout the element.  This means the
acoustic device behaves somewhat like a simple harmonic oscillator. Example:  Helmholtz
Resonator

(10.8) The Helmholtz Resonator

Neck: Area S, Length L 
λ >> L

Rigid walled cavity 
of volume V

Looking more closely at the neck:

L = Actual length

S = πa2

Relationship to simple harmonic oscillator:

For  λ >> L Mass ⇒ fluid in neck

For  λ >> V
1/3

Stiffness ⇒ compressibility of fluid in resonator

For  λ >> S
1/2

Resistance ⇒ loss of energy associated with radiation
from opening (can be viscous losses for a
small diameter neck)
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Add the driving force

j tf S P e ω=
r

P – pressure amplitude for force driving inward

This gives the applicable differential equation is
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Substituting in our values for mass, spring stiffness and resistance yields (flanged)
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Let’s define a quantity of volume displacement where X dS Sξ ξ= ⋅ =∫ ∫
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 (for normal surface

movement, very reminiscent of a piston moving).  The volume velocity is 
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Z is the Acoustic Impedance of a Helmholtz Resonator (N ⋅s / m5 ) where
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At resonance; { }Im 0Z =  (reactance is zero) and
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ω
ω

− = ⇒ = =   (Eq. 10.8.8)

At oω , cavity shape is not important; volume is most important, that is, depends upon motion of gas
at plug.  Overtones (2 oω , 3 oω ,...) depend upon cavity shape.
Graphically (see Sec 1.10):
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So we can define the quality factor for the Helmholtz resonator:
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For Helmholtz Resonator, 
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*************************** Example 10.5 ***************************

(A)  Derive Eq. (10.8.12) in Kinsler et al., i.e., 
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(B)  How does this derivation change if the source is unflanged?

ANSWER:
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(B)  In the case of the unflanged source, we have the relation 
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.  That is, the quality factor

of the resonance frequency goes as the inverse of the radiation impedance.

******************************************************************

Pressure amplification at resonance
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              the pressure gain is equal to the quality factor QcP
Q

P
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*************************** Example 10.6 ***************************

If the diameter of a spherical Helmholtz resonator is 20 cm = 0.2 m, then the volume is

3 34
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3
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unflanged  ⇒  L′ = L + 1.4 a = 0.01 + 1.4 (0.02) = 0.038 m

5
0 1.21(0.001257)(0.038) 5.78 10 kgm SLρ −′= = = ×

2 2
2 2

0
•(0.001257) N s
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0.00419 m
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31.7 kHz

gain 2 67.6 at resonance
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L V
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L
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=

′ = = = 
 

******************************************************************

Loudspeakers in a closed cabinet can be modeled as a Helmholtz resonator by taking into account
the additional stiffness and resistance of the speaker.

*************************** Example 10.7 ***************************

Coca-Cola, in 1995, copyrighted a new design of 20 fl.oz. (591 mL) Coke bottles (from the
“spider” ads).  The neck of these bottles is approximately 3 cm in length, and the diameter of the
opening is approximately 2 cm.  If you blow into an empty bottle, what would be the approximate
resonant frequency?

ANSWER:

Think of the Coke bottle as a Helmholtz resonator.  Using the formula 
'o

S
c

L V
ω = , the problem is

trivial except for conversion factors.  One mL is one cubic centimeter.  (The value for c is taken
from Appendix A10, for air at 20°C).

2

4
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d
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c c
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π
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( )

( ) ( )

22

3
2

2 10 m
4343m/s

1cm
3 10 m 591mL

1mL

π −

−

×
=

 
×  

 

  =1444 r/s

Thus the resonant frequency that is heard is 230 Hz.

******************************************************************
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(10.9)  Acoustic Impedance

Summary of impedances

characteristic impedance 0cρ
Pa • s

m
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=
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mechanical impedance
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                                                               mechanical ohm

m
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= = =
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p z

Z
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= = 3

•Pa s
m

 or acoustic ohm

Lumped Acoustic Impedance
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p

Z R j M
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2
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acoustic resistance

acoustic inertance

acoustic compliance

mR
R

S
m

M
S
S

C
s

= −

= −

= −

Helmholtz resonator is an example (lumped impedance). There are analogies to simple harmonic
oscillator and circuits.

p
U

R

M C

R = Rr/S2

M  = m /S2

C = S2/s

p U

(a) (b)

Figure 10.9.1  Schematic representation of a
Helmholtz resonator.  (a) Acoustic analog with
inertance M, resistance R, and compliance C.
The oscillator is driven by an incident pressure
p and the air in the neck moves with volume
velocity U.  (b) Electrical analog with
inductance M, resistance R, and capacitance C.
This series circuit is driven by voltage p and
carries current U.
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MECHANICAL ACOUSTICAL ELECTRICAL

Acoustic, electrical and mechanical analogs.

Dimensions (at least one) not small compared to λ

Acoustics
(Ex. pipe)

Electrical
(Ex. transmission line)

0 1
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c Mp p
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U uS S C
ρ

= = = =

for plane waves
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L
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C
=

characteristic impedance
01

1 2

m
M

S S
ρ

= = L – inductance/unit length

inertance/unit length

1 2
0

S
C

cρ
=

compliance/unit length

C – capacitance/unit length


