(10.6) Combined Driver-Pipe System
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for combined system let’s look at the differential equation of this diagram in terms of displacement

of the mass in front of the driver. According to Newton's 2" Law, F =ma = m‘ETTX and
OC';X Rm—-s< PO+

Converting things to the particle velocity

f=a (Ot)eRm+J8 Sg Sb((Ot))

Notice that the first two terms in the brackets are just the impedance of the driver
Z4=R,+] ?vm - EE and the last term is the input mechanical impedance of the pipe. This means
Wg

that the total impedance of the system

For resonance of system (pipe and driver) occurs when the reactance goes to zero
Im(Z,)=1m(Z,+Z ,)=0

For rigid termination at x = L, the reactance at zero means that
im(Z,)=0=wm- S. S ccosksin(k)

Rearranging gives
cos(kL)sin(kL) . m

sin’(kL) +(aL)’cos? (kL) STk

1

KL- sL/Src*—
%,_/

b
a retio of stiffness

ratio of mass of the pistonto

of piston to stiffness of the

massof fluid fluid
in tube
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The above equation defines where the resonances occur. However, it is not easy to solve for the
resonances, i.e. find the frequency values where the above equation holds. Typically, the resonant
frequencies are found by solving graphically..

RO R R R A e b b e b e b S e b e o Exanuﬂejl)4***************************

Let’s compare the behavior between a pipe with driver light and flexible relative to surrounding
fluid with adriver that is stiff and heavy relative to the surrounding fluid.
Using the graphical technique:
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Figure 10.6.2 Graphical solution for the resonance frequencies of arigidly terminated
pipe of 1 m length and | cm radius driven by: (a) alight, flexible driver with a = 0.04 and
b =2.57; and (b) a heavy, stiff driver with a =0.25and b = 32.
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(10.7) The Long Wavelength Limit

So far we have looked at | large compared to diameter of pipe but not necessarily long
compared to the length of the pipe.

We can dso have | large compared to all dimensions® behaves as lumped acoustic element

with time dependent parameters but nearly the same throughout the element. This means the
acoustic device behaves somewhat like a ssimple harmonic oscillator. Example: Helmholtz
Resonator

(10.8) The Helmholtz Resonator

<« Neck: Area S, Length |
| >>L

Rigid walled cavity
of volumeV

Looking more closaly at the neck:

-

L = Actual length

\_/_

Relationship to simple harmonic oscillator:

For | >>L Mass p fluid in neck
For | >> Vﬂ3 Stiffness p compressibility of fluid in resonator
For | >> Sﬂ2 Resistance Pb loss of energy associated with radiation

from opening (can be viscous losses for a
small diameter neck)
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Mass
m=r,S.¢
where
inner and outer
ends flanged

inner end flanged
outer unflanged

L¢=L+2(0.85a) = L+1.7a

L¢=L+(0.85+0.6)a=L+14a

Note: if L=0 then L¢=1.6a

Stiffness
DV =- &
2
Siffress=s=+=—PS__ PS
x -DV/S -DV
ﬂ_ﬂp -DV = VD_r_V P
\Y r r roC°
_pS S
V P/r,c Y,
Resistance

Radiation as from open-ended pipefor | >> a

(flanged)

R=r.c o (unflanged)

Add the driving force
f=sSpe™ P — pressure amplitude for force driving inward

This gives the applicable differential equation is
mO|—2)2(+Rr X, =spem
dt dt
Substituting in our values for mass, spring stiffness and resistance yields (flanged)
dx L Ck?S?6dx o c’S’
2 l: +Tc
dt 2p o dt e V ﬂ

(r,s) X = SPe™

Let’s define a quantity of volume displacement where X = (‘ﬁ? xdS=xS (for normal surface

movement, very reminiscent of a piston moving). The volume velocity is U = X Sﬂ—x

qt
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d°x & ,ck°S"0dx & °S°9 it
= t¢ +o— X =Pe™ yields:
a7 § p & V 5

2 2Q2 2Q2
(rOSL)ld X+gEr ,Ck°S 01dX+ger €S le _ el

Sd? & B HSd & V 45

220 2
d)2(+€&cks dX SHCS_X pei
a7 D gdt & V g

Substituting X =xSb x —é into (r,SL")

(ros)

2
M2 2(+ROI—><+1X:SZPeJWt
dt a C
where
22
M=r, s, R=1oXS 4q c=Y_
2p r,.c'S
2
Assume X = X e and U =U e, then M X LRI Ly~ gepei gives:
dt’ d C
- W2MX, + jWwRX, +éxo = S?P
2L M+ jwrOx_ =P
&C @
Therefore,
1 &l
. —-w’M + R X
L _Pe __pe p _gc WMHIWR
u jwx.e" jWX0 jwX,
_RywM_ ;1L _R_ &M 15
g Vg lwsc Tg 18" s wsch
. 1
=R+ | 3vm- —92
& wC' g

Z isthe Acoustic Impedance of a Helmholtz Resonator (N >s / m5) where

2 '
R=R-LK Mol g c=sic= Y
S 20 S r.c
Note that Z is the acoustic impedance on a surface
r.ck? aN:sp wr L' aN:sp 1 _r ¢ gN:sp
R': 0 -, WM': (2 - and =_20 -
20 ngfa S §m5ﬂ wC'  wV §m5ﬂ
S0,
7= R+ EM- 1 6_ rock2+jaavr0L' r.c°o
& wc'y » &S Wy
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At resonance; Im{Z} =0 (reactance is zero) and

1 2 2
M-roc = = CS:C S (Eq ]_088)
S wyV LV LV

At w,, cavity shape is not important; volume is most important, that is, depends upon motion of gas
at plug. Overtones (2w, , 3w, ,...) depend upon cavity shape.
Graphically (see Sec 1.10):

Relative
Power

Wl WO W2 w

So we can define the quality factor for the Helmholtz resonator:
W,

—_ [o]

w,-w, Dw

wM' a6
=0 = V flanged
' %Sz( ged)

ad_¢o
=4p,|V %SE (unflanged)

khkkkhkkhkhkhkhkhkhhhhhhhdhdhdhdhdhkdkd%k Example 105 kkhkkkhkkkhkhkkkkkkkkkkkkkkkkkk*x

13
(A) DeriveEq. (10.8.12) inKinderetal.,i.e, Q=2p vg%ﬁ , for aflanged source, from the
o
2q2
factsthat (1) m=r,3", (2) w, _c/ (3R =r Ckzs ,and(4)Q=W|;rm.
(B) How does this derivation change if the source is unflanged?
ANSWER:
S
c‘/ (r,s)
(A) Startingwith (4), Q="M = YLV "~ _ o5 v y &
' ck S &S5
[0} 2p
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22
(B) Inthe case of the unflanged source, we havetherelation R =r c

, instead of

2q2

1.3
R =r,c 25 . Keeping track of the 4p, we have.... Q=4p /V?‘EE . That is, the quality factor
%]

of the resonance frequency goes as the inverse of the radiation impedance.
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Pressure amplification at resonance

& _ pressurein cavity
P pressure of incident sound wave

(P isthe driving pressure)

2
PC:rOC SX
\%
*x_F_PS
d Z. R
\ x = PS
W,R
P _r,.’SPS

05
= Ve—= =
2p ¢ss Q
% =Q the pressure gain is equal to the quality factor Q

khkkkkkkhkhkhkhkhhhhhhdhdhdhdhdhdhdhdd%k Example 10 6***************************

If the diameter of a spherical Helmholtz resonator is 20 cm = 0.2 m, then the volumeis
V= gp r* =0.00419 m’

L=1cm=0.01m
a=2cm=0.02m
S:pa2 =0.001257 m?
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unflanged P L¢=L +1.4a=0.01+1.4(0.02) =0.038 m

m=r,SL¢=1.21(0.001257)(0.038) =5.78" 10 °kg

2 2
s=r,c? S 21213437 (00017 _ g5 6o NS
\/ 0419 m
S krad
= =199 I
Lo/ s
f, =317 kHz
. 05

Q=gan=2p — - =67.6 at resonance
&€Sa
khkkhkkhkkkhkhkhkhkhkhkhkhhkhkhkhhdhkhhhhkhkhkhkhhdhkhhkhhkhhdhkhhdhhkhdhdhkhhkdhkhkdhkhkhhdhkhkdhkikkdkikdk*x

Loudspeakers in a closed cabinet can be modeled as a Helmholtz resonator by taking into account
the additional stiffness and resistance of the speaker.

khkkhkhkkkhkhkhkhkhhhhhhhdhdhdhdhkkdd%k ExanWﬂe]Ll?***************************

Coca-Cola®, in 1995, copyrighted a new design of 20 fl.oz. (591 mL) Coke bottles (from the
“spider” ads). The neck of these bottles is approximately 3 cm in length, and the diameter of the
opening is approximately 2 cm. If you blow into an empty bottle, what would be the approximate
resonant frequency?

ANSWER:

. . / S .
Think of the Coke bottle as a Helmholtz resonator. Using the formula w, =c v the problem is

trivial except for conversion factors. One mL is one cubic centimeter. (The value for c is taken
from Appendix A10, for ar a 20°C).

p— (27102 m)
—c‘/ =343m/s 4 s —14441ls
! acm® 0

(3107 m)(591mL)glmL :

©

Thus the resonant frequency that is heard is 230 Hz.
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(10.9) Acoustic Impedance

Summary of impedances

characteristic impedance [ 1 ,C Pz:r' :
specific acoustic impedance| z = P P?r. s
u
mechanica impedance Z L zS (for plane waves) Pasm or
(radiation impedance) u u
mechanical ohm
acoustic impedance at asurface | Z = U£ :é Pa-ss or acoustic ohm
m
Lumped Acoustic Impedance
. 1 ¢ acoustic

z=LP-R+jFm- =2 °

U 8 wC g impedance

R= % - acoustic resistance

m .
M = — - acoustic inertance

3
2

C= % - acoustic compliance

Helmholtz resonator is an example (lumped impedance). There are analogies to ssimple harmonic

oscillator and circuits.

Figure 10.9.1 Schematic representation of a

R=R/S Helmholtz resonator. (a) Acoustic analog with

R inertance M, resistance R, and compliance C.
B — TR The oscillator is driven by an incident pressure

—=M C P M=m* 1 and the air in the neck moves with volume

velocity U. (b) Electrical analog with

— inductance M, resistance R, and capacitance C.

C=s This series circuit is driven by voltage p and

@ (b) carries current U.
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m M

Mas Inatance
f= m% p=M d_u
dt dt
Cm =1/s C
—\WWWN—
L |
Compliance Compliance
1 1
f =— cydt =—c} at
Rm R
Resistane Resistance
f=R,u p=RU
MECHANICAL ACOUSTICAL

L

—ON—

Inductance

V=Lg
dt

C

—i—

Capadtance

1
V == dt
cd

R

—AMWA—

Resistance
V=R
ELECTRICAL

Acoustic, electrical and mechanical analogs.

Dimensions (at least one) not small compared to |

Acoustics
(Ex. pipe)

for plane waves

Electrical

(Ex. transmission line)

_ L
o

characteristic impedance

M =M -l L — inductance/unit length
g s
inertance/unit length
C = S C — capacitance/unit length
1T 2
roC

compliance/unit length
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