(10.10) Reflection and Transmission of Waves in a Pipe

General case: Acoustic impedance discontinuity at $x=0$

For a pipe,

$$
Z=\frac{\rho_{0} c}{S} \text { (for a traveling wave) }
$$

and

$$
\begin{aligned}
p_{i} & =A e^{j(\omega t-k x)} \\
p_{r} & =B e^{j(\omega x+k x)}
\end{aligned}
$$

for the standing wave case

$$
\begin{aligned}
& \tilde{Z}=\frac{p_{i}+p_{r}}{U_{i}+U_{r}}=\frac{\rho_{0} c}{S} \frac{\tilde{A} e^{-j k x}+\tilde{B} e^{j k x}}{\tilde{A} e^{-j k x}-\tilde{B} e^{j k x}} \\
& \tilde{Z}=Z_{0}=\frac{\rho_{0} c}{S} \frac{\tilde{A}+\tilde{B}}{\tilde{A}-\tilde{B}} @ \text { interface }(\mathrm{x}=0) \\
& \frac{\tilde{B}}{\tilde{A}}=\frac{Z_{0}-\frac{\rho_{0} c}{S}}{Z_{0}+\frac{\rho_{0} c}{S}}
\end{aligned}
$$

For $\quad \tilde{Z}_{0}=R_{0}+j X_{0}$ the power reflection and transmission coefficients are

$$
\begin{aligned}
& R_{\pi}=\left|\frac{B}{A}\right|^{2}=\frac{\left(R_{0}-\frac{\rho_{0} c}{S}\right)^{2}+X_{0}^{2}}{\left(R_{0}+\frac{\rho_{0} c}{S}\right)^{2}+X_{0}^{2}} \\
& T_{\pi}=\frac{4 R_{0} \frac{\rho_{0} c}{S}}{\left(R_{0}+\frac{\rho_{0} c}{S}\right)^{2}+X_{0}^{2}}
\end{aligned}
$$

Change in acoustic impedance can be associated with a change in fluid or a change in cross sectional area of the pipe without a change of medium (this can also come from a branch or a side port in a pipe).

Case 1: Simple change in cross-sectional area

Figure 10.10.1 Transmission and reflection of a plane wave in the vicinity of a junction between two pipes where the cross-sectional area changes from S_{1} to S_{2}.

$$
\begin{aligned}
R_{\Pi} & =\frac{\left(S_{1}-S_{2}\right)^{2}}{\left(S_{1}+S_{2}\right)^{2}} \\
T_{\Pi} & =\frac{4 S_{1} S_{2}}{\left(S_{1}+S_{2}\right)^{2}}
\end{aligned}
$$

Case 2: Branch in pipe

Figure 10.10.2 Conditions in the vicinity of a branch. The branches have cross-sectional areas S_{1} and S_{2} and input acoustic impedances Z_{1} and Z_{2}.

$$
\begin{array}{ll}
p_{i}=P_{i} e^{j \omega t} & p_{r}=P_{r} e^{j \omega t} \\
p_{1}=Z_{1} U_{1} e^{j \omega t} & p_{2}=Z_{2} U_{2} e^{j \omega t}
\end{array}
$$

The boundary conditions at $x=0$ (location of branch)

$$
\begin{aligned}
p_{i}+p_{r} & =p_{1}=p_{2} \quad \Leftrightarrow \text { cont. of pressure } \\
U_{i}+U_{r} & =U_{1}+U_{2} \Leftrightarrow \text { cont. of volume velocity }
\end{aligned}
$$

Application of these boundary conditions give

$$
\begin{array}{ll}
\frac{1}{Z_{0}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}} & \begin{array}{l}
\text { admittances add } \\
\text { to give admittance } \\
@ x=0
\end{array} \\
Z_{0}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} & \begin{array}{l}
\text { If two impedances } \\
\text { in parallel }
\end{array}
\end{array}
$$

Case 3: Side branch

$$
\begin{aligned}
Z_{b} & =R_{b}+j X_{b} \\
R_{\Pi} & =\frac{\left(\frac{\rho_{0} c}{2 S}\right)^{2}}{\left(\frac{\rho_{0} c}{2 S}+R_{b}\right)^{2}+X_{b}^{2}} \\
T_{\Pi} & =\frac{R_{b}^{2}+X_{b}^{2}}{\left(\frac{\rho_{0} c}{2 S}+R_{b}\right)^{2}+X_{b}^{2}} \\
T_{\Pi b} & =1-R_{\Pi}-T_{\Pi} \\
& =\frac{\frac{\rho_{0} c}{S} R_{b}}{\left(\frac{\rho_{0} c}{2 S}+R_{b}\right)^{2}+X_{b}^{2}}
\end{aligned}
$$

Special Cases

$$
R_{b}=X_{b}=0 \quad T_{\Pi}=0,1+R_{\Pi}=1 .
$$

R_{b} finite but not $0 \quad$ Some power trans. into branch

$$
\begin{array}{ll}
R_{b}=X_{b}=\infty & T_{\Pi}=1 \quad \text { As though branch is not there. } \\
R_{\Pi}=0 \\
& T_{\Pi b}=0
\end{array}
$$

$R_{b}=0 \quad X_{b} \neq 0$
No power into branch.
(Ex. branch is pipe with rigid termination)
X_{b} value does affect power trans. and reflected.

(10.11) Acoustic Filters

(a) Low-Pass Filters

Insert length L of pipe with different, S_{1}, cross sectional area.

(a)

(b)

(c)

Figure 10.11.1 A simple low-pass acoustic filter consists of an enlarged section of crosssectional area S_{1} and length L in a pipe of cross-sectional area S.
(a) Schematic. (b) Analogous electric filter. (c) Attenuation for several values of S_{1} / S. Solid lines are from (10.11.2) for $k L \ll 1$. Dashed lines are from Problem 10.11.6 for $k L \gg 1$.

Oelze ECE/TAM 373 Notes - Chapter 10 pg 28

At low frequency $k L \ll 1$. The extra length of pipe acts like a side branch with compliance $C=\frac{\mathrm{V}}{\rho_{0} \mathrm{c}^{2}}$ and $V=\left(S_{1}-S\right) L$ giving an acoustic impedance for the chamber of

$$
\begin{array}{ll}
Z_{b} \approx 0-j \frac{\rho_{0} c^{2}}{\omega\left(S_{1}-S\right) L} & \\
T_{\Pi} \approx \frac{1}{1+\left(\frac{S_{1}-S}{2 S} k L\right)^{2}} & \text { True ONLY } \\
\text { for } k L \ll 1
\end{array}
$$

Actually, it acts similar to the transmission through a layer examined earlier in chapter 6

$$
T_{\Pi}=\frac{4}{4+\left(\frac{S_{1}}{S}-\frac{S}{S_{1}}\right)^{2} \sin ^{2}(k L)}
$$

for small $k L$ and for the middle layer being analogous to characteristic impedance of z_{2}.
Like the layer transmission case, at higher frequency, the pipe will have frequencies for complete transmission $\left(L=m \frac{\lambda}{2}\right)$ and others where there is a minimum.

Used in mufflers, gun silencers, sound-absorbing plenum chambers in ventilation systems.
(b) High-Pass Filters

S

Short unflanged branch of radius a and length $L . L^{\prime}=L+1.4 a$

$$
Z_{b}=\frac{\rho_{0} c k^{2}}{4 \pi}+j \omega\left(\frac{\rho_{0} L^{\prime}}{\pi a^{2}}\right)=R_{b}+j X_{b}
$$

giving

$$
T_{\Pi}=\frac{1}{1+\left(\frac{\pi a^{2}}{2 S L^{\prime} k}\right)^{2}}
$$

Most power is reflected at low frequencies. This implies that low frequencies are not transmitted down the pipe and radiated out (like a wind instrument).

Figure 10.11.3 Attenuation for a high-pass filter in a pipe of cross-sectional area $S=28 \mathrm{~cm}^{2}$. The side branch has a 1.55 cm radius. The solid curve is for $L=0.6 \mathrm{~cm}$ and the dashed curve for $L=0$.
(c) Band-Stop Filters

$$
\begin{aligned}
Z_{b} & =0+j \rho_{0}\left(\frac{\omega L^{\prime}}{S_{b}}-\frac{c^{2}}{\omega V}\right) \\
T_{\Pi} & =\frac{1}{1+\left(\frac{c / 2 S}{\frac{\omega L^{\prime}}{S_{b}}-\frac{c^{2}}{\omega V}}\right)^{2}}
\end{aligned}
$$

$$
T_{\Pi}=0 \text { for } \omega=c \sqrt{\frac{S_{b}}{L^{\prime} V}}=\begin{aligned}
& \text { resonance freq. of } \\
& \text { Helmholtz resonator }
\end{aligned}
$$

Oelze ECE/TAM 373 Notes - Chapter 10 pg 30

All energy is reflected \rightarrow none is lost in resonator.

Figure 10.11.4 The power transmission coefficient for a bandstop filter consisting of a Helmholtz resonator. The resonator has a neck of length 0.6 cm and radius 1.55 cm . The pipe has a crosssectional area $28 \mathrm{~cm}^{2}$. The solid line is for a resonator volume of $1120 \mathrm{~cm}^{3}$. The dashed line is for a resonator volume of $2240 \mathrm{~cm}^{3}$.

