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 (5.7) Harmonic Plane Waves

The classical wave equation is of the form:
( ) ( )

2
2 2

2

,
,

p r t
c p r t

t
∂

= ∇
∂

r% r%
where ˆ ˆ ˆx y zr r x r y r z= + +

r
 is the position vector.

If we assume that the solution is of the form:
( ) ( ) ( ),p r t g r h t=
r r %% %

where
( ) j th t e ω=

then
( ) ( )2 2 0g r k g r∇ + =
r r% % . (Helmholtz Equation)

The Helmholtz equation is a convenient form to solve propagation factors (wavenumber) in different
coordinate systems. The use of rectangular coordinates is useful in describing plane waves. A plane
wave is an acoustic wave in which the acoustic variables have constant amplitude and phase on any
plane perpendicular to the direction of propagation. The Helmholtz equation in rectangular coordinates
gives:

2 2 2
2

2 2 2x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

(Laplacian operator in rectangular)

2 2 2
2

2 2 2
0

g g g
k g

x y z
∂ ∂ ∂

+ + + =
∂ ∂ ∂

% % % % .

Let’s try the solution:
( ) ( ) ( ) ( )g r X x Y y Z z=
r % % %%

then

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2
2 2 2
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X x Y y Z z

Y y Z z X x Z z X x Y y k X x Y y Z z
x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂

% % %% % % % % % % % %

dividing by ( ) ( ) ( )X x Y y Z z% % %  yields

( )
( )

( )
( )

( )
( )2 2 2

2
2 2 2

1 1 1X x Y y Z z
k

X x x Y y y Z z z
∂ ∂ ∂

+ + = −
∂ ∂ ∂

% % %
% % % .

In order for the equation above to hold for all x, y and z each term must be equal to a constant, so
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∂
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∂

%
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and
2 2 2 2

x y zk k k k= + + and ˆ ˆ ˆx y zk k x k y k z= + +
r

 (the wave vector)
This represents the 3D acoustic wavenumber for rectangular coordinates.
Each of the three terms above can be solved and have the solution
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( ) xjk xX x e−=%
for a simple plane wave propagating in the + direction.
This gives a total solution for ( )g r

r%  of:

( ) yx zjk yjk x jk zg r Ae e e−− −=
r%

( ) j k rg r Ae− ⋅=
r rr%

The pressure is then:

( ) ( ),
j t k rj t j k rp r t Ae e Ae

ωω − ⋅− ⋅= =
r rr rr% . (+ going wave).

Let’s take as an example a plane wave propagating in both + and – directions and constrained to move
only in the x-direction (a 1D plane wave solution). The solution to this will be:

( ) ( ) ( ), j t kx j t kxp x t Ae Beω ω− += +%
or

( ),p x t p p+ −= +%
Note: Since we are talking about a real physical acoustic wave, we may represent the solution using the
complex exponential form but we are really interested in the real part of the solution.

So, we have the constants A and B, which in general are complex but for this solution we are assuming
them to be real. The acoustic pressure that would be measured is the real part:

( ) ( ) ( ), cos sinp x t A t kx B t kxω ω= − + + .

To obtain the particle velocity, u
r

, we use the force equation (Euler’s equation) 0

u
p

t
ρ

∂
=−∇

∂

r
:

0

1 ˆ ˆ ˆ
u

x y z p
t x y zρ

 ∂ ∂ ∂ ∂
= − + + ∂ ∂ ∂ ∂ 

r

But since we are talking about a plane wave propagating only in the x-direction then:

0

1 ˆu p
x

t xρ
∂ ∂

= −
∂ ∂

r

( ) ( ) ( ) ( )

0

1 ˆj t kx j t kxu
jk Ae jk Be x

t
ω ω

ρ
− +∂  = − − + ∂

r

where we have again used the exponential form due to the ease of manipulation and operations. What
we have derived is the particle acceleration of a plane harmonic wave

( ) ( )

0 0

ˆj t kx j t kxu jkA jkB
a e e x

t
ω ω

ρ ρ
− + ∂

= = − ∂  

rr

To get ˆxu u x=
r

 we must integrate wrt time. If differentiating our solution wrt time mean multiplying by
jω then integrating wrt time mean dividing our solution by jω.

( ) ( )

0 0

j t kx j t kx
x

jkA jkB
u e e

j j
ω ω

ωρ ωρ
− += −

( ) ( )

0 0

j t kx j t kxA B
e e

c c
ω ω

ρ ρ
− += −
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where we used c k
ω= .

We can then relate this to pressure:

0 0
x

p p
u

c cρ ρ
+ −= −

and

0 0
x

jkp jkp
a

ρ ρ
+ −= − .

So, for a positive going wave,
ux is in phase with p
ax leads p by 90°

For the negative going wave,
ux is 180° out of phase with p
ax lags p by 90°

This is illustrated by the following figures:

Positive going
p+

u+

2π
kx

propagation

At peak in compression u is in direction of propagation.
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Negative going
p–

u–

kx

propagation

Note that at the peak in compression u is in direction of propagation in both cases. (Negative amplitude
with negative going wave).

Other wave parameters:

ξx = ∫uxdt =
1
jω

u x =
A

jωρ0c
e j (ωt –kx) –

B
jωρ0c

e j (ωt +kx )

ξx =
– j

ωρ0c
p+ +

j
ωρ0c

p–

Also    
r 
u = ∇φ so can get φ, the velocity potential, and can get s

–

0 0

–

2 2
0 0

1 1
– –p p

j j

p p
s

c c

ωρ ωρ

ρ ρ

+

+

Φ =

= +

Review

j ⇒ ej90° ⇒ +90° phase shift
j2 ⇒ –1 ⇒ 180° phase shift

j3 = –j ⇒ e–j90°⇒ –90° phase shift
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Plots

{ } { }

{ } ( )

( – )

0 0

take   Re cos( – ) Re

then  Re Re Re

j t kx

j t kx

x

p A t kx Ae

jk jkA
a p e

ω

ω

ω

ρ ρ

+

−++

= =

   
= =   

   

0

– sin( – )
kA

t kxω
ρ

=

t

T = 1/f = 2 π/ω

A cos(ωt)

-kA/ρo sin( ωt)

versus t for kx = 0

x
λ = 2π/k

A cos(-kx)

-kA/ρo sin(-kx)

versus x for ωt = 0
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Note that for +x going wave the maximum in acceleration in direction of propagation leads the

pressure maximum by T 4 or
λ
4

.

The relation will be different for positive and negative going parameters that are vectors.

Summary

( – ) ( – ) –

2
0 0

0 0

0

ˆ             

ˆ          –

ˆ

j t kx j t kxp Ae Be p p

p p
u x s

c c

kp p
a j x

j

p
j x

c

ω ω

ρ ρ

ρ ωρ

ξ
ωρ

+

± ±
± ±

± ±
± ±

±
±

= + = +

= ± =

= ± Φ =

=

r

r

r ∓

Back to the 3D acoustic wave:

( ) ( ),
j t k r

p r t Ae
ω − ⋅

=
r rr %%

Looking at the real part:

( ) ( ){ } ( ){ }, Re , Re
j t k rjp r t p r t A e e

ωφ − ⋅
= =

r rr r %%
( ){ }Re

j t k r
Ae

ω φ− ⋅ +
=

r r

( )cosA t k rω φ= − ⋅ +
r r

The phase of the wave is the argument of the cos term. At a given time, t, all points having the same
phase, Ω, obey:

t k rω φ− ⋅ + = Ω
r r .

So
k r t constω φ⋅ = + − Ω =
r r

defines an equation of a plane perpendicular to k
r

. This also means that maximum and minimum
displacements move as a plane perpendicular to k

r
. If we take the derivative of the above relation with

respect to time, t,

{ }k r t
t

ω φ
∂

⋅ = + − Ω
∂

r r

r
k

t
ω

∂
⋅ =

∂

rr
.

Substituting ˆk kk=
r

 and rearranging gives:
ˆ r
k c

t k
ω∂

⋅ = =
∂

r
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which tells us the plane wave advances with a speed c along the k̂  component.
(5.8) Energy Density

Energy is generated by the source and transported by the traveling acoustic wave in the direction of
propagation.

The energy in the wave may, at any time and location, have two contributions or forms

(1) Potential energy – fluid is compressed, storing energy

(2) Kinetic energy – particle is moving

Examine kinetic energy first

Consider small volume (particle) at mass ρ0 V0 moving with particle velocity   r u 

2 2
0 0

1 1
( )

2 2kinetic kE E mass speed V uρ= = =

Potential energy

Potential energy is equal to the work done on a volume, which is stored as potential energy.

0

–
V

potential p V
E E pdV= = ∫ Negative sign

For positive p the volume is decreased ⇒
positive potential energy

Need relation between p and V.

0 0   –  conservation of massV Vρ ρ=

We showed earlier that 0 1 x

x
ξ

ρ ρ
∂ 

= + ∂ 
so that

Source
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0
0 0

1 x V
V xV

ξ
ρ

ρ
ρ ρ

∂ +/  ∂ = =
/

and from the Equation of State 2 2
0 0B – xp s c s c

x
∂ξ

ρ ρ
∂

= = =  so that

0 2
0

1–
p

V V
cρ

 
∴ =  

 
Taking the derivative yields

   0
2

0

V
dV dp

cρ
= −

so that our Potential Energy term is given by:

0

20 0
2 20

0 0

1
– – –

2

V p

p V

V V
E pdV p dp p

c cρ ρ
 

= = = 
 

∫ ∫

Total Acoustic Energy

2
2 0

0 0 2
0

1 1
2 2k p

V p
E E E V u

c
ρ

ρ
= + = +

Instantaneous energy density is defined as the energy per unit volume
2

2
tantan 0 2 2

0

1
2ins eous i

p
u

c
ε ε ρ

ρ
 

= = + 
 

Energy density is the time average of the instantaneous energy density over an acoustic cycle
1 T

i it o
dt

T
ε ε ε= = ∫ where T is one period of a harmonic wave.

Consider a positive going plane wave

( ) ( )
0

cos –   and  cos –x
P

p P t kx u t kx
c

ω ω
ρ

= =

then the instantaneous energy density is given by

( ) ( )

2
2

0 2 2
0

2 2
2 2

0 2 2
0 0

1
2

1
cos – cos –

2

i

p
u

c

P P
t kx t kx

c c

ε ρ
ρ

ρ ω ω
ρ ρ

 
= + 

 
  
 = + 
   

.

Integrating over the acoustic period gives

( )
2

2
00

0

1 1 2
cos –      where 

T P
t kx dt T

T c f
π

ε ρ ω
ρ ω

 
= = = 

 
∫

2

2 3
0

1 J
   

2 m
P

c
ε

ρ
=
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Recall that P = ρ0c U

2
0

1 1
 

2 2
PU

U
c

ε ρ∴ = = .

(5.9) Acoustic Intensity

Intensity is a concept generally used in connection with progressive (traveling) plane waves in a fluid.
Intensity is a vector.  It is a measure of power flowing at normal incidence to the specified unit area.

Instantaneous Intensity is defined as: i p pu
t
ξ∂

= =
∂

.

Average Intensity: 
0

1 T

t
I pu pudt

T
= = ∫

From
( ) ( ) ( ), cos coso ox t t kx t kxξ ξ ω ξ ω+ −= − + +

( ) ( ) ( ), sin sino ou x t U t kx U t kxω ω+ −= − − − +
and since for a positive going wave, ux is in phase with p and for the negative going wave, ux is 180°
out of phase with p so,

( ) ( ) ( ), sin sino op x t P t kx P t kxω ω+ −= − − + + .
Therefore,

( ) ( ) ( )2, , sino op x t u x t P U t kxω+ += − ( ) ( )sin sino oP U t kx t kxω ω+ −+ − +

( ) ( )sin sino oP U t kx t kxω ω− +− + − ( )2sino oP U t kxω− −− +
and the Average Intensity gives:

0

1 T

I pudt
T

= ∫ ( ){ 2

0

1
sin

T

o oP U t kx
T

ω+ += −∫ ( ) ( )sin sino oP U t kx t kxω ω+ −+ − +

( ) ( )sin sino oP U t kx t kxω ω− +− + − ( )}2
o oP U sin t kx dtω− −− +

Using the trigonometric relations:

( ) ( ){ }2 1
sin 1 cos 2 2

2
t kx t kxω ω− = − −

( ) ( ){ }2 1
sin 1 cos 2 2

2
t kx t kxω ω+ = − +

( ) ( )sin sint kx t kxω ω− + ( ) ( ){ }1
cos 2 cos 2

2
kx tω= −

then

( ){ }{
2

0

1
1 cos 2 2

2 2 o oI P U t kx
π ωω

ω
π + += − −∫ ( ) ( ){ }cos 2 cos 2o oP U kx tω+ −+ −

( ) ( ){ }cos 2 cos 2o oP U kx tω− +− − ( ){ }}1 cos 2 2o oP U t kx dtω− −− − +
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A little rearranging yields:

( ){ }{
2

0

1
1 cos 2 2

2 2 o oI P U t kx
π ωω

ω
π + += − −∫ ( ){ }1 cos 2 2o oP U t kxω− −− − +

( ) ( ) ( ){ }}cos 2 cos 2o o o oP U P U kx t dtω+ − − ++ − −

When you do the integration to yield the following expression (why?):

( ){1
2 o o o oI P U P U+ + − −= − ( ) ( )}cos 2o o o oP U P U kx+ − − ++ −

From (Note: plane waves)
o

o o
o

Pp
z c

u U
ρ++

+
+ +

−
= = =

−
, o o o oP c Uρ+ +=

o
o o

o

Pp
z c

u U
ρ−−

−
− −

= = = −
−

, o o o oP c Uρ− −=

so that,

( ){1
2 o o o o o o o oI c U U c U Uρ ρ+ + − −= − ( ) ( )}cos 2o o o o o o o oc U U c U U kxρ ρ+ − − ++ −

( ){ 2 2

2
o o

o o
c

I U U
ρ

+ −= − ( ) ( )}cos 2o o o oU U U U kx+ − − ++ −

{ }2 2

2
o o

o o
c

I U U
ρ

+ −= − { }2 21
2 o o

o o

P P
cρ + −= −

Let’s discuss traveling vs. standing wave

{ }2 2

2
o

o oU U
ρ

ε + −= + (Energy density)

{ }2 2

2
o o

o o
c

I U U
ρ

+ −= −      (PLANE WAVE!)

For a progressive, plane wave in the +x direction
2

2
o

oU
ρ

ε +=

2

2
o o

o
c

I U
ρ

+=

*************************** Example 5.4 ***************************
Consider fresh water at 20°C in which the time-average acoustic intensity is 1 W / cm2 .  Calculate the
peak values oξ , oU , oA  and op  at the three frequencies of 1, 10 and 100 MHz.

ANSWER:

For fresh water at 20°C, two important quantities are 0
m

1481
s

c =  and the density 0 3

kg
998

m
ρ =

(Appendix A10, a very important part of the book!!!)
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From the energy density equation:

2

2
o o

o
c

I U
ρ

+=  or  
2

o
o o

I
U

cρ+ =

This gives us the value for the velocity:
1 MHz 10 MHz 100 MHz

( )cm/soU 11.6 11.6 11.6

and it is not frequency dependent. Likewise from the relation o o o oP c Uρ+ +=  we have for the pressure:

( )atmop 1.72 1.72 1.72
The displacement and acceleration we get from integrating the velocity and taking the derivative of the
velocity, respectively. This makes the values frequency dependent because we merely divide by

(displacement) or multiply by jω. So,  
2

o o
o

U U
f

ξ
ω π

= =  and 2o o oA U fUω π= = . giving

( )Aoξ & 185 18.5 1.85

( )2µm/soA 0.731 7.31 73.1

   *****************************************************************

   *************************** Example 5.5 ***************************
A pulse of frequency 1000 Hz and intensity level of 10-12 W/m2 and is traveling in air at 20°C in the +x
direction.  (a) What is the particle displacement amplitude? (b) Give a numerical formula for the
condensation, s, as a function of x?

ANSWER:

(a) I =
po

2

2ρoco

( )2

2
o o o

o o

c

c

ρ ωξ

ρ
=

2 2

2
o o ocρ ω ξ

= = 10 −12 W / m2

2

2
o

o o

I
c

ξ
ρ ω

= =
2 10−12 W / m2( )

1.21kg / m3( )343 m / s( ) 2000π / s( )2  = 11 pm (peak)

 (b) o

o

s
x

ρ ρ ξ
ρ
− ∂

= = −
∂

( )coso t kx
x

ξ ω
∂

 = − − ∂
( )sinok t kxξ ω= − ,  so

s = 6.44 × 10−11( )Sin 2000πt − 5.831πx( ) (peak)

   *****************************************************************

When attempting to quantify (via a measurement process usually) intensity, both time (temporal) and
space (spatial) aspects must be considered.
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Hydrophone's 
response, p(t)

For continuous wave ultrasound at one location in space:

time

p(t)
po

i(t)

time

ITPITA

where 
2
o

TP
o o

p
I

cρ
=  and 

2

2
o

TA
o o

p
I

cρ
= .

In some instances you measure over a spatial range (i.e. in the focus of a focused source):

range

lateral distance
spatial average 

region

spatial peak
spatial average

I SPTP: Spatial peak temporal peak intensity
I SPTA: Spatial peak temporal average intensity
I SATP: Spatial average temporal peak intensity
I SATA: Spatial average temporal average intensity

Sometimes “spatial peak” refers to a global peak.  For pulsed wave ultrasound, and at one location in
space:

time

p(t)

i(t)
ITPIPA
ITA

time
τ PRP
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I SPTP: Spatial peak temporal peak intensity
I SPPA: Spatial peak pulse average intensity
I SPTA: Spatial peak temporal average intensity
I SATP: Spatial average temporal peak intensity
I SAPA: Spatial average pulse average intensity
I SATA: Spatial average temporal average intensity

                                  


