(5.7) Harmonic Plane Waves

The classical wave equation is of the form:
Tp(r.t)
1’
where T =r,X+r y+r,Z isthe position vector.
If we assume that the solution is of the form:
5(rt)=a(r)h ()

= 2R (r t)

where

h(t) =e™
then

NG (r)+k*g(r) =0. (Helmholtz Equation)
The Helmholtz equation is a convenient form to solve propagation factors (wavenumber) in different
coordinate systems. The use of rectangular coordinates is useful in describing plane waves. A plane
wave is an acoustic wave in which the acoustic variables have constant amplitude and phase on any
plane perpendicular to the direction of propagation. The Helmholtz equation in rectangular coordinates
gives:

N ”. 17,7

NZ2=—+— 4+ —— (Laplacian operator in rectangular)

® W 17

9, 74, 79, 2 p
k2§=0.
® Y 17 J

Let’ stry the solution: S
g(r)=x(xY(y)2(2)
then

T ()2(2)+

dividingby X (x)Y(y)Z(z) yields
1 ‘|12>~((x)+ 1 ‘HZ\?(y)+ 1 1°Z(2)
X(x) ™ Y(y) ¥ Z(2) 17
In order for the equation above to hold for al x, y and z each term must be equal to a constant, so

1 112>’Z(x):_k2 1 W(y)z_k2 LﬂzZ(z):_k2
X(x) 1% X Y(y) v v Z(z) 17 z

:-k2

and

k? =k2 +K +K: and  k=kX+k,J+k2 (thewave vector)
This represents the 3D acoustic wavenumber for rectangular coordinates.
Each of the three terms above can be solved and have the solution
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X (x) =& ¥
for a simple plane wave propagating in the + direction.
This gives atota solution for §(f) of:
§(r)= Ae e Ve
g(F)=Ae ™
The pressure is then:

ko)

p(r,t)=Ae™e i = pgll (+ going wave).

Let’s take as an example a plane wave propagating in both + and — directions and constrained to move
only in the x-direction (a 1D plane wave solution). The solution to this will be:

p(xt)=Aet )+ gl
or

p(xt)=p, +p.
Note: Since we are talking about area physical acoustic wave, we may represent the solution using the
complex exponential form but we are really interested in the real part of the solution.

So, we have the constants A and B, which in general are complex but for this solution we are assuming
them to be real. The acoustic pressure that would be measured is the real part:

p(xt) = Acos(wt - kx) +Bsin(wt +kx).

—

To obtain the particle velocity, U, we use the force equation (Euler’s equation) r % =- Np:

it 1y e'ﬂX Ty ‘HZ i
But since we are talking about a plane wave propagating only in the x-direction then:

1 1,
it oﬂX

fu_ 1 (vl L[ (v ) [y
T g jk) Aé +(jk)Be ux

where we have again used the exponentlal form due to the ease of manipulation and operations. What
we have derived is the particle acceleration of a plane harmonic wave

ﬂU eJkA gtk _ jkB ol (1 1o U)A(

tgr, o i

To get UG =uX we must integrate wrt time. If differentiating our solution wrt time mean multiplying by
jw then integrating wrt time mean dividing our solution by jw.

KA iy _TKB jqueeg

a=

u, =- ,
jwr jwr
_ A i B g
r,C r,C
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=W
wherewe used c = A :
We can then relate this to pressure:

u =" P
roc rq
and
aX:ka_ ikp
r0 rO

So, for a positive going wave,
Ux isin phase with p
ay leads p by 90°

For the negative going wave,
Ux 1S180° out of phase with p
ay lags p by 90°

Thisis illustrated by the following figures:

Positive going

P+

propagation

—

At peak in compression u isin direction of propagation.
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Negative going

propagation
<—M -

I

PR

> kx

Note that at the peak in compression u isin direction of propagation in both cases. (Negative amplitude

with negative going wave).

Other wave parameters:

. 1 A e B
X, = ou,dt = —u,=——e"™ ——
jw jwr ,c jwr ,c
_j + J —
X, = +
g WrocIO Wroc:p

Also U =Nf socangetf, the velocity potential, and can get s

1 . 1
F=——-p'——p
JWr Jwr
_p P
S= +
roc® r,c
Review
i b d9° p  +90° phase shift
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take Re{ p+} = Acos(wt_ kX) - Re{ Aej (wt—kx)}

1jk .0

then Re{a;} =Rej—p g: Re',LAej(w-kx)l,J

~

ilo L

= —k—Asi n(wt —kx)
r0

versust forkx =0

KA/T o Sin( wh)

)

~

A cos(wt)

| >
e T=Uf=2plw
versus x for wt =0
-KA/T 5 Sn(-kx)
A ,/ 0
/Acos(-kx)
- X
~ | =2p/k
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Note that for +x going wave the maximum in acceleration in direction of propagation leads the

pressure maximum by T/4 or 2

The relation will be different for positive and negative going parameters that are vectors.

Summary

l—ji:_'_ p_ 5‘( Si_ p_
roC roC°

_ .ki—,\ +

ar=+j P g Fe=__P
Mo jwr

+

xt=3j %

W ,C

= Acos(vvt- k> +f )

The phase of the wave is the argument of the cos term. At a given time, t, al points having the same
phase, W, obey:

wt- K +f =W,
So

KX =wt+f - W=const
defines an equation of a plane perpendicular to k. This also means that maximum and minimum
displacements move as a plane perpendicular to k . If we take the derivative of the above relation with

respect to time, t,
{IZ>¢”:wt+f - V\}

XE
L it
Substituting k = kk and rearranging gives:
r

kX———:c

i k
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which tells us the plane wave advances with a speed ¢ along the k component.
(5.8) Energy Density

Energy is generated by the source and transported by the traveling acoustic wave in the direction of
propagation.

Source

The energy in the wave may, at any time and location, have two contributions or forms
(1) Potentia energy — fluid is compressed, storing energy
(2) Kinetic energy — particle is moving

Examine kinetic energy first

Consider small volume (particle) at massr , V, moving with particle velocity G

1 1
inetic = Ex = Emass (speed)2 :Erovou2

E

Potential enerqy

Potential energy is equa to the work done on avolume, which is stored as potentia energy.

E . =E :_Qv pdV N Nggatlve_sgn
poten P o For positive p the volume is decreased b

positive potential energy
Need relation between p and V.

rvV =r,V, — conservation of mass

We showed earlier that r , =r 3+ T, gso that
& o
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V = Vo — fix ﬂ
r y
and from the Equation of State p=Bs=r c’s=-r ,¢ ‘ETXX
X
:
\ V= Vogl— P
r’ g
Taking the derivative ylelds
av=-_dp
roC
so that our Potential Energy term is given by:
V, O 1 V,
E =—Q pdV =—Q) pc——%=:dp==p*—2
»=7QP Q pg roczgp 27 1,

Total Acoustic Enerqy

2
E=E +E, = ;rVu +%—Vp
r.C

Instantaneous energy density is defined as the energy per unit volume

e =€ = SlogU +—55+

instantaneous 1 2

Energy density is the time average of the instantaneous energy density over an acoustic cycle
e=(g) = % (‘5 e dt where T is one period of a harmonic wave.
Consider a positive going plane wave
p=Pcos(wt—kx) and u, = r—PCcos(vvt —kx)
then the instantaneous energy density is given b;)/

. ) o
=1 Mo ?eeig cos’ (wt—kx)+%cos2 (wt —kx)d

2 @y rsc H
Integrating over the acoustic period gives

e= _I%QT Ogei_ cos’(wt —kx)dt whereT =

1.
roC g f w

SV
2rc m®
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Recall thatP=r,cU

(5.9) Acoustic Intensity

Intensity is a concept generally used in connection with progressive (traveling) plane waves in afluid.
Intensity isa vector. It isameasure of power flowing a normal incidence to the specified unit area.

| nstantaneous Intensity isdefined as: i = p.l]"—)t( =pu.

T

: 1.
Average Intensity: | =(pu), = — Opudt
0

From
X (X,t) =X,, cos(wt - kx) +x,. cos(wt +kx)
u(xt)=-U,,sin(wt- kx)- U, sin(wt +kx)
and since for a positive going wave, Uy is in phase with p and for the negative going wave, uy is 180°
out of phase with p so,
p(xt)=- B, sin(wt- kx) +P, sin(wt+kx).
Therefore,
p(x tyu(x,t) =P, U, sin*(wt- k) +P,,U_ sin(wt - kx)sin(wt + k)
- P U, Sn(wt+kx)sin(wt - kx) - P,U, sin”(wt +kx)
and the Average Intensity gives:

T T

| :$doudt :TldeUMsinz (Wt - kx) +P,,U, sin(wt - kx)sin(wt + kx)
0 0

- P, U,, sin(wt +lx)sin(wt - kx) - P, U, sin? (wt +kx)} dt

Using the trigonometric relations:

sin” (wt - kx) :%{1- cos( 2wt - 2kx)}
sin® (wt +kx) :%{1- cos( 2wt + 2kx)}

sin(wt - kx)sin (wt + kx) :%{COS(ZKX)- cos( 2wt )}

th
en e
I = 95{ P,.U,.{1- cos(2wt - 2kx)} +P, U, {cos(2kx)- cos(2wt)}
- P_U,,{cos(2kx)- cos(2wt)} - B U, {1- cos(2\/vt+2kx)}} it
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A little rearranging yields:
w M1
| "% ?E{R’*U‘”{l' cos(2wt - 2kx)} - P U {1- cos(2wt + 2kx)}

+(R.U, - P.U,, ){cos(2kx)- COS(ZW[)}} dt

When you do the integration to yield the following expression (why?):
1

| =§{(FL+U0+- P.U,)+(PU, - PU,)cos(2kx)}
From (Note: plane waves)
% :&: . PO+ :rOCO’ I:)0+ = roCoUo+
u, " Mo+
Z :&: R" = TG R). =rOC0Uo_
u -U,
S0 that,
| :%{(rocoUmU0+ - 1e, U, ) +(r,cU, U, -1 ,cU, U, )cos(2kx)}
r.OCO
| = 5 {(U§+ -UZ2 ) +(UU,. - UO_U°+)cos(2kx)}
r.c 1
| = 00U2_U2 - PZ-PZ
2 { o+ 0-} ZrOCO{ o+ 0.}

Let’s discuss traveling vs. standing wave

e= r—2°{U02+ +U2 } (Energy dersity)

| :%{u; -Uz}  (PLANEWAVE!
For a progressive, plane wave in the +x direction

:hu2
2

_ TGy 2
| =Lz,

kkhkkhkkkkhkhkkkhkkkkhkkkkhkkkkhkkkk*k khkkhkkhkkkkhkkkkhkkkhkhkkkkhkkkhkikkk*k
Example 5.4

Consider fresh water at 20°C in which the time-average acoustic intensity is 1W / cm?. Calculate the
peak values x,, U,, A and p, a the three frequencies of 1, 10 and 100 MHz.

ANSWER:
kg

For fresh water at 20°C, two important quantities are ¢, = 1481m and thedensity r,=998—
S m

(Appendix A10, a very important part of the book!!!)
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From the energy density equation:

21
| =l Uz, or U,, =
2 r.Co
This gives us the value for the velocity:
1 MHz 10 MHz 100 MHz

U, (cnmis) 11.6 11.6 11.6

and it is not frequency dependent. Likewise from therelation P, =r cU . we have for the pressure:
p, (am) 1.72 1.72 1.72

The displacement and accel eration we get from integrating the velocity and taking the derivative of the
velocity, respectively. This makes the values frequency dependent because we merely divide by

(displacement) or multiply by jw. So, x, = 2o = % ad A =wU, = 2 fU_ . giving
W

X, (A) 185 185 1.85

A (ws®) 0.731 7.31 73.1

khkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhkkhkkkhkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkk*x

khkkhkhkkkkhkhkkhkhkhkkkhkikk *kkkk*k khkkhkhkkkkhkhkkkhkhkkkhkikhkkkhkikkk%k
xRk Example 5.5 ** *

A pulse of frequency 1000 Hz and intensity level of 10" W/n? and istraveling in air at 20°C in the +x
direction. (@) What is the particle displacement amplitude? (b) Give a numerical formula for the
condensation, s, as afunction of x?

ANSWER:
2 2 2,2

@1 = [Pol” _ (7 oC%,)” _ 1 CWX,] 102 W/

zré% 2roq) 2

d oW
X = = _ -
o ro%WZ @21kg/nﬁx343m/$Xmep/$2 p! (p )

r-r X q . . .
b) s=—=2=- — =- —g&, cos(wt- kx)g = kx,sin(wt- kx), so
(B) 5= == = g, cos(it - oy = ok, sinut - )

s= (644 10" Jsin(2000pt - 5:831px) (pesk)

E R e i b e b e A b e b e A S b S e R A R S kb e R R A R R R R e e e R e Sk b e e

When attempting to quantify (via a measurement process usually) intensity, both time (temporal) and
space (spatial) aspects must be considered.
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Hydrophon€e's
response, p(t)

For continuous wave ultrasound at one location in space:

p(H)

“NANNAN .
JUUUUU

i(t)

BIAAANAMAAANN

. time
2 2
where |, =P 4y [a =P
r.C, 2r C,
In some instances you measure over a spatial range (i.e. in the focus of a focused source):

S

< range, <—spatial peak
ﬂ—spatlal aver age

lateral distance

spatial average
region

| sprp: Spatial peak temporal peak intensity

| sprat Spatial peak temporal average intensity

I satp: Spatial average temporal peak intensity

I sata: Spétial average temporal average intensity

Sometimes “spatial peak” refersto aglobal peak. For pulsed wave ultrasound, and at one location in
space:

p()

hm Do N

U time
i(t)

D
~Ipp
N N<ITA

\V
A time
<~ pgp
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| sprp: Spatial peak temporal peak intensity

| sppa: Spatial peak pulse average intensity

| spra: Spatial peak temporal average intensity

| sa1ps Spatial average temporal peak intensity

I sapa: Spatial average pulse average intensity

I sata: Spétial average temporal average intensity
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