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(5.10) Specific Acoustic Impedance

Specific acoustic impedance

( )•
    1

p Pa s
z or ray

u m
 =  
 

%% %

For plane waves

0   for  going wavesz cρ= ± ±

The product ρ0c is the characteristic impedance.  It is specified by the properties of the material.

The characteristic impedance is analogous to the µ
ε  in dielectric properties. So for example, a

sound wave incident on some interface of two different fluids will have a reflected and transmitted
wave dependent on the characteristic impedance of the two fluids at the boundary. Similarly, if you
have an EM wave incident on some dielectric interface, you will have a reflected and transmitted wave
based on the dielectric properties of the two media.

In general, z is complex (i.e. for spherical waves and lossy materials)

z r j x= +%

where r is the specific acoustic resistance and x is the specific acoustic reactance.

*************************** Example 5.6 ***************************
Characteristic impedance = specific acoustic impedance for plane wave at 20°C and 1 atm.

Air 0 3

kg m
1.21 343 415 ray1

m s
r cρ    = = =   

   

Water 0 3

kg m
998 1481

m s
r cρ    = =    

   
= 1.48 × 106 ray1 = 1.48 Mrayl

This is a very large characteristic impedance difference.
The true significance of this will be shown when we talk about reflection and transmission at a
boundary between two propagating media (Chapter 6)

**********************************************************************
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(5.11) Spherical Waves

We have been talking about plane wave, now we talk about spherical waves. Spherical waves are
useful in describing waves from a small source and for determining the field from an arbitrarily shaped
source (like a piston source).

In this case we begin again with the 3D Helmholtz equation:
( ) ( )2 2 0g r k g r∇ + =
r r% %

where
( ) ( ) ( ),p r t g r h t=
r r %% % and ( ) j th t e ω=

This time we used the Laplacian operator for Spherical coordinates:
2 2

2
2 2 2 2

2 1 1
sin

sin sinr r r r r
θ

θ θ θ θ φ
∂ ∂ ∂ ∂ ∂ ∇ = + + + ∂ ∂ ∂ ∂ ∂ 

 (Appendix A7)

where the coordinate system relations between Cartesian and Spherical are given by:

θ

φ

x

y

r
(r, θ, φ)

z

x = r sin θ cosφ

y = r sin θsin φ

x = r cosθ

If the waves have spherical symmetry (which we can assume for small sources if we are looking at the
pressure field far enough away from the source), then the pressure p is a function of the radial distance
and time but not the angular coordinates (angular symmetry). Hence we simplify the Laplacian as

2
2

2

2
r r r
∂ ∂

∇ = +
∂ ∂

.

This gives for the Helmholtz equation:
( ) ( ) ( )

2
2

2

2
0

g r
g r k g r

r r r
∂ ∂

+ + =
∂ ∂

r% r r% % .

Now, as an aside we note that:

( ) g
rg g r

r r
∂ ∂

= +
∂ ∂

%% %
so

( )
2 2 2

2 2 2
2

g g g g g g
rg g r r r

r r r r r r r r
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + = + + = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

% % % % % %% % .
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or

( )
2 2

2 2

1 2g g
rg

r r r r r
∂ ∂ ∂

= +
∂ ∂ ∂

% %% .

This gives for our Helmholtz equation:
( ) ( )

2
2

2 0
rg r

k rg r
r

 ∂    + = ∂

r% r% .

If we let ( ) ( )f r rg r= %  then we have

( ) ( )
2

2
2 0

f r
k f r

r
∂

+ =
∂

which has the simple and well-known solution:
( ) ( ) jkr jkrf r rg r Ae Be−= = +%

so that

( ) jkr jkrA B
g r e e

r r
−= +%

and

( ) ( ) ( ) ( ) ( ), j t kr j t krA B
p r t h t g r e e

r r
ω ω− += = +%% % .

The first term represents an outgoing (positive r going) wave that is diverging. Physically what does
this mean? Example

The second term is just the opposite, it is an inward going wave (negative r going) that is converging at
some point. Physically what does this mean? Example.

Both waves have spherical fronts. ( The diverging is more common).

Next lets look at the particle velocity for a spherically diverging wave. We use the diverging wave
since it is the most common seen.

To get   r u  we’ll use the velocity potential 0–   and  p u
t

ρ
∂Φ

= =∇Φ
∂

r

For diverging wave then

( – ) ( – )

0 0 0

– – j t kr j t krp A jA
dt e e

rj r
ω ω

ρ ρ ω ρ ω
Φ = ∫ = =

( – )
2

0 0

( – )

0 0

( )ˆ ˆ– –

ˆ–

j t kr

j t kr

jk jA jA
u r e r

r r r

k j A
e r

r r

ω

ω

ρ ω ρ ω

ρ ω ρ ω

 ∂Φ
= ∇ Φ = =  ∂  

 
=  

 

r

( – )

0

1
1– j t krj A

u e
kr c r

ω

ρ
 =   

r
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2

0 0 2

0 2

( )
 

– ( ) 1

                                
( ) 1

p kr kr jkr
z c c

u kr j kr
kr j

ckr
kr

ρ ρ

ρ

+
∴ = = =

+
+

=
+

Notice that in this case we have a real and imaginary part to z:

2

0 2 2

( )
1 ( ) 1 ( ) s s

kr kr
z c j r jx

kr kr
ρ

 
= + = + + + 

where the specific acoustic resistance is 
( )

( )

2

0 2
1

s

kr
r c

kr
ρ=

+
 and the specific acoustic reactance is

( )0 2
1

s
kr

x c
kr

ρ=
+

.

Putting it in polar form yields:
( )1–1tan

0 21 ( )
kr

jkr
z c e

kr
ρ=

+

Notes:
2 r

kr
π
λ

=               ∴ relates r and λ

For very large kr (kr >> 1)

z ≅ ρ0c 1+ j
1
kr

 
  

 
    →  approaches ρ0c for large kr, as for plane wave.

At large kr, the spherical wave looks like a plane wave.

Looking at it another way,  if –1 1
tan

kr
θ =

then

2
cos

1 ( )

kr

kr
θ =

+
and

0 cos jz c e θρ θ=

As  kr → ∞ ,   θ → 0 and cosθ → 1, then z → ρ0c as for plane waves.
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The real pressure is given by:

cos( – )
A

p t kr
r

ω=

The particle velocity is determined by:
( – ) ( – )

0 cos
j t kr j t krp A A

u e e
z rz r c

ω ω θ

ρ θ
−= = =

%% % %
The real part gives for the particle velocity:

0

cos( – )
cos
A

u t kr
r c

ω θ
ρ θ

= −%

Recall, that cosθ  is a function of r so that particle velocity does not vary as 1/r.

Let’s look now at the intensity of a spherical wave:

0
0

1 1
cos( – ) cos( – – )

cos

T

t

A A
I pu t kr t kr dt

T r r
ω ω θ

ρ θ
= = ∫

Integrating yields:
2

0

1 1
cos

2 cos
A

I
r c

θ
ρ θ

 =  
 

or rearranging a little more gives:

( )2 2

0 0

1 1
2 2

A r P
I

c cρ ρ
= = the same as for plane waves (not true for U)

Also, it is important to note that the intensity decreases as 2

1
r

Now, let’s look at the energy density in a spherical wave:

For a plane wave recall that the instantaneous KE density is 20

2kiE u
ρ

=   (see Eq 5.8.1) and the

instantaneous PE density is 2
2

0 0

1
2piE p

cρ
=   (see Eq 5.8.5).

The time average KE density is determined  by   2

0

1
4

T
o

ki ki oE E dt u
T

ρ
= =∫  and similarly the average

PE density is given by 2
02

0 0

1
4piE p

cρ
=

Things will be slightly different for a Spherical Wave:
For a spherical wave the particle velocity is

( )
( )

0

1 j t krA
u jk e

r j r
ω

ρ ω
− = + 

 

%
% ( )

0
j t kru e ω −= %

where 
( )0

0

1A
u jk

r j rρ ω
 = + 
 

%
% .
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Using this to get the average KE density for a spherical wave is then:

20
04kiE u

ρ
=  

( )

2

0

0

1
4

A
jk

r j r
ρ

ρ ω
 = + 
 

%

( )
0

0

1
4

A
jk

r j r
ρ

ρ ω

   = +  
   

%
( )

*

0

1A
jk

r j rρ ω

   ⋅ +  
   

%

( ) ( )

2

0
2 2 2
04

A

r j j
ρ

ρ ω

 
 

=  
−  

% 1 1
jk jk

r r
   ⋅ + −   
   

 

2

0 2
2 2 2 2
0

1
4

A
k

r r

ρ

ρ ω
 = + 
 

%

( ) ( )

22

2 22
0 0

1
1

4

k A

r kc krρ

  = + 
  

%

( )

2

22 2
0 0

1
1

4ki

A
E

r c krρ

  = + 
  

%

The pressure for a spherical wave is simply

( ) ( ), j t krA
p r t e

r
ω −=

%
% ( )

0
j t krp e ω −= %

where 0
A

p
r

=
%

% .

Using this to get the average PE density for a spherical wave:

2
02

0 0

1
4iE p

cρ
=  

2

2
0 0

1
4

A
c rρ

=
%

 

2

2 2
0 04

A

r cρ
=

%

Time out –––––––––––––––––––

Observe what happens when kr >> 1

( )

2

22 2
0 0

1
1

4ki

A
E

r c krρ

  = + 
  

%
1kr>>

→

2

2 2
0 04ki

A
E

r cρ
=

%

2

2 2
0 04pi

A
E

r cρ
=

%
1kr>>

→

2

2 2
0 04pi

A
E

r cρ
=

%

Therefore,
2

2 2
0 04ki pi

A
E E

r cρ
= =

%

So that the average energy density (total):
2

2 22ki pi
o o

A
E E E

r cρ
= + =

% 2
0

2
0 02

p
cρ

=
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where 0p  is the peak amplitude acoustic pressure at r which is the SAME AS FOR PLANE WAVE
when kr >> 1. Again this makes sense for large r because the spherical wave front appears as a plane
wave front (relatively speaking).
Time in –––––––––––––––––––

Average energy density for a spherical wave, in general, is ki piE E E= +  where

( )

2

22 2
0 0

1
1

4ki

A
E

r c krρ

  = + 
  

and

2

2 2
0 04pi

A
E

r cρ
=

%

so that

ki piE E E= +  
( )

2 2

22 2 2 2
0 0 0 0

1
1

4 4

A A

r c r ckrρ ρ

  = + + 
  

% %

( )

2

22 2
0 0

1
2

4

A
E

r c krρ

  = + 
  

%
.

Again, observe what happens when kr >> 1

( )

2

22 2
0 0

1
2

4

A
E

r c krρ

  = + 
  

%
1kr>>

→

2

2 2
0 02

A
E

r cρ
=

%

The total acoustic power is defined as the average rate at which energy flows through a closed
spherical surface of radius r surrounding a source of symmetric spherical waves:

( )2 2
2 2

A
0 0

2
  W 4 4

2Area

A r A
I r I r

c c
π

π π
ρ ρ

= = = =∫

This is constant, independent of r, since there is no loss within the medium and the energy must be
conserved.

Comparison to other fields

    

phase
velocity       c =

B
ρ0

=
1

ρ0βs
             

1
µε

                     
1
LC

impedance      
p
u

= ρ0c =
ρ0
βs

acoustic
plane wave

1 2 4 4 3 4 4 
          

E
H

=
µ
ε

electromagnetic
plane wave

1 2 4 3 4 
          

V
I

=
L
C

transmission
line

1 2 4 3 4 
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(5.12) Decibel Scales

In acoustics, it is customary to describe sound pressures and intensities in a decibel (logarithmic) scale.
There are two reasons for using logarithmic scale:

(1) Large range of intensities  (range of hearing 10–12 – 10 W/m2). By using a logarithmic scale,
the large range of numbers used to describe the intensities is compressed.

(2) Human ear determines relative loudness of two sounds by the ratio of intensities.

In practice the following two scales are used to describe sound levels:

Intensity Level 10log
ref

I
IL

I

 
=   

 

Sound Pressure Level 20log e

ref

P
SPL

P

 
=   

 
where eP  is the effective or rms pressure of the sound. ,ref refI P  represent reference levels for sound.
So, the IL or SPL represent the sound level above some reference sound level. The reference depends
on the medium of propagation. Generally for air:

–12 210 W m     20.4 µPa
calculatedref refI P= ⇒ ≅  (Note: microPascals)

However, we use  Pref = 20 µPa  = 20 x 10-6 Pa which makes them nearly the same.

These are for traveling plane waves.

Note:  
2

0

2
0

10log 10log 20 log
e e

ref ref
ref

P c PI
IL

I PP c

ρ

ρ

 
= = =  

 

*************************** Example 5.7 ***************************

Take P = 1 Pa  (in air) then
1

0.7071Pa
2

eP = =

and

–5

0.7071
20 log 90.97 dB

2 10
SPL = =

×
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2

–3
2

0

–3

–12

0.7071 W
Note:  1.704 10

1.21(343) m

1.704 10
10 log 92.31dB

10

e
P

I
c

IL

ρ
= = = ×

×
= =

**********************************************************************

Threshold of audibility → 10 dB
Threshold of feeling → 120 dB
Threshold of pain → 140 dB

For water

Three different references used (see Table 5.12.1).

105 µPa    ⇒    6.76× 10–9 W m2

20 µPa    ⇒    2.70× 10–16 W m2

1 µPa    ⇒    6.76× 10–19 W m2

Must specify reference, otherwise you can confuse people as to what level you are trying to show. The
first reference corresponds to 1 µbar. The second corresponds to the standard used in air. The third is
what is used as a standard today for underwater acoustics.

*************************** Example 5.8 ****************************
Consider a 40 cm diameter acoustic beam in water of uniform intensity.  The total acoustic power WA =
100 W and frequency = 24 kHz. In water we can determine the wavelength from the speed of sound in
water

1481 m s
0.0617 m

24,000 Hz
c
f

λ = = =

Intensity

Since I is uniform  [recall WA = (I) (Area)] then we can determine the intensity over the beam cross-
section

2
2

100
796 W m

area (0.20)
AW

I
π

= = =

Sound pressure amplitude

2

02
P

I
cρ

=

so
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( )6
02 2 1.48 10 796

48,533 Pa 0.479atm

P c Iρ= = ×

= ≅

Particle velocity amplitude

6

48,500
0.0328 m s

1.48 10
P

U
cρ

= = =
×

Particle displacement amplitude

–70.0328
2.17 10 m 0.217 µm

2 (24,000)
U

ξ
ω π

= = = × =

Condensation amplitude

4
–5

2 2
0

4.85 10
2.22 10

(998)(1481)
P

s
cρ

×
= = = ×

Effective or rms pressure amplitude

2

0

4
rms rms

1 48,500
( )

2 2
34,300 Pa 3.43 10 Pa

T

eff rms
P

P P p t
T

= = = =

= = ×

∫

Sound pressure level

4

re20µPa–5

3.43 10
20 log 184.69 dB

2 10
SPL

 ×
= = × 

**********************************************************************

*************************** Example 5.9 ***************************
Consider a SPL = 70 dB at 1 kHz in air at STP. Calculate op , oξ , oU , oA , E and I.
ANSWER:

(a) 1070 20log o

ref

p
SPL

p
= = ,

so 10

70
log 3.5

20
o

ref

p
p

= =  → 3.510o

ref

p
p

=  → 3.510o refp p= .

Amplitude acoustic pressure is op  = 0.063 Pa (rms) or 0.089 Pa (peak)
(b) particle displacement amplitude oξ  = 33.2 nm (peak)
(c) particle velocity amplitude 209 µm/soU =  (peak)
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(d) particle acceleration amplitude 21.31m/soA =  (peak)

(e) time-average energy density 
2

30
2

0

28.1nJ/m
2

p
E

cρ
= =

(f) time-average acoustic intensity 
2

29.33µW/m
2

o

o o

p
I

cρ
= =

As a check for a plane progressive wave, 
2

39.33 µW/m
28.1nJ/m

331.6m/so

I
E

c
= = =

   *****************************************************************
*************************** Example 5.10 ***************************

Amplitudes associated with a plane wave in water @ 20°C
(ρ = 998 kg/m3 and c = 1481 m/s)

Frequency
(kHz)

I
(W/m2)

P
(kPa)

Prms
(kParms)

ξ0

(µm)
U

(m/s)
A

(m/s2)
s SPL

(dB re 20 µPa)

24 796 48.5403 34.3232 0.2175 0.0328 4945.7415 2.2E-05 184.69
1 1,000 54.4059 38.4708 5.85066 0.03676 230.97429 2.5E-05 185.68

1,000 1,000 54.4059 38.4708 0.00585 0.03676 230974.29 2.5E-05 185.68
1 1 1.72047 1.21655 0.18501 0.00116 7.3040484 7.9E-07 155.68

1,000 1 1.72047 1.21655 0.00019 0.00116 7304.0484 7.9E-07 155.68

Amplitudes associated with a plane wave in air @ 20°C
(ρ = 1.21 kg/m3 and c = 343 m/s)

Frequency
(kHz)

I
(W/m2)

P
(kPa)

Prms
(kParms)

ξ0

(µm)
U

(m/s)
A

(m/s2)
s SPL

(dB re 20 µPa)

1 1,000 0.91104 0.6442 349.391 2.19529 13793.372 0.0064 150.16
1,000 1,000 0.91104 0.6442 0.34939 2.19529 13793372 0.0064 150.16

1 1 0.02881 0.02037 11.0487 0.06942 436.18472 0.0002 120.16
1,000 1 0.02881 0.02037 0.01105 0.06942 436184.72 0.0002 120.16

1 0.001 0.00091 0.00064 0.34939 0.0022 13.793372 6.4E-06 90.16
1,000 0.001 0.00091 0.00064 0.00035 0.0022 13793.372 6.4E-06 90.16

where
I = Intensity
P = Acoustic pressure amplitude
Prms = RMS acoustic pressure amplitude
ξ0 = Particle displacement amplitude
U = Particle velocity amplitude
A = Particle acceleration amplitude
s = Condensation amplitude
SPL = Sound pressure level

**********************************************************************


