Nonlinear Acoustic Propagation

In the previous derivation of the acoustic wave equation we considered only linear disturbances. Let’s look briefly at what happens when you include nonlinear terms.

In this derivation we are going to consider Nonlinear Propagation Conditions for the:

a) Nonlinear Equation of State
b) Nonlinear Wave Equation

Nonlinear Equation of State

Assume that pressure is a function of density, \(P = P(\rho) \) where \(P = p_0 + p \) and \(\rho = \rho_0 + \rho' \), the ambient pressure (density) plus the perturbed pressure (density).

As before, we expand \(p_0 + p = P(\rho_0 + \rho') \) in a Taylor series about equilibrium density, that is (see Eq 5.2.4),

\[
p_0 + p = P(\rho_0) + \rho'P'(\rho_0) + \frac{\rho'^2}{2!}P''(\rho_0) + ... = p_0 + \rho'P'(\rho_0) + \frac{\rho'^2}{2!}P''(\rho_0) + ...
\]

Subtracting \(p_0 \) from both sides leaves us with an expression for the instantaneous pressure

\[
p = \rho'P'(\rho_0) + \frac{\rho'^2}{2!}P''(\rho_0) + ...
\]

Note that for the linearized approximation we assume that the \(\frac{\rho'^2}{2!}P''(\rho_0) + ... \) terms (the nonlinear terms) are negligible and therefore discount them in the subsequent derivations. When we did this, of course, we showed that:

\[
p = \rho'P'(\rho_0) = \rho'\left(\frac{\partial P}{\partial \rho}\right)_0 = \rho_0 c_0^2
\]

Now, if the previously neglected terms are retained,

\[
p = \rho'P'(\rho_0) + \frac{\rho'^2}{2!}P''(\rho_0) + ... = (\rho - \rho_0)P'(\rho_0) + \frac{(\rho - \rho_0)^2}{2!}P''(\rho_0) + ...
\]

\[
= \rho_0 P'(\rho_0)\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{\rho_0^2 P''(\rho_0)}{2!}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + ... = As + \frac{B}{2}s^2 \quad \text{Eq A}
\]

where

\[
A = \rho_0 P'(\rho_0) = \rho_0 c_0^2
\]

\[
B = \rho_0^2 P''(\rho_0)
\]

The ratio \(\frac{B}{A} \) is a significant parameter in expressing the nonlinear properties of the medium where

\[
\frac{B}{A} = \frac{\rho_0^2 P''(\rho_0)}{\rho_0 c_0^2} = \rho_0 \left(\frac{\partial^2 P}{\partial \rho^2}\right)_s \rho_0
\]
Looking at an adiabatic process for a perfect gas we know that, \(P = p_0 \left(\frac{\rho}{\rho_0} \right)^\gamma \), and expanding in terms of the condensation \(s \) yields:

\[
P = \gamma p_0 s + \frac{\gamma(\gamma-1)p_0}{2} s^2 + \ldots \quad \text{Eq B}
\]

Comparing the coefficients of Eqs A and B yields

\[
A = \gamma p_0 \quad \quad \quad B = \gamma(\gamma-1)p_0
\]

and

\[
\frac{B}{A} = \frac{\gamma(\gamma-1)p_0}{\gamma p_0} = \gamma - 1
\]

Nonlinear Wave Equation

In the linear derivation of the wave equation we derived the following relations:

\[
\rho_0 = \rho \left(1 + \frac{\partial \xi_x}{\partial x} \right) \quad \quad \quad \text{Eq C}
\]

\[
-\nabla p = \rho_0 \frac{\partial u}{\partial t} = \rho_0 \frac{\partial^2 \xi}{\partial t^2} \quad \quad \quad \text{Linear Euler's Equation}
\]

\[
p = \rho_0 c^2 s = c^2 \left(\rho - \rho_0 \right) \quad \quad \quad \text{Equation of State}.
\]

These combined gave us the Linear Wave Equation. If we take the derivative of the Equation of State with respect to \(x \) (assuming a 1D case again) we have

\[
\frac{\partial p}{\partial x} = c^2 \frac{\partial \rho}{\partial x}
\]

Rearranging Eq C gives

\[
\rho = \rho_0 \left(1 + \frac{\partial \xi_x}{\partial x} \right)^{-1}
\]

so that

\[
\frac{\partial \rho}{\partial x} = \rho_0 \frac{\partial}{\partial x} \left(1 + \frac{\partial \xi_x}{\partial x} \right)^{-1} = -\rho_0 \left(1 + \frac{\partial \xi_x}{\partial x} \right)^{-2} \frac{\partial^2 \xi_x}{\partial x^2}.
\]

Therefore,

\[
\frac{\partial p}{\partial x} = -c^2 \rho_0 \left(1 + \frac{\partial \xi_x}{\partial x} \right)^{-2} \frac{\partial^2 \xi_x}{\partial x^2}
\]

and if we substitute this into the Euler's Equation we get

\[
c^2 \rho_0 \left(1 + \frac{\partial \xi_x}{\partial x} \right)^{-2} \frac{\partial^2 \xi_x}{\partial x^2} = \rho_0 \frac{\partial^2 \xi_x}{\partial t^2}
\]

or
To bring the nonlinear parameters $\frac{B}{A}$ into the equation, we look further at the relations between the speed of sound and the pressure/density relations (Equation of state).

\[
\frac{\partial^2 \xi}{\partial t^2} = \frac{c^2}{1 + \frac{\partial \xi}{\partial x}} \left(1 + \frac{\partial \xi}{\partial x} \right)^2 \frac{\partial^2 \xi}{\partial x^2}.
\]

This expression can serve as the basic nonlinear equation and a starting point for most nonlinear acoustic applications. All you have to know are the $\frac{B}{A}$ values for the particular medium of interest to be able predict certain nonlinear behaviors.

\[
c^2 = \frac{\partial P}{\partial \rho} = \frac{\partial}{\partial \rho} \left(p_0 \left(\frac{\rho}{\rho_0} \right)^\gamma \right) = \frac{\gamma p_0}{\rho_0} \left(\frac{\rho}{\rho_0} \right)^{\gamma-1} = c_0^2 \left(\frac{\rho}{\rho_0} \right)^{\gamma-1} = \frac{c_0^2}{1 + \frac{\partial \xi}{\partial x}}.
\]

\[
\frac{\partial^2 \xi}{\partial t^2} = \frac{c^2}{1 + \frac{\partial \xi}{\partial x}} \left(1 + \frac{\partial \xi}{\partial x} \right)^2 \frac{\partial^2 \xi}{\partial x^2} = \frac{c_0^2}{1 + \frac{\partial \xi}{\partial x}} \frac{\partial^2 \xi}{\partial x^2}.
\]

(Basic Nonlinear Wave Equation)

This expression can serve as the basic nonlinear equation and a starting point for most nonlinear acoustic applications. All you have to know are the $\frac{B}{A}$ values for the particular medium of interest to be able predict certain nonlinear behaviors.

\[
\frac{\partial^2 \xi}{\partial t^2} = \frac{c_0^2}{1 + \frac{\partial \xi}{\partial x}} \frac{\partial^2 \xi}{\partial x^2} \approx c_0^2 \left[1 - \left(2 + \frac{B}{A} \right) \frac{\partial \xi}{\partial x} \right] \frac{\partial^2 \xi}{\partial x^2}.
\]

But

\[
s = -\frac{\partial \xi}{\partial x} = \frac{p}{\rho_0 c_0^2}
\]

giving

\[
\frac{\partial^2 \xi}{\partial t^2} = c_0^2 \left[1 + \left(2 + \frac{B}{A} \right) \frac{p}{\rho_0 c_0^2} \right] \frac{\partial^2 \xi}{\partial x^2} = c^2 \left(\frac{p}{\rho_0} \right) \frac{\partial^2 \xi}{\partial x^2}.
\]

where

\[
c^2 = c_0^2 \left[1 + \left(2 + \frac{B}{A} \right) \frac{p}{\rho_0 c_0^2} \right].
\]
Now if we approximate: \(c \approx c_0 \left[1 + \left(1 + \frac{B}{2A} \right) \frac{p}{\rho_0 c_0^2} \right] = c_0 \left[1 + \beta u \right] \)

then

\[\beta = 1 + \frac{B}{2A} \]

is called the Beyer parameter.

Physically, what \(c \approx c_0 \left[1 + \beta \frac{p}{\rho_0 c_0^2} \right] \) means is that speed is dependent upon the amplitude of the pressure disturbance. The speed is greater in regions of compression (+ pressure) and lower in regions of rarefaction (- pressure), that is, \(c_c > c_r \) (both \(c_c \) and \(c_r \) are positive numbers).

Thus, a region of compression (positive particle velocity) has \(c > c_0 \) and a region of rarefaction has \(c < c_0 \), so that the wave becomes distorted as it travels. Since the wave becomes distorted it no longer has a single frequency component. Instead some energy is transferred from the fundamental frequency that was generated at the source to higher harmonics (integer multiples of the fundamental frequency). In the limit where the slope becomes \(-\infty\), a shock wave is formed. This occurs when the crest catches up with the trough. This is often called an N-wave because:

Thus the speed depends upon \(\frac{\partial \xi}{\partial x} \) and therefore position on the waveform.

A useful parameter to determine just how significant this nonlinear distortion might be is the distance, \(D \), at which a shock wave is formed. The shock wave formation distance is defined as the distance where the slope of the waveform at its zero crossing becomes \(-\infty\) in a lossless (no attenuation of energy in a linearly propagating wave) medium. This marks the distance where a shock wave starts to form and where nonlinear effects are of obvious importance.

To estimate the distance \(D \) the wave propagates to form a fully-developed shock wave, we consider the time it takes for the crest to travel an increased distance \(\lambda/2 \) to catch up with the trough, that is,
\[t = \frac{D + \frac{\lambda}{2}}{c_c} = \frac{D}{c_r} \]

rearranging to solve for \(D \)

\[\frac{c_c}{D + \frac{\lambda}{2}} = \frac{c_r}{D} \]

\[(c_c - c_r)D = c_r \frac{\lambda}{2} \]

Therefore,

\[D = \frac{c_r \frac{\lambda}{2}}{c_c - c_r} \]

This can be slightly approximated:

Assume \(\frac{\lambda}{D} \ll 1 \) then

\[(c_c - c_r) \approx \frac{c_r \lambda}{2D} = \frac{c_r}{2} \left(\frac{\lambda}{D} \right) \ll 1 \]

\[\rightarrow c_c \approx c_r \approx c_0 \]

Therefore,

\[D = \frac{c_0 \frac{\lambda}{2}}{c_c - c_r} \quad \textbf{Eq A} \]

From this expression, the various speed quantities must be calculated in order to determine \(D \).

Another expression to determine \(D \) can be found by starting with

\[c \approx c_0 \left[1 + \beta_n \frac{p}{\rho_0 c_0^2} \right] \]

Thus (both \(p_c \) and \(p_r \) are positive numbers),

\[c_c = c_0 \left[1 + \beta_n \frac{p_c}{\rho_0 c_0^2} \right] \]

\[c_r = c_0 \left[1 - \beta_n \frac{p_r}{\rho_0 c_0^2} \right] \]

Substituting \(c_c \) and \(c_r \) into Eq A, \(D = \frac{c_0 \frac{\lambda}{2}}{c_c - c_r} \), yields:
\[
D = \frac{c_0 \frac{\lambda}{2}}{1 + \beta_n \frac{p_e}{\rho_0 c_0^2}} - \frac{c_0 \frac{\lambda}{2}}{1 - \beta_n \frac{p_r}{\rho_0 c_0^2}} = \frac{c_0 \frac{\lambda}{2}}{\beta_n \frac{p_e}{\rho_0 c_0} + \beta_n \frac{p_r}{\rho_0 c_0} + \frac{\lambda}{2}} = \frac{\lambda}{2}
\]

Therefore,

\[
D = \frac{\lambda p_0 c_0^2}{2 \beta_n (p_e + p_r)}
\]

*** Example 5.11 ***

Consider a 1 kHz source in air at 1 atmosphere and 20°C at a SPL = 100 dB. At what distance is a fully-developed shock wave formed? What about SPL = 120 dB and 135 dB?

Sol:

*** Example 5.12 ***

As seen from the previous example, in air at 20°C, sound propagation is nonlinear at a SPL of 135 dB. Using linear approximations, determine the particle displacement of air under these conditions and frequency of 1 kHz.

Sol:
Examples of values for \(D \) in water at 20°C are provided in the following table.

<table>
<thead>
<tr>
<th>Intensity (W/cm²)</th>
<th>Acoustic Pressure (MPa)</th>
<th>Particle Speed (m/s)</th>
<th>Acoustic Mach Number</th>
<th>(D) @ 1 kHz (m)</th>
<th>(D) @ 1 MHz (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0544</td>
<td>0.0368</td>
<td>2.48 \times 10^{-3}</td>
<td>2.710</td>
<td>2.71</td>
</tr>
<tr>
<td>1</td>
<td>0.172</td>
<td>0.116</td>
<td>7.85 \times 10^{-3}</td>
<td>860</td>
<td>0.86</td>
</tr>
<tr>
<td>10</td>
<td>0.544</td>
<td>0.368</td>
<td>2.48 \times 10^{-4}</td>
<td>270</td>
<td>0.27</td>
</tr>
</tbody>
</table>

A final parameter that is of use when dealing with real-world materials that have some loss is the Goldberg number given by

\[
\Gamma = \frac{M \beta}{\alpha/k} = \frac{1}{\alpha L_d},
\]

where \(\alpha \) is the attenuation coefficient that will be examined later when we talk about loss in Chapter 8. The Goldberg number can be thought of as the ratio of the measure of the strength of the nonlinear effect \((M\beta)\) to the measure of attenuation over a distance of one wavelength \((\alpha/k)\). For \(\Gamma << 1 \) (very lossy material such as viscous oils or most biological tissues) the wave decays before significant nonlinear distortion and for \(\Gamma >> 1 \) (low loss material such as water) shock waves form before the wave has attenuated appreciably.