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Nonlinear Acoustic Propagation

In the previous derivation of the acoustic wave equation we considered only linear disturbances. Let’s
look briefly at what happens when you include nonlinear terms.
In this derivation we are going to consider Nonlinear Propagation Conditions for the:

a) Nonlinear Equation of State
b) Nonlinear Wave Equation

Nonlinear Equation of State

Assume that pressure is a function of density, ( )P P ρ=  where 0P p p= +  and 0ρ ρ ρ′= + , the
ambient pressure (density) plus the perturbed pressure (density).

As before, we expand ( )0 0p p P ρ ρ′+ = +  in a Taylor series about equilibrium density, that is (see Eq
5.2.4),
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Subtracting 0p  from both sides leaves us with an expression for the instantaneous pressure
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Note that for the linearized approximation we assume that the ( )
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terms) are negligible and therefore discount them in the subsequent derivations. When we did this, of
course, we showed that:
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Now, if the previously neglected terms are retained,
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where
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The ratio 
B
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 is a significant parameter in expressing the nonlinear properties of the medium where
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Looking at an adiabatic process for a perfect gas we know that, 0
0

P p
γ

ρ
ρ

 
=  

 
, and expanding in terms

of the condensation s  yields:
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= + +       Eq B

Comparing the coefficients of Eqs A and B yields
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and
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Nonlinear Wave Equation

In the linear derivation of the wave equation we derived the following relations:
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Eq C
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ξ

ρ ρ
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−∇ = = (Linear Euler’s Equation)

( )2 2
0 0p c s cρ ρ ρ= = − (Equation of State).

These combined gave us the Linear Wave Equation.  If we take the derivative of the Equation of State
with respect to x (assuming a 1D case again) we have
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Rearranging Eq C gives
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Therefore,
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and if we substitute this into the Euler’s Equation we get
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To bring the nonlinear parameters 
B
A

 into the equation, we look further at the relations between the

speed of sound and the pressure/density relations (Equation of state).
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(Basic Nonlinear Wave Equation)

This expression can serve as the basic nonlinear equation and a starting point for most nonlinear

acoustic applications. All you have to know are the 
B
A

 values for the particular medium of interest to

be able predict certain nonlinear behaviors.

Observe that if we start from Eq B
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For adiabatic perfect gas we showed that
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Now if we approximate: 0
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 observe that for air where γ =1.4
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 (for air where γ =1.4 )

Physically, what c2 = co
2 1 +

B A
2γ

p
Po

 

 
 

 

 
  means is that speed is dependent upon the amplitude of the

pressure disturbance. The speed is greater in regions of compression (+ pressure) and lower in regions
of rarefaction (- pressure), that is, cc > cr  (both cc  and cr  are positive numbers).
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(both pc  and pr  are positive numbers)

Thus, a region of compression (positive particle velocity) has c > c0 and a region of rarefaction has
c < c0, so that the wave becomes distorted as it travels.  Since the wave becomes distorted it no longer
has a single frequency component.  Instead some energy is transferred from the fundamental frequency
that was generated at the source to higher harmonics (integer multiples of the fundamental frequency).
In the limit where the slope becomes -8, a shock wave is formed.  This occurs when the crest catches
up with the trough.  This is often called an N-wave because:
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Thus the speed depends upon x

x
ξ∂

∂
 and therefore position on the waveform.
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A useful parameter to determine just how significant this nonlinear distortion might be is the distance,
D, at which a shock wave is formed.  The shock wave formation distance is defined as the distance
where the slope of the waveform at its zero crossing becomes -8  in a lossless (no attenuation of
energy in a linearly propagating wave) medium.  This marks the distance where a shock wave starts to
form and where nonlinear effects are of obvious importance.
To estimate the distance D the wave propagates to form a fully-developed shock wave, we consider the
time it takes for the crest to travel an increased distance λ/2 to catch up with the trough, that is,
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rearranging to solve for D
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This can be slightly approximated:
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From this expression, the various speed quantities must be calculated in order to determine D.
Another expression to determine D can be found by starting with
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Expanding the term under the radical in a series gives:
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Thus (both pc  and pr  are positive numbers),
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Substituting cc  and rc  into Eq A, 
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*************************** Example 5.11 ***************************

Consider a 1 kHz source in air at 1 atmosphere and 20°C at a SPL = 100 dB.  At what distance is a
fully-developed shock wave formed?  What about SPL = 120 dB and 135 dB?

ANSWER:

l If SPL = 100 dB, 100 20log e

ref

p
p

 
=   

 
, 510e

ref

p
p

=  → 2.828p Pa=  (peak), 2.828cp Pa= ,

2.828rp Pa=  and 0 343m/s
0.343m

1000Hz
c
f

λ = = = .  ( )
2 o

c r

p
D

B A p p
γλ

=
+

( ) ( )2 1.402 0.343m 101,330Pa
0.402 5.656Pa

=  = 42.9 km

l If SPL = 120 dB, D = 4.29 km
l If SPL = 135 dB, D = 762 m

*********************************************************************

*************************** Example 5.12 ***************************

 As seen from the previous example, in air at 20°C, sound propagation is nonlinear at a SPL of 135 dB.
Using linear approximations, determine the particle displacement of air under these conditions and
frequency of 1 kHz.
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ANSWER: 2010SPL
refp p= ⋅ = 20 µPa rms( ) ⋅10135 20  = 112.47 Pa (rms).

o
o

p
c

ξ
ρ ω

=  = 43 µm (rms)

Note that this is approximately 7 orders of magnitude larger than the particle displacement
corresponding to 0 dB.
*********************************************************************

Examples of values for D in water at 20°C are provided in the following table.
Intensity
(W/cm2)

Acoustic
Pressure
(MPa)

Particle Speed
(m/s)

Acoustic
Mach
Number

D
@ 1 kHz

(m)

D
@ 1 MHz

(m)

0.1 0.0544 0.0368 2.48 x 10-5 2,710 2.71
1 0.172 0.116 7.85 x 10-5 860 0.86
10 0.544 0.368 2.48 x 10-4 270 0.27

A final parameter that is of use when dealing with real-world materials that have some loss is the
Goldberg number given by

1

d

M
L

k

β
α α

Γ = = ,

where α is the attenuation coefficient that will be examined later when we talk about loss in Chapter 8.
The Goldberg number can be thought of as the ratio of the measure of the strength of the nonlinear
effect (Mβ) to the measure of attenuation over a distance of one wavelength (α/k).  For Γ << 1 (very
lossy material such as viscous oils or most biological tissues) the wave decays before significant
nonlinear distortion and for Γ >> 1 (low loss material such as water) shock waves form before the
wave has attenuated appreciably.


