Nonlinear Acoustic Propagation

In the previous derivation of the acoustic wave equation we considered only linear disturbances. Let’s
look briefly at what happens when you include nonlinear terms.

In this derivation we are going to consider Nonlinear Propagation Conditions for the:

a) Nonlinear Equation of State
b) Nonlinear Wave Equation

Nonlinear Equation of State

Assume that pressure is a function of density, P = P(r ) where P=p+pand r =r,+r( the
ambient pressure (density) plus the perturbed pressure (density).

As before, we expand p,+ p= P(r o T G) in a Taylor series about equilibrium density, that is (see Eq
5.2.4),

r ¢ r ¢
P+ P=P(ro+r@ =P(r,)+r CPG(rO)+EP(II(r0)+... = p0+r¢3¢(r0)+?P¢lI(r0)+

Subtracting p, from both sides leaves us with an expression for the instantaneous pressure
r ¢
p=r (Ptl(ro)+—| P®(r, )+

Note that for the linearized approximation we assume that the PGI( r ) . terms (the nonlinear

terms) are negligible and therefore discount them in the subsequent derivations. When we did this, of

course, we showed that:
p:rPG(ro):r(I?—Pg =r G
T a

Now, if the previoudly neglected terms are retained,

p:r@qro)+£pqro>+... (- 1) Pqr)+ L e .
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where
A=r1,Pqr,)=
B:rquro)

Theratio % isasignificant parameter in expressing the nonlinear properties of the medium where
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Looking at an adiabatic process for a perfect gas we know that, P = p, 9—9 and expanding in terms
Nog

of the condensation s yields:

p=gps+ 20 R _21) RSh. EQB
Comparing the coefficients of Eqs A and B yields

A=gp,

B=9g(g-1)p,
and

B_ole-Im_,

A 9P,

Nonlinear Wave Equation

In the linear derivation of the wave equation we derived the following relations:

‘on

- EqC
By
‘ﬂu 1% . .
-N =rg—=ry—5 Linear Euler's Equation
P=ro = Mo ge ( q )
p=rc’s=c*(r-r,) (Equation of State).

These combined gave us the Linear Wave Equation. If we take the derivative of the Equation of State
with respect to x (assuming a 1D case again) we have

)[R
T X
Rearranging Eq C gives
o1
X, O
= + LSy
r rogl 5
so that
-2
r_, _a?H X, 6 :_roa?H&g ﬂ2xle
™ °Tx& & g T
Therefore,
@__Cr X, 6 "X,
C g W

and if we substitute thisinto the Euler's Equatlon we get
- &, X, 6 1%, _ -t 1°x,
8 e B e

or
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To bring the nonlinear parameters % into the equation, we look further at the relations between the

speed of sound and the pressure/density relations (Equation of state).

. % go .g'l --g'l 2
Z:aEQ:l(;p ?r_o+:gpo§_9 = 2£LO = G
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T )2( = S STz ﬂz): (Basic Nonlinear Wave Equation)
fit g, o fix
& o

This expression can serve as the basic nonlinear equation and a starting point for most nonlinear
. " B : , .
acoustic applications. All you have to know are the A values for the particular medium of interest to

be able predict certain nonlinear behaviors.

Observe that if we start from Eq B
g(g-l) Po ~ :(r ) ro)ggp°+g(g-1) R (r B rO)
2 arlo 2 rs

é -1)r @

P=gps+ :(r_ro)égpo+gpo(g ) ;
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e 2ry g
where
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Now if we approximate; r - r, =ré¢»—=——="—"=

¢ %9 9P
eflo ﬂ
then
é (o- 1)aepr 6U
é -1)r @ < ¢ a : -1) pu € B/Apu
szcgéH(Q ) 0 egpoﬂu_cd__,_( )ﬂu:cgéuLﬂﬂ
e 2ry q g 2r, l] 29 mi & 20 P
é s
B/A
From ¢ =¢ e1_+L—pu observe that for air where g =1.4
e 9 Poq
B/A »0.14
29 244
¢ =¢ e1+014£u (for air where ¢ =1.4)
Po 0
,€ B/A p
Physically, what ¢ —c e1_+ 29 EL" means is that speed is dependent upon the amplitude of the
a
(0]

pressure disturbance. The speed is greater in regions of compression (+ pressure) and lower in regions
of rarefaction (- pressure), that is, ¢, > ¢, (both c. and c, are positive numbers).

p(t) aa PO

—>C
Po* R later
Po time Po
Po-Pr > ->Cr
| /2 distance distance

(both p. and p, are positive numbers)

Thus, aregion of compression (positive particle velocity) has ¢ > cg and aregion of rarefaction has
C < ¢Q, so that the wave becomes distorted as it travels. Since the wave becomes distorted it no longer

has a single frequency component. Instead some energy is transferred from the fundamental frequency
that was generated at the source to higher harmonics (integer multiples of the fundamental frequency).
In the limit where the slope becomes -8, a shock wave isformed. This occurs when the crest catches
up with the trough. Thisis often called an N-wave because:

p(t) in PO
Py- Ioro limit "o

| /2 distance distance

™,
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A useful parameter to determine just how significant this nonlinear distortion might be is the distance,
D, at which a shock wave is formed. The shock wave formation distance is defined as the distance
where the dope of the waveform at its zero crossing becomes -8 in alossless (no attenuation of
energy in alinearly propagating wave) medium. This marks the distance where a shock wave starts to
form and where nonlinear effects are of obvious importance.

To estimate the distance D the wave propagates to form a fully-devel oped shock wave, we consider the
time it takes for the crest to travel an increased distance | /2 to catch up with the trough, that is,

I
t= P +E :B
CC CI’
rearranging to solve for D
. _GC
p+L D
2
I
C.-Cc)D=c—
( C I’) r 2
Therefore,
¢ L
D=—2
C-GC
This can be dightly approximated:
Assume | << D then
cl ¢
(c-c)=% =88 0y
2D 2&Dp
® c,»C »C,
Therefore,
G
D=—2_ EQA
C.-C

From this expression, the various speed quantities must be calculated in order to determine D.
Another expression to determine D can be found by starting with
€ -1) pu € B/Apu
cocgeLl Py o§ BARY
é B a & 29 Poi

é B/A u
C=Cel+t3 / P+ 1]
8 22npn G

Thus (both p. and p, are positive numbers),
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Substituting ¢, and ¢, into EqA, D= 2 , yields:
C.- C
L L L
A } 1B/A 1 B/A B/A
<& 1B/ApU B/ApU 1, 1B/AR ,1B/AR - BIA, )

e 1 u
T %8 2y 22 p, 220 49,
Therefore,
2 p,
B/A(p.+p)

kkhkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkxx EX&I’T'Iple 511 kkhkkkkkkhkhkhkhkhkhkhkhkhkhkhhhkhkkkkkkkxx

Consider a1l kHz sourcein air at 1 atmosphere and 20°C at a SPL = 100 dB. At what distanceis a
fully-devel oped shock wave formed? What about SPL = 120 dB and 135 dB?

ANSWER:
ap 0 pe 5

@ If SPL = 100dB, 100= 20logg—2 +, —==10°® p=2.828Pa (pesk), p, = 2.828Pa,
gpre‘ g ref

2
0 =2828Paand| =2 =385 _ga43m p=2 P
f 1000Hz B/A(p.+p,)
2(1.402)(0.343m
_ 2(1.402)( ) 101,330Pa _ 2.9 km
0.402 5.656Pa

@ |f SPL =120dB, D =4.29 km
@ |f SPL =135dB,D =762 m
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As seen from the previous example, in air at 20°C, sound propagation is nonlinear at a SPL of 135 dB.
Using linear approximations, determine the particle displacement of air under these conditions and
frequency of 1 kHz.
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ANSWER: p = p,, 20¥/*° = 20 nPa(rms) 10"*7?° = 112.47 Pa (rms).

P

X =——— =

(o]

r.ow

(o]

43 pm (rms)

Note that thisis approximately 7 orders of magnitude larger than the particle displacement
corresponding to O dB.
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Examples of values for D in water at 20°C are provided in the following table.

Intensity Acoustic Particle Speed | Acoustic D D
(W/cnt) Pressure (m/s) Mach @ 1 kHz @ 1 MHz
(MPa) Number (m) (m)
0.1 0.0544 0.0368 2.48x 107 2,710 2.71
1 0.172 0.116 7.85x 10 860 0.86
10 0.544 0.368 2.48x 10" 270 0.27

A final parameter that is of use when dealing with real-world materials that have some loss is the
Goldberg number given by

G:M_: 1

b
% al,’

where a is the attenuation coefficient that will be examined later when we talk about loss in Chapter 8.
The Goldberg number can be thought of as the ratio of the measure of the strength of the nonlinear
effect (Mb) to the measure of attenuation over a distance of one wavelength (a/k). For G<< 1 (very
lossy material such as viscous oils or most biological tissues) the wave decays before significant
nonlinear distortion and for G>> 1 (low loss materia such as water) shock waves form before the
wave has attenuated appreciably.
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