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(7.4) Radiation from a Plane Circular Piston

The plane circular piston is of particular interest in acoustics because it is a model for a number of
sources, i.e. loudspeakers, open ended organ pipes, ventilation ducts, and many types of single
element transducers.
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Let’s consider a piston of radius a mounted on a flat rigid baffle of infinite extent. We want to look
at the radiating surface of the piston assuming that it moves with a uniform speed

0
j t

su U e ω=

normal to the baffle when 2 2y z a+ < .

If we consider a simple source of area dS then we have for the source strength (surface area of
source x velocity amplitude)

0dQ U dS=

So that the contribution from one baffled simple source is
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The total pressure in the disk is found by summing up all of the “simple” sources on the disk

( – )
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cU k e
p r t j dS

r

ωρ
θ

π

′

=
′∫ for 0 ≤ σ ≤ a.

Typically, we divide the field from the piston source into the near field and the far field.

Near Field – complicated variation in the pressure with position due to the complex interference
from simple sources (Huygens sources).

An analytic solution is possible only along the axis.  The extent of the near field is defined in
terms of this result.

Far Field – Can get an approximate analytic solution everywhere in far field.

I. The Near Field approximations

We’ll consider the case where r is not much greater that a, that is, in the near field (Fresnel Zone).
Here, we can obtain a closed-form solution only for the on-axis (axial) case.  We start with

( ) ( ),
2

j t kRo oj U
dp r t e dS

R
ωωρ

π
−=

where ( ),dp r t  is the axial pressure at an axial distance r due to an annular ring on the source
surface.

r
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σ

R
R1

p(r,t)

You can see from the diagram that there is no dependence on θ  when looking at pressure on the
axis. Summing up the annular rings over the radius a
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S
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ωωρ
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−= ∫

where 2dS dπσ σ=  for an incremental annulus and 2 2R rσ= + .

Therefore,
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If we note that
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+ +
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Then
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Pulling ( )2 21
– –
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 out of the bracket gives
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But that just gives us

( ) ( )2 21
– –2 2 ( – )2

0 0
1

( ,0, ) sin –
2

j k r a r j t krp r t cU k r a r e e ωρ
+ = +  

.

The pressure magnitude on axis is

2
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1
( ,0) 2 sin 1 –1

2
a

p r cU kr
r

ρ
     = +       

So, what does this equation mean physically about the acoustic pressure along the axis in the near
field?

2 maxima for m odd1
1 – 1 2           

minima for m even2
a

kr m
r

π
   + =    

If we solve for r in terms of m then

–                for   0, 1, 2, 
4

mr a m
m

a m a
λ

λ
= = …

m = 0 corresponds to r → ∞
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m = 1  ⇒  last axial maximum – This is where the far field equations begin to be valid for
     the plane piston source.
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Figure 7.4.2  Axial pressure amplitude for a baffled circular plane piston of
radius a radiating sound of wave number k with ka = 8π .  Solid line is
calculated from the exact theory.  Dashed line is the far field approximation
extrapolated into the near field.  For this case, the far field approximation is
accurate only for distances beyond about seven piston radii.
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Note that for r > ≈ 2r1 the pressure decreases as 
1
r

.

***************************  Example 7.2  ***************************
Examples of Axial Pressure Amplitude versus r/a

Using for the baffle source:
2

0 0

1
( ,0) 2 sin 1 –1

2
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p r cU kr
r

ρ
     = +       
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The following are examples of 
( ) 2

2

, 0
sin 1 1

2 2o o

p r kr a
cU rρ

     = + −       
versus r/a for different values

of a/λ (recall that ka = 2π(a/λ).
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From these pictures what do you think happens to the far field as a/λ gets larger?
How do the number of peaks and the number of multiples a is above the wavelength match up?

******************************************************************
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II. The Far Field approximations

The book uses a line source approximation to derive the Far field approximation for the baffled
piston source. We will look at a more traditional way of deriving the far field approximation. Let’s
define the coordinate system we will be working with:

y

z

x

p(r,θ,t)

θ
r

RΨ δ

z

y

aσ

Ψ
σdΨ

dS = σdΨdσ

dσ

Recall that the contribution from one baffled simple source is

( ) ( – )
0, ,

2
j t kRdQk

dp r t j c e
r

ωθ ρ
π

=
′

.

where 0dQ U dS= . The incremental pressure, dp, at the field position (r, θ ,t) from the incremental
surface dS is:

( ) ( – )0
0, ,

2
j t kRU k

dp r t j c e dS
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=
′
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e dS
R

ωωρ
π

−=
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ω
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ωρ
θ

π

−

≤

= ∫
To determine R in terms of σ and Ψ:

δ r

R

σ line 2

line 1

p(r, θ,t)

Law of Cosines: 2 2 2 2 cosR r rσ σ δ= + −  where cosδ  is determined from the Direction Cosines of
lines 1 and 2, that is, 1 2 1 2 1 2cos l l m m n nδ = + +  where the Direction Cosines are determined by the
particular axial component length of a vector divided by the total length of the vector.



Oelze   ECE/TAM 373 Notes  -   Chapter 7               pg 22

1 0l = 2 cosl θ=

1 cosm = Ψ 2 sinm θ=

1 sinn = Ψ 2 0n =

which yields: cos cos sinδ θ= Ψ .

2 2 2 2 cosR r rσ σ δ= + − 2 2 2 cos sinr rσ σ θ= + − Ψ
2

2
21 2 cos sinr

r r
σ σ

θ
  = + − Ψ  

  

Because: a<<r, 
2
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<< <<
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θ
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r
σ
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  = − Ψ  
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r
σ
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θ
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So,
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For the far-field approximation: cos sin rσ θΨ =  in denominator because change in amplitude is

assumed to be negligible; remember: 
2

2 1
r r
σ σ

<< << . So,
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Using for our incremental surface area, dS d dσ σ= Ψ , yields
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Limits of integration:
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Therefore, let’s first look at 
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Using the general relationship for the Bessel’s function of the first kind of order n

( ) ( ) ( )
2

cos

0

cos
2

n
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J x e n d
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Ψ−

= Ψ Ψ∫
Comparing with the above integral we see that we have a Bessel function of order n = 0, so
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where x k sinσ θ= . Our pressure then is
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To evaluate ( )
0

sin
a

oJ k d
σ

σ σ θ σ
=
∫ , we observe that ( ) ( )1oxJ x dx xJ x=∫ .  For ( ) ( )1oxJ x dx xJ x=∫ ,

we let sin
sin
x

x k
k

σ θ σ
θ

= ⇒ =  and sin
sin
dx

dx k d d
k

θ σ σ
θ

= ⇒ = . Our limits of

integration become:
σ = 0 ⇒ x = 0
σ = a ⇒ x = kaSinθ

giving,
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=
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θ
=
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Finally our pressure is given by

( ), ,p r tθ ( ) ( )2
12 sin

2 sin
j t kro o J kaj a U

e
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ω θωρ
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−  
=  

 
The pressure amplitude will be directional depending on θ . We define the Directional Factor (or
also called the beam pattern) of a source, ( )H θ  by

( ) ( ) 2
2 12 sin

sinref

J kaI
H

I ka
θ

θ
θ

 
= =  

 
→  ( ) ( )12 sin

sin
J ka

H
ka

θ
θ

θ
=

Values for the directional factor are listed in Appendix 6 for a baffled piston.

Let’s look briefly at what the Bessel function (n = 0,1,2) looks like
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Looking at the Directivity Factor, ( ) ( )12J x
H

x
θ =  (pressure) and  ( ) ( ) 2

2 12J x
H

x
θ

 
=    

 
(intensity) where sinx ka θ=

-0.2

x = kaSinθ
3.83

2J
1(x

)/
x

0.0
0.2
0.4
0.6
0.8
1.0

7.02 10.15

We can see that the size of ka is going to determine the number of peaks x can cycle through for
different values of θ . For ka = 1, no zeros will be reached as we cycle through θ .
At θ = 90°, sin 1ka θ = ,

( ) ( )12 1
90 0.8801

1
o J

H = =  (-1.11 dB)
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0.0 0.5 1.0

ka = 1

For ka = 3.83:
1 3.83

sin 90
3.83

o
zθ −  = = 

 
1

3

1.613741
2sin 49.8

3.83
o
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−

 = = 
 

Why –3 dB?

0.0 0.5 1.0

ka = 3.83

For ka = 6:
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The book has a really nice figure for the beam pattern for ka = 10, ( ) 2
1010log H θ ,

Figure 7.4.5  Beam pattern H(θ)
for a circular plane piston of radius
a radiating sound with ka = 10.

What do you expect to happen to the beam pattern as ka → 0?


