Chapter 8 — Absorption and Attenuation of Sound

(8.1) We derived the wave equation in Chapter 5 assuming no losses of acoustic energy, which as
we know is not aredlistic case. In any rea acoustic wave we will have losses, acoustic energy will
be dissipated and converted into thermal energy.

Attenuation includes;

Absorption —  conversion of acoustical (mech.) energy to heat
Scattering  —  redirection of energy due to inhomogenieties in medium
[used for medical and NDE imaging]

There can also be refraction (redirection) of energy at an interface, which will not be considered
here to be a part of attenuation.

Absorption

(A) Classical — (1) Viscous® frictional losses associated with relative motion (related to
viscosity)
(2) Heat Conduction— heat flow from region of condensation (higher
temp.) to region of rarefaction (lower temp.) (related to thermal
conductivity)

(B) Molecular Exchanges® Relaxational Absorption
(1) Stored potential energy — structural rearrangement
(2) Interral rotational and vibrationa energies (polyatomic molecules)
(3) Energies of association and dissociation of different ionic species

There is atime constant associated with these phenomena.

Scattering

Energy incident on small regions of the material with different properties from the bulk of the
material is scattered in various directions. In some instances, depending upon size versus the
wavelength, the energy may be scattered equally in al directions. In general, however, the scattered
wave may have an amplitude that is dependent upon direction. A clear example of a scattering
medium would be water with small air bubblesin it.

It should be noted that reflection and backscattering (the energy scatter back toward the source)

are used in imaging with ultrasound. Thus scattering is critical to the use of ultrasound for
nondestructive imaging in industry and to medical imaging.

The first two absorption processes (viscosity and thermal conductivity) follow classical absorption
processes, which we will consider in a genera form.
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(8.2-8.5) Classical absor ption
Previously we considered the classical wave equation describing acoustic waves by
. 1 Tp
Np- ——==
p CZ ﬂtz

Relaxation absorption

Therma Relaxation: Trandationa energy going into other internal modes such as rotation or
vibration. Associated with temperature change that affects trandationa energy. Appliesfor
diatomic and polyatomic gases.

Structural Relaxation: Change in state or structure. Associated with a change in volume (density).
Applies to water.

Chemical Relaxation: Change inion or complex chemical equilibria. Applies to sea water where
high attenuation is due almost solely to the salt MgSOs;.

Each of these is characterized by arelaxation time, t. There is a change or relaxation of some
acoustic property with frequency. The relaxation frequency wg = 1/t and fr = 1/(2pt).

Let’s consider the wave equation with a relaxation term:

No classical absorption impliesthat t =0 (in which case we get the classical wave equation back).
t 1) includes the classical absorption mechanism, 2) is a constant, 3) has units of time, 4) goesto

zero for zero absorption.

Let’stry a solution to the wave equation:
p(r,t)=1f()e™

giving
%:-sz(f)e‘“”
N2p=R2f (r)e™

and
ﬂ—ﬂtNZb=jWN2f(r”)ejW‘.

Plugging into the above relaxation wave equation:
~ . 2 ~ . ~ ~ .
R2f (F))a”"‘/+%f(r”))e”(:-t (iwie (7))

Grouping terms gives
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or

If we define
‘ w

- Cq /1+ jwit
a complex wavenumber then we have the good ole Helmholtz equation back
N2f(r)+k?T(r)=0.

For asimple 1-D solution
f(r)=nel™

(3-D would be f~(f’) - Ae jk:.r)
So our genera solution (1-D) is
ﬁ(X,t) = Aej(w'kx) )

Since k iscomplex wecan set k =k_ - ja = which gives

w
cyf1+ jwt
f)(X,t) - Aei(Wt'[K' ja]x)
p(xt) = Agaxgllt-kx)
where the e ** acts as a damping term (just like for the SHO). The expression for the acoustic
pressure in a medium with attenuation is expressed as follows, where a is taken to be the

attenuation coefficient. In cases where there is negligible or no scattering a is used to represent the
absorption coefficient. The intensity (assuming plane wave) is given by

|:M

2r
L 2
| =1,e* 2a becauseit isrelated to p

There are two commonly used expressions for the attenuation coefficient. When the expression for
acoustic pressure showing the exponential decrease in amplitude is used,

p(x) =p(0)e™

then a is expressed in Nepers per meter (Np/m). The Neper is often used in the specification of a

even though the actual units are nT1 in order to distinguish from the expression of a in dB/m. The
two expressions of a are related as follows.
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The decibdl is ten times the logarithm (base 10) of the ratio of intensities.

20
(0)+

épma

()

=20 Iog&
p(O e—ax
=20axlog(e)
=8.686a x
— —
dBm

Herea x is specified in Nepers (no units) where the Neper is the natura logarithm of the ratio of
pressures as follows.

35 (0)

10l og =10l og

1n 2P0 0

=ax nepers (no units)
€005

In summary, the attenuation (or absorption) coefficient may be expressed in either Np/m or dB/m
and they are related as follows.

aE‘E9_8686 N 0
“&m m o

Remember that whenever you want to compute the pressure (or some other first order quantity
associated with the wave), you must use the expression of a in Np/m in the exponential. Also

remember that the actual units for a are m'.

It can be shown (Homework assignment) that the form for the absorption and wavenumber based on

the relaxation are
d/2

1 w S+ (wt )* +14
k=FZ=—8——F5—1
V2cé 1+(wt)’ U
e u

~ /2
24U
Lot ﬂ:,/1+(wt) - 19
V2 cé 1+(wt)® U
e u

Noteast ® 0,2 ® 0 and k = .
C
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We can aso look at the speed, we have a

Complex speed ¢c= %

for plane wave

a
ro, for o <<1, usually true

Let’s examine a couple of cases:

T>>t (wt <<1) When the period of the wave is much greater than the relaxation time, the
pressure variation is dow enough that the material has time to adjust to the pressure change and the
energy in the wave is largely recovered for each cycle.

The trivial approximation for wt << 1 gives

1/2
9‘, 1+
k=—rWe 0 %y k =2
J2cé 1 1+ u C
2 a
e[ ) - u
_ﬂ: L;l ¥Y%® a=0
J2cé d
e
é , 1/2
€ 1+ (wt /
cp:ﬂ:ﬁc‘? ( Z U 3,9%% c,=c
K YL+ (wt )" +18

Actually, an approximation is used where 1% order terms are kept for low frequencieswt << 1.
Using the binomial expansion

1+e) =1+ne if exl
( )
then
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keeping only the first order terms gives
Jlwt
2 c
So, for classical attenuation, it is proportional to the frequency squared at low frequencies.
As a consequence, in experimental measurements of absorption, data are usually plotted as iz
f
against f so that at any departure from a horizontal line signals a deviation from the classical
prediction. Several measured values are shown in the following figure.

Table8.5.1

o .-'_If'-' INp < /m)

ARl Dt for
T = 20°C amd Shoar TV imal
W = 1 atm Vieosily  Conductivity  Classion! Ofsernad
Gasers Multiply ail valizes by 1071
Argon 1.08 0.27 1.85 187
Helium 131 0.22 .35 (.54
Oxwvgen 1.14 .47 1.41 |
Ivilrogen .96 (L3% 1.05 1.61
Adr (dry) (HC 0.38 137 a /f peaks at 40 Hz
Carbon diordgde 109 (.3 1A a/¥ peaks at M kKHz
Liamids Mgy all wikaes by 1075
Glycerin 0000 J000.0 SRXLA
Mercury - a.l 60 2.
Acelone 685 (L5 7O & LY
Water al —_ al 13.0
Scawater B — a1 w/f peaks al 1.2 kHz
amd 156 k=
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Likewise for the phase speed (keeping 2nd order terms only):

1/2 u

: _\/_C‘? +(wt ) 3 _ ch 1+(wt )° 3

1+ (wt 2+1LAJ A i ]

e (wt )" +1g gl+2(wt) +1H

é u1/2

e1 1+(wt)’ G 1, 206 1, U
C :\/ECA :C§+_M g-_M

é Q

The dispersion is of order (vvt )2 soitisonly dight at low frequencies and the phase speed is
virtually identical with c.

T <<t (wt >>1) When the period of the wave is much less than the relaxation time, the pressure
changes too fast for much change of energy or change of state per cycle and the material exhibits a

different value of the property from that above. Note that the loss per cycle is low but that there are
many more cycles.
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The absorption per wavelength is modeled by the following expression:

wit
al —a— 2(al _
=28 e s

From thisrelation it can be seen that al = (al )ma at the relaxation frequency, wg = 1/t, where the
absorption per wavelength is a maximum. Well below (above) wr the absorption per wavelength
increases (decreases) linearly with frequency. What is the frequency behavior of the absorption
coefficient?

kkkkkkkhkkhkkhkkhxhrkhkkhrhrkk Exarnp|e Tl *%kkkkkkhkhhhhhhhhhhhhhhhhkhk

Ultrasound is propagated through soft tissues and through bone in order to image different
structures. If the frequency-dependent attenuation is approximately 5.75x10® Np/cm/Hz for soft
tissue, how much lossin dB occurs for a propagation depth of 1 cm (for 1 MHz, 10 MHz, 100
MH2z).

Typically, the easiest way to calculate the losses in dB is to convert the attenuation into dB scale.
Using
—T- 8.686a 2P0
8 m g
gives
1. 1x10°Hz
MHz

a=8.686" 5.75 10 %dBcm™Hz

a=0.5dBcm*MHz".
So, if we look at the propagation depth for imaging of 1 cm (2 cm for travel distance there and
back) gives

dB,, (IMHz,1cm) = 0.5dBMHz cm™” IMHz" 2cm=1dB
0B, (1OMHz,1cm) = 0.5dBMHz™ cm™ " 10MHz" 2cm=10dB

dB, . (L00MHz,1cm) = 0.5dBMHz 'cm™” 100MHz~ 2cm=100dB
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So we have huge attenuation losses as we increase frequency of imaging in tissues. Typicaly in
ultrasound imaging, the frequencies range from 1 to 12 MHz. Bone typically has a larger
attenuation than soft tissue and the frequency-dependent attenuation is proportional to f 2, so losses
in bone tend to be much larger than soft tissues.

kkhkkkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhhhhhhhkhkhkhkkkkkkkkkk*x%x

The classical absorption coefficient combines thermal and viscous losses......

w? €4 k U
Qgasica ~ 536N T(O-D) =0
2r o€ @3 Cp o]

where k thermal conductivity

C

0 heat capacity at constant pressure

g
h

C,/C,

shear viscosity coefficient

. 2
Note: variesasf

The relaxation times for the viscous and thermal losses are related by

where t  is the viscous relaxation time and t, is the thermal relaxation time.

Scattering

Ex.  water dropletsin air
gas bubblesin liquid
cdl nucle in soft tissue

We can define the scattering in terms of a scattering cross section s (). The scattering cross
section is the fraction of energy that the scatterer extracts from a sound beam of 1 n cross section.
Near resonance for a bubble in water the scattering cross section can be many times the scatterer’s
geometric cross section. The following relations apply.

Ns
-—X
| =1 e™*and P=Pe 2 ,
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where N is the number of scatterers per unit volume, x is the distance traveled into the medium and
lo and P, are the initial values of the intensity and pressure, respectively, at x = 0. Thus, the portion
of the attenuation coefficient due to scattering is

a=—
2

In tissue mimicking acoustic phantoms, small particles (scatterers) are used to adjust the attenuation
of the materials.
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