Chapter 9 — Cavities and Waveguides
(9.2) Rectangular Cavity

Consider arectangular cavity
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This cavity (or room) has perfectly smooth, rigid walls. This box could approximate a living room,
an auditorium or approximate a concert hall.

The acoustic boundary conditions are such that the normal components of the particle velocity = 0,
that is, N>t =0 at all boundaries (rigid wall). From Equation of Force (Eq. 5.4.11)
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or for harmonic waves
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Therefore, because ixi =0, A>XNp = 0. So for the three orthogonal directions, the boundary
conditions are:
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The 3D wave equation, N?p __1‘|11t_p
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with the Cartesian coordinates representation gives

We can use the separation of variables technique to solve the 3D wave equation and obtain the
Helmholtz equation once again. Assume p(x,y,z,t) = X (x)Y(y)Z (z)e™ and substitute into
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If we follow through with the process (see Chapter 5 notes for 3D harmonic plane waves) we get
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Where —: k®=kZ+k2+k? and kZ, k?, and k’ are separation constants.
c?
Thus,
1PX o _ .
X Te +k?=0 whichimplies X (x) = Acos(k,x)+Bsin(k,x)
1Y, ., e _ ,
Y 1Y —+k’=0 which implies Y(y)—Ccos(kyy)+DS|n(kyy)
19°2 ., o _ .
707 +k?=0  whichimplies Z(z)=Ecos(k,z)+Fsin(k,z)
Therefore,

p(x,y,z,t)= X(X)Y(y)z(z)ejwt
:{ACOS(kXX)+BSin(kXX)} {CcoS(kyY)+Dsin(kyy)} {Ecos(kzz)+|:sin(kzz)} it

Applying boundary conditions A>xNp = 0:
1%, ‘x’ Boundary conditions:
a@% _&po
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{ AK(SIn(k x)+Bk cos(k x)} Y(y) Z(Z)ejwt
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From the B.C.sthen

a@j 0 p B=0
gﬂx x=0
adlp ¢ -
— =0 b sgn(kL,)=0
81-[ng:Lx (kx X)
which means
kL =Ip,1=0,1,2,..
(= p -
X LX

so that '
p(x.y.2.t) ={ Acos(k,x)} Y (y) Z(2)e"
What does this look like to you?

2"y Boundary conditions:

@j :@j =0
&4, &4
fie _

Ty ={ Acos(k,x)} { Ckysin(kyy) +DK, cos(kyy)} Z(z)e™

From the B.C.s then

a@j =0 b D=0
S4,,

8@3 -0 b sn(kL)=0
gﬂy.FLy (y y)
<0 that

k,L,=mp,m=0,1,

2, ...
ky :m b kym:E
Ly Ly

and
p(x.y.z.t) ={ Acos(k,x)} {C cos(k,.y)} Z(z)e™

34 ‘7 Boundary conditions:

a@j a@g =0
81TZ.Z:O gﬂz.z:LZ
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Which similarly gives us

k,LL=np,n=0,1,2,..
:E ) km:m

and our total solution is
p(x.y.z.t) ={ Acos(k,x)} {C cos(kymy)} {Ecos(k,z)} e
Pim (X ¥, 2,t) = Ay, cos(k, x) cos(k ) cos(k,z)e™

So, what sort of solution is this? What kind of acoustic disturbance does this describe?
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From Yo = k2= 2+ k2 + K2, W= k2 =k? 4k 2 + K2 = W
C Cc

c?
Therefore, pm (X Y,2,t) = A, cos(ky,x) cos(kymy) cos(k,z) et

These are eigenfunctions (Eg. 9.2.5) with the allowed angular frequencies of vibrations quantized as
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These are eigenfrequencies (Eq. 9.2.7) f,., == \/&l 0 aem aen O
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which suggests that each of the natural frequencies may be considered as a vector in frequency
e mc nc

space with components f, = , fp=0—and f,=—
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How does a room (rectangular cavity) respond to adriving source of frequency f?

* * * *
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How many modes with frequencies f
sec 12.9a& sec 12.9¢)
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exist which are less than some specified frequency f? (see
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Note that thls equation is an elipsoid (if we think of I, m and n as Cartesian coordinates):
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Principal axes of ellipsoid extend to

ofL,
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Ellipsoidal volume (in terms of the number of modes) is g’ plmn. Thetotal number of modesis

estimated by the volume of % =2i of the ellipsoid:
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whereV =L L L, .

x-y-=z*
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The average number of modes per unit frequency rangeis — =~ E »— » ——Vf?

Thereciprocal of % Is the average frequency range per mode, that is, the typical frequency

Df
difference between each mode and its nearest neighbor in frequency: — » ge c O
DN =~ &4pV 4
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Example 9.1

Eigenfrequency Calculations

Consider aroomwith Ly =3 m, Ly =4 m, and Lz=5 m that isfilled with air at 20 °C.
The followi ng are the lowest four Eigenfrequencies.

- =343 0- 915 51a0/ and f,, =~ = 343Hz
2p

Yoo =€ 8 5% €55
.2
—o [ERO _ 5,03 0_ rad Woio —
Woso =Cle% 343 5 269.4 / and fy,, = . 42.9Hz
W,
O =343(0.3202)p = 345010/ and f, = 2°p°1—549Hz
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W,

—0 =57.2Hz
20

343399_3592ray and f, =

€35
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Example 9.2

A room (air at 20°C) hasdimensions L, =5m, L, =8m,and L, =3 m(V =120 rrs). (& What is
the lowest natural mode frequency corresponding to air motion in the y direction? (b) What is the
eigenfrequency for a mode which fits 5 half-wavelengths into the width, 3 into the length, and 6 into
the height of the room? (c) What is the approximate total number of modes below 1 kHz? (d) What
is the approximate mode density near 1 kHz? (e) What is the average frequency for each increment
near 1 kHz?

ANSWERS: (@) o =5~ = == 21.4Hz
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_ 343 g@@z §§9 g@ _
f53g = > J 5@ + 8!3 + 313 = 388.8Hz

4p | ez _ 4p 3 _
¢) N(<1kHz)» —=Vf°=—— (120m)(1kHz)" =12,456modes
© N( )» x° 3(343m/s)3( )( )

@ o DN 4pr2 L3(120m)(1kHz)2:37m0des/Hz
c’ (343m/s)

(e E»aec gf =0.27Hz/mode

DN &4pV g

Note: near 100 Hz, the spacing is about 2.7 Hz/mode.
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(9.5) Waveguide of Constant Cross Section

We want to look at what happens when you have definite walls in three directions but one direction
has dimensions much larger than the dimensions of the other two walls. Enough so that the
dimension in one direction could be considered as near infinite compared to the dimensions in the
other two directions or we could have an acoustic source at one end of z and the other end open.
The figure below illustrates what we are discussing.
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This sort of construction means that we will have standing waves in the transverse directions and a
traveling wave in the other direction. The solution would be of the form

Bm = An COS(k)d X) COS( Kym y) ol Wtk ,2)

with eilgenfunctions

2 2
_kxl_kym

Vauesfor al w (not quantized)
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What happens when kil+k2 >

ym

Y

-

kzimaginary P no propagation, evanescent mode which exhibits rapid attenuation...
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for kzrea P propagation mode

Can determine cutoff frequency for a given mode (value of | and m)
utoff &

T O, = ek, = e, [K2 ok

& freq o oo

phase speed ¢, :kﬂ:

Cg=CCosq

Note: Cp 3 ¢

cg £ cC
For a spectrum of frequencies
e =W o = dw
Pk, ¢ ok,
I
q
| z
Y
/ ' \ \ Figure 9.5.2 Component plane
Ly L y - \ waves for the (0, 1) mode in a
/ R AYATE o\ \ rigid-walled, rectangular cavity.
XN AN KNS ‘ These waves travel with speed ¢ in
\ A AVAYAVAY ~ directions that make angles +q
0 \\ \ A / ~ with the z axis of the waveguide.
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Figure 9.5.3 Group and phase
speeds for the lowest three normal
modes in arigid-walled
waveguide.



