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Chapter 9 – Cavities and Waveguides

(9.2)  Rectangular Cavity

Consider a rectangular cavity
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This cavity (or room) has perfectly smooth, rigid walls.  This box could approximate a living room,
an auditorium or approximate a concert hall.
The acoustic boundary conditions are such that the normal components of the particle velocity = 0,
that is, ˆ 0n u⋅ =

r
 at all boundaries (rigid wall).  From Equation of Force (Eq. 5.4.11)
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or for harmonic waves
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Therefore, because ˆ 0n u⋅ =
r

, ˆ 0n p⋅ ∇ = .  So for the three orthogonal directions, the boundary
conditions are:
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(Eq 9.2.1)
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The 3D wave equation, 
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, with the Cartesian coordinates representation gives
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We can use the separation of variables technique to solve the 3D wave equation and obtain the
Helmholtz equation once again. Assume ( ) ( ) ( ) ( ), , , j tp x y z t X x Y y Z z e ω=  and substitute into
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If we follow through with the process (see Chapter 5 notes for 3D harmonic plane waves) we get
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zk  are separation constants.
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      which implies    ( ) ( ) ( )cos sinx xX x A k x B k x= +
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        which implies    ( ) ( ) ( )cos siny yY y C k y D k y= +
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        which implies    ( ) ( ) ( )cos sinz zZ z E k z F k z= +

Therefore,
  ( ) ( ) ( ) ( ), , , j tp x y z t X x Y y Z z e ω=

           ( ) ( ){ }cos sinx xA k x B k x= +  ( ) ( ){ }cos siny yC k y D k y+  ( ) ( ){ }cos sin j t
z zE k z F k z e ω+

Applying boundary conditions ˆ 0n p⋅ ∇ = :

1st,  ‘x’ Boundary conditions:
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From the B.C.s then
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What does this look like to you?

2nd,  ‘y’ Boundary conditions:
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From the B.C.s then
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3rd,  ‘z’ Boundary conditions:
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Which similarly gives us

z zk L nπ= , n = 0, 1, 2, ...
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and our total solution is
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So, what sort of solution is this? What kind of acoustic disturbance does this describe?

From 
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Therefore, ( ) ( ), , , coslmn lmn xlp x y z t A k x= ( ) ( )cos cos lmnj t
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These are eigenfunctions (Eq. 9.2.5) with the allowed angular frequencies of vibrations quantized as
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These are eigenfrequencies (Eq. 9.2.7) 
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which suggests that each of the natural frequencies may be considered as a vector in frequency

space with components 
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How does a room (rectangular cavity) respond to a driving source of frequency f?

*************************** Example 9.1 ***************************

How many modes with frequencies lmnf  exist which are less than some specified frequency f? (see
sec 12.9a & sec 12.9e)
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Note that this equation is an ellipsoid (if we think of l, m and n as Cartesian coordinates):



Oelze   ECE/TAM 373 Notes  -   Chapter 9               pg 5

22 2 22

x y z

l m n f
L L L c

      + + =             
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Ellipsoidal volume (in terms of the number of modes) is 
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******************************************************************

The average number of modes per unit frequency range is 
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*************************** Example 9.1 ***************************
Eigenfrequency Calculations

Consider a room with Lx = 3 m, Ly = 4 m, and Lz = 5 m that is filled with air at 20 oC.
The following are the lowest four Eigenfrequencies.
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******************************************************************

*************************** Example 9.2 ***************************

A room (air at 20°C) has dimensions Lx  = 5 m, Ly  = 8 m, and Lz  = 3 m (V = 120 m3 ). (a) What is
the lowest natural mode frequency corresponding to air motion in the y direction? (b) What is the
eigenfrequency for a mode which fits 5 half-wavelengths into the width, 3 into the length, and 6 into
the height of the room? (c) What is the approximate total number of modes below 1 kHz? (d) What
is the approximate mode density near 1 kHz? (e) What is the average frequency for each increment
near 1 kHz?
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Note: near 100 Hz, the spacing is about 2.7 Hz/mode.

******************************************************************
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 (9.5)  Waveguide of Constant Cross Section

We want to look at what happens when you have definite walls in three directions but one direction
has dimensions much larger than the dimensions of the other two walls. Enough so that the
dimension in one direction could be considered as near infinite compared to the dimensions in the
other two directions or we could have an acoustic source at one end of z and the other end open.
The figure below illustrates what we are discussing.
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This sort of construction means that we will have standing waves in the transverse directions and a
traveling wave in the other direction. The solution would be of the form
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kz imaginary  ⇒  no propagation, evanescent mode which exhibits rapid attenuation…
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for kz real  ⇒  propagation mode

Can determine cutoff frequency for a given mode (value of l and m)
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where θ is angle that component traveling waves made with the z axis.
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λ
θ

group speed
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For a spectrum of frequencies
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Figure 9.5.2  Component plane
waves for the (0, 1) mode in a
rigid-walled, rectangular cavity.
These waves travel with speed c in
directions that make angles ±θ
with the z axis of the waveguide.
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c Figure 9.5.3  Group and phase

speeds for the lowest three normal
modes in a rigid-walled
waveguide.


