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1.5.5 Lec 35 (II): Scalar Wave Equations (Acoustics)

In this section we discuss the general solution to the wave equation. The wave equation has two

forms: scalar waves (acoustics) and vector waves (electromagnetics). These have an important

mathematical distinction, but have a similar solution space, one scalar and the other vector. To

understand the differences we start with the scalar wave equation.

The scalar wave equation: A good starting point for understanding PDEs is to explore the scalar

wave equation (Eq. 1.27, p. 68). Thus, we shall limit our analysis to acoustics, the classic case of

scalar waves. Acoustic wave propagation was first analyzed mathematically by Isaac Newton (elec-

tricity had yet to be discovered) in his famous book Principia (1687), in which he first calculated

the speed of sound based on the conservation of mass and momentum.

Early history: The study of wave propagation begins at least as early as Huygens (ca. 1678),

followed soon after (ca. 1687) by Sir Isaac Newton’s calculation of the speed of sound (Pierce,

1981, p. 15). To obtain a wave, one must include two basic components: the stiffness of air, and its

mass. These two equations shall be denoted (1) Newton’s 2nd law (F = ma) and (2) Hooke’s law

(F = kx), respectively. In vector form these equations are (1) Euler’s equation (i.e., conservation

of momentum density)

−∇̺(x, t) = ρo
∂

∂t
u(x, t)↔ ρosV(x, s), (1.129)

which assumes the density ρo is independent of time and position x, and (2) the continuity equation

(i.e., conservation of mass density)

−∇·u(x, s) =
1

ηoPo

∂

∂t
̺(x, t)↔ s

ηoPo
P(x, s) (1.130)

(Pierce, 1981; Morse, 1948, p. 295). Here Po = 105 [Pa], is the barometric pressure, ηo = 1.4
and ηoPo is the dynamic (adiabatic) stiffness. Combining Eqs. 1.129 and 1.130 (removing u(x, t))
results in the 3-dimensional (3D) scalar pressure wave equation

∇2̺(x, t) =
1

c2
o

∂2

∂t2
̺(x, t)↔ s2

c2
o

P(x, s) (1.131)

with co =
√
ηoPo/ρo is the sound velocity. Because the merged equations describe the pressure,

which is a scalar field, this is an example of the scalar wave equation

Exercise: Show that Eqs. 1.129 and 1.130 can be reduced to Eq. 1.131. Solution: Taking the

divergence of Eq. 1.129 gives

−∇·∇̺(x, t) = ρo
∂

∂t
∇·u(x, t). (1.132)

Note that ∇ ·∇ = ∇2. Next, substituting Eq. 1.130 into the above relation results in the scalar

wave equation Eq. 1.131, since co =
√
ηoPo/ρo.
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Figure 1.22: Experimental setup showing a large
pipe on the left terminating the wall containing a small
hole with a balloon, shown in green. At time t = 0
the balloon is pricked and a pressure pulse is cre-
ated. The baffle on the left is meant to represent a
semi-∞ long tube having a large radius compared to
the horn input diameter 2a, such that the acoustic ad-
mittance looking to the left (A/ρoco with A → ∞)
is very large compared to the horn’s throat admit-
tance (Eq. 1.149). At time T the outbound pressure
pulse p(r, T ) = δ(t − x/co)/r has reached a ra-
dius x = r − ro = coT where r = x is the loca-
tion of the source at the throat of the horn and r is
measured from the vertex. At the throat of the horn
V+/A+ = V−/A−.

1.5.6 Lec 36a: The Webster horn equation (I)

There is an important generalization of the problem of lossless plane-wave propagation in 1-

dimensional (1D) uniform tubes (e.g., transmission line theory). By allowing the area A(r) of

the horn to vary along the range axis r (the direction of wave propagation), as depicted in Fig. 1.22

for a conical horn (i.e., A(r) = Ao(r/ro)
2), general solutions to the wave equation may be ex-

plored. Classic applications of horns include vocal tract acoustics, loudspeaker design, cochlear

mechanics, the hydrogen atom, and cases having wave propagation in periodic media (Brillouin,

1953).

For the 1D scalar wave equation (guided waves, aka, acoustic horns), the Webster Laplacian is

∇2
r ̺(r, t) =

1

A(r)

∂

∂r
A(r)

∂

∂r
̺(r, t). (1.133)

The Webster Laplacian is based on the quasi-static approximation (P10: p. 129) which requires

that the frequency lies below the critical value fc = co/2d, namely that a half wavelength is greater

than the horn diameter d (i.e., d < λ/2).118 For the case of the adult human ear canal, d = 7.5
[mm] and fc = (343/2 · 7.5)× 10−3 ≈ 22.87 [kHz].

The term on the right of Eq. 1.133, which is identical to Eq. 1.116 (p. 176), is also the Laplacian

for thin tubes (e.g., rectangular, spherical, and cylindrical coordinates). Thus the Webster horn

“wave” equation is

1

A(r)

∂

∂r
A(r)

∂

∂r
̺(r, t) =

1

c2
o

∂2

∂t2
̺(r, t)↔ s2

c2
o

P(r, s) (1.134)

where ̺(r, t)↔ P(r, s) is the average pressure (Hanna and Slepian, 1924; Mawardi, 1949; Morse,

1948), Olson (1947, p. 101), Pierce (1981, p. 360). Extensive experimental analysis for various

types of horns (conical, exponential, parabolic) along with a review of horn theory may be found

in Goldsmith and Minton (1924).

The limits of the Webster horn equation: It is frequently (i.e., always) stated that the Webster

horn equation (WHEN) is fundamentally limited, thus is an approximation that only applies to

118This condition may be written several ways, the most common being ka < 1, where k = 2π/λ and a is the horn

radius. This may be expressed in terms of the diameter as 2π
λ

d
2 < 1, or d < λ/π < λ/2. Thus d < λ/2 may be a more

precise metric by the factor π/2 ≈ 1.6. This is called the half-wavelength assumption a synonym for the quasi-static

approximation.
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frequencies much lower than fc. However in all these discussions it is assumed that the area

functionA(r) is the horn’s cross-sectional area, not the area of the iso-pressure wave-front (Morse,

1948; Shaw, 1970; Pierce, 1981).

In the next section it is shown that this “limitation” may be avoided (subject to the f < fc
quasi-static limit (P10, p. 130)), making the Webster horn theory an “exact” solution for the low-

est order “plane-wave” eigenfunction. The nature of the quasi-static approximation is that it “ig-

nores” higher order evanescent modes, which are naturally small since they are in cutoff (evanes-

cent modes do not propagate) (Hahn, 1941; Karal, 1953). This is the same approximation that is

required to define an impedance, since every eigenmode defines an impedance (Miles, 1944).

To apply this theory, the acoustic variables (eigenfunctions) are redefined for the average pres-

sure and its corresponding volume velocity, each defined on the iso-pressure wave-front boundary

(Webster, 1919; Hanna and Slepian, 1924). The resulting impedance is then the ratio of the average

pressure over the volume velocity. This approximation is valid up to the frequency where the next

mode begins to propagate (f > fc), which may be estimated from the roots of the Bessel eigen-

functions (Morse, 1948). Perhaps it should be noted that these ideas, that come from acoustics,

apply equally well to electromagnetics, or any other wave phenomena described by eigenfunctions.

The best known examples of wave propagation are electrical and acoustic transmission lines.

Such systems are loosely referred to as the telegraph or telephone equations, referring back to

the early days of their discovery (Brillouin, 1953; Heaviside, 1892; Campbell, 1903b; Feynman,

1970a). In acoustics, guided waves are called horns, such as the horn connected to the first phono-

graphs from around the turn of the century (Webster, 1919). Thus the names reflect the historical

development, to a time when the mathematics and the applications were running in close parallel.

1.5.7 Lec 36b: Webster horn equation (II): Derivation

Here we transform the acoustic equations Eq. 1.129 and 1.130 (p. 192) into their equivalent integral

form Eq. 1.134 (p. 193). This derivation is similar (but not identical) to that of Hanna and Slepian

(1924) and Pierce (1981, p. 360).

Conservation of momentum: The first step is an integration of the normal component of Eq. 1.129

(p. 192) over the iso-pressure surface S, defined by∇p = 0

−
∫

S
∇p(x, t) · dA = ρo

∂

∂t

∫

S
u(x, t) · dA.

The average pressure ̺(x, t) is defined by dividing by the total area

̺(x, t) ≡ 1

A(x)

∫

S
p(x, t) n̂ · dA. (1.135)

From the definition of the gradient operator

∇p =
∂p

∂x
n̂, (1.136)

where n̂ is a unit vector perpendicular to the iso-pressure surface S. Thus the left side of Eq. 1.129

reduces to ∂̺(x, t)/∂x.



1.5. STREAM 3B: VECTOR CALCULUS (10 LECTURES) 195

δx

x

A
(x

)

A
(x

+
δx

)

Figure 1.23: Derivation of horn equation using
Gauss’s law: The divergence of the velocity ∇ · u,
within δx, shown as the filled shaded region, is in-
tegrated over the enclosed volume. Next the di-
vergence theorem is applied, transforming the inte-
gral to a surface integral normal to the surface of
propagation. This results in the difference of the
two volume velocities δν = ν(x + δx) − ν(x) =
[u(x+ δx) ·A(x+ δx)−u(x) ·A(x)]. The flow is

always perpendicular to the iso-pressure contours.

The integral on the right side defines the volume velocity

ν(x, t) ≡
∫

S
u(x, t) · dA. (1.137)

Thus the integral form of Eq. 1.129 becomes

− ∂

∂x
̺(x, t) =

ρo
A(x)

∂

∂t
ν(x, t)↔ Z (x, s)V (1.138)

where

Z (s, x) = sρo/A(x) = sM(x) (1.139)

and M(x) = ρo/A(x) [kgm/m5] is the per-unit-length mass density of air.

Conservation of mass: Integrating Eq. 1.130 (p. 192) over the volume V gives

−
∫

V
∇ · u dV =

1

ηoPo

∂

∂t

∫

V
p(x, t)dV.

Volume V is defined by two iso-pressure surfaces between x and x + δx (Fig. 1.23). On the

right-hand side we use our definition for the average pressure (i.e., Eq. 1.135), integrated over the

thickness δx.

Applying Gauss’s law to the left-hand side,119 and using the definition of ̺ (on the right), in

the limit δx→ 0, gives
∂ν

∂x
= −A(x)

ηoPo

∂̺

∂t
↔ −Y (x, s)P (1.140)

where

Y (s, x) = sA(x)/ηoPo = sC(x).

C(x) = A(x)/ηoPo [m4/N] is the per-unit-length compliance of the air. These two equations

Eq. 1.138 and 1.140 accurately characterize the Webster plane-wave mode up to the frequency

where the higher order eigenmodes begin to propagate (i.e, f > fc).

Speed of sound co: In terms of M(x) and C(x), the speed of sound and the acoustic admittance

are

co =

√
stiffness

mass
=

1√
C(x)M(x)

=

√
ηoPo
ρo

(1.141)

119As shown in Fig. 1.23, we convert the divergence into the difference between two volume velocities, namely

ν(x+ δx)− ν(x), and ∂ν/∂x as the limit of this difference over δx, as δx→ 0.
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Characteristic admittance Y(x): Since the horn equation (Eq. 1.134) is 2d order, it has pressure

eigenfunction solutions P+ and P− and their corresponding velocity eigenfunctions V+ and V−,

related through Eq. 1.138, which defines the characteristic admittance Y(x)

Y(x) =
1√

stiffness · mass
. =

√√√√ C(x)

M(x)
=
A(x)

ρoco
=
V+

P+
=
V−

P− (1.142)

(Campbell, 1903a, 1910, 1922). The characteristic impedanceZ(x) = 1/Y(x). Based on physical

requirements that the admittance must be positive, thus only the positive square root is allowed.

Since the horn (Eq. 1.134) is loss less, Y(x) must be real and positive. If losses are introduced,

the propagation function κ(s) (p. 142) and the characteristic impedance Y(x, s) would become

complex analytic functions of the Laplace frequency s (Kirchhoff, 1974; Mason, 1928; Ramo

et al., 1965; Pierce, 1981, p. 532-4).

One must be carefully in the definition the areaA(x): The area is not the cross-sectional area of

the horn, rather it is the wave-front area, as discussed next. SinceA(x) is independent of frequency,

it is independent the wave direction.

1.5.8 Matrix formulation of WHEN (III)

Newton’s conservation of momentum law (Eq. 1.129), along with conservation of mass (Eq. 1.130),

are modern versions of Newton’s starting point for accurately calculating the horn lowest order

plane-wave eigenmode. Following the simplification of averaging the normal component of the

particle velocity over the iso-pressure wave front, Eqs. 1.138, 1.140 may be rewritten as a 2x2

matrix in the acoustic variables, average pressure P(r, ω) and volume velocity V(r, ω) (here we

replace the range-variable x by r)

− d

dr

[
P(r, ω)
V(r, ω)

]
=

[
0 sM(r)

sC(r) 0

] [
P(r, ω)
V(r, ω)

]
, (1.143)

where M(r) = ρo/A(r) and C(r) = A(r)/ηoPo are the unit-length mass and compliance of

the horn (Ramo et al., 1965, p. ???). The acoustic variables Pc(r, ω) and V(r, ω) are sometimes

referred to as conjugate variables.120

To obtain the Webster horn pressure equation Eq. 1.134 (p. 193) from Eq. 1.143 take the partial

derivative of the top equation

−∂
2P
∂r2

= s
∂M(r)

∂r
V + sM(r)

∂V
∂r
.

Use the lower equation to remove ∂V/∂r

∂2P
∂r2

+ s
∂M(r)

∂r
V = s2M(r)C(r)P =

s2

c2
o

P ,

and the upper equation a second time to remove V . Thus Eq. 1.143 reduces to

∂2

∂r2
P(r, s) +

1

A(r)

∂A(r)

∂r
Pr =

s2

c2
o

P(r, s). (1.144)

120https://en.wikipedia.org/wiki/Conjugate_variables_(thermodynamics) The product

of conjugate variables defines an intensity while their ratio defines an impedance (Pierce, 1981, p. 37-41).
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Equations of this form may be directly integrated by parts by use of the chain rule

1

A(r)

∂

∂r
A(r)

∂

∂r
P(r, s) =

∂2

∂r2
P(r, s) +

1

A(r)

∂A(r)

∂r
Pr(r, s), (1.145)

where the integration factor is the horn area function A(r).
Merging Eqs. 1.144 and 1.145 results in the Webster horn equation (Eq. 1.134, p. 193):

1

A(r)

∂

∂r
A(r)

∂

∂r
P(r, s) =

s2

c2
o

P(r, s).

Equations having this integrated form are known as Sturm-Liouville equations. This important

class of differential equations follow from the use of separation of variables on the Laplacian, in

any (i.e., every) separable coordinate system (Morse and Feshbach, 1953, Ch. 5.1, p. 494-523).

Summary: Applying Gauss’s law to the 3D wave equation (Eq. 1.131, p. 192) results in a 1D

Webster horn equation (WHEN, Eq. 1.134, p. 193), which is a non-singular Sturm-Liouville equa-

tion, where the area function is the integration factor A(r).121

Thus Eqs. 1.131 and 1.143 are equivalent to the WHEN (Eq. 1.134).

1.5.9 Lec 37a: d’Alembert’s eigenvector superposition principle

Since the Webster horn equation (Eq. 1.134) is second order in time, it has two unique pressure

eigenfunctions P+(r, s) and P−(r, s). The general solution may always be written as the superpo-

sition of pressure eigenfunctions, with amplitudes determined by the boundary conditions.

Based on d’Alembert’s superposition principle, the pressure P and velocity V may be decom-

posed in terms of the pressure eigenfunctions P+ and P−

[
P(r, ω)
V(r, ω)

]
=

[
1 1
Y(r) −Y(r)

] [
P+(r, ω)
P−(r, ω)

]
. (1.146)

This equation has several applications.

Generalized admittance/impedance: The generalize admittance122 Yin(r, s) looking into the

horn is

Yin(r, s) ≡ V(r, ω)

P(r, ω)
=
V+ − V−

P+ + P− =
V+

P+

(
1− V−/V+

1 + P−/P+

)
= Y(r)

1− Γ(r, s)

1 + Γ(r, s)
. (1.147)

Here we have factored out the forward traveling eigenfunction V+ and P+, and re-expressed Yin
in terms of two ratios, the characteristic admittance Y(r) (Eq. 1.142) and the reflectance Γ(r, s).
Yin(s) depends on the entire horn. In the case of a finite length horn, it depends on the terminating

admittance. When the horn is terminated, reflections occur, resulting in the horn having poles and

zeros at frequencies sk ∈ C, where Γ(r, sk) = ±1.

121The Webster Horn equation is also related to Schrödenger’s Eq., the corner stone of quantum mechanics 1.5.6,

p. 331.
122It is “generalized” in the sense that it is not a Brune, rational function, impedance.
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Table 1.5: Table of horns and their properties for N = 1, 2 or 3 dimensions, along with the exponential
horn (EXP). In this table the horn’s range variable is x, having area A(x), diameter ro(x) =

√
A(x)/4π.

F (x) is the coefficient on Px, κ(s) ≡ s/co, where co is the speed of sound and s = σ + ω is the Laplace
frequency. The range variable x may be rendered dimensionless (see Fig. 1.24) by normalizing it as x ≡
(ξ − ξo)/(L− ξo), with ξ the linear distance along the horn axis, from x = ξo to L corresponding to x = 0
to 1. The horn’s eigenfunctions are P±(x, ω) ↔ ̺±(x, t). When ± is indicated, the outbound solution
corresponds to the negative sign. EigenfunctionsH±

o (x, s) are outbound and inbound Hankel functions. The
last column is the radiation admittance normalized by the characteristic admittance Y(x) = A(x)/ρoco.

N Name radius Area/Ao F (x) P±(x, s) ̺±(x, t) Y ±
rad/Y

1D uniform 1 1 0 e±κ(s)x δ(t∓ x/co) 1

2D parabolic
√
x/xo x/xo 1/x H±

o (−jκ(s)x) —
−xH±

1

H±
o

3D conical x x2 2/x e±κ(s)x/x δ(t∓ x/co)/x 1± co/sx
EXP exponential emx e2mx 2m e−(m±

√
m2+κ2)x e−mxE(t) Eq. 1.150

The reflectance is defined as

Γ(r, s) ≡ V
−(r, ω)

V+(r, ω)
=
P−(r, ω)

P+(r, ω)
, (1.148)

which follows by a rearrangement of terms in Eq. 1.142. The magnitude of the reflections depends

|Γ|, which must be between 0 and 1. Alternatively this equation may be obtained by solving

Eq. 1.147 for Γ(r, s).

Horn radiation admittance: A horn’s acoustic radiation admittance Y ±
rad(r, s) is the input ad-

mittance (Eq. 1.147) when there is no terminating load123

Y ±
rad(r, s) = lim

r→∞
Y ±
in (r, s) = − lim

r=→∞
A(r)

sρo

d

dr
lnP±(r, s). (1.149)

The input admittance becomes the radiation admittance when the horn is infinite in length, namely

it is the input admittance for an eigenfunction. A table of properties is given in Table 1.5 for four

different simple horns.

Expressions for Yrad(x, s) are given in the last column of Table 1.5. For the case of the expo-

nential horn with κ = s/core-derivere-derive

Y ±
rad(x, s) = −A(x)

sρo

(
m±

√
m2 + κ2

)
x. (1.150)

Kleiner (2013) gives the expression for Yrad(x, ω) for the exponential horn as

Yrad(x, ω) =
S(x)

ωρ


m

2
+ 

√
4ω2 − (mc)2

2c




and impedance

Zin(r, s) =
ρc

ST



ωc
ω

+

√

1−
(
ωc
ω

)2

 ,

where ωc(r) is the cutoff frequency.

123To compute the radiation impedance Y ±

rad one must know the eigenfunctions P±(r, s).
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Figure 1.24: Throat acoustical resistance r
A

and acoustical reactance x
A

, frequency character-
istics of infinite eigenfunctions of the parabolic,
conical, exponential, hyperbolic and cylindrical
horns,having a throat area of 1 square centimeter.
Note how the “critical” frequency (defined here as
the frequency where the reactive and real parts of
the radiation impedance are equal) of the horn re-
duces dramatically with the type of horn. For the
uniform horn, the reactive component is zero, so
there is no cutoff frequency. For the parabolic horn
(1) the cutoff is around 3 kHz. For the conical horn
(2) the cutoff is at 0.6 [kHz]. For the exponen-
tial horn (3) the critical frequency is around 0.18
[kHz], which is one 16th that of the parabolic horn.
For each horn the cross-sectional area is defined as
100 [cm2] at a distance of 1 [m] from the throat
(Olson, 1947, p. 101), (Morse, 1948, p. 283).

1.5.10 Lec37b: Complex-analytic Γ(s) and Yin(s)

When defining the complex reflectance Γ(s) as a function of the complex frequency s = σ+ jω, a

very important assumption has been made: even though Γ(s) is defined by the ratio of two functions

of real (radian) frequency ω, like the impedance, the reflectance must be causal (postulate P1,

p. 128). Namely Γ(s) ↔ γ(t) is zero for t < 0. The same holds for the time-domain admittance

and impedance ζ(t) ↔ Zin(s) = 1/Yin(s). That γ(t) and ζ(t) are causal is required by the

physics.

The forward and retrograde waves are functions of frequency ω, as they depend on the source

pressure (or velocity) and the point of horn excitation. The reflectance is a transfer function (thus

the source term cancels) that depends only on the Thévenin impedance (or reflectance) looking

into the system (at any position r).
To calculate Γ(r, s) we invert d’Alembert’s superposition equation (Eq. 1.146)

[
P+(r, s)
P−(r, s)

]
=

1

2Y(r)

[
Y(r) 1
Y(r) −1

] [
P
V

]
=

1

2

[
1 Z(r)
1 −Z(r)

] [
P
V

]
. (1.151)

The reflectance is defined as the ratio of the two pressure eigenfunctions

Γ(r, s) ≡ P
−

P+
=
P − ZV
P + ZV =

Zin −Z
Zin + Z = −Yin − Y

Yin + Y , (1.152)

which is related to Eq. 1.147.

Given some experience with Yin(r, s) and Γ(r, s), one soon appreciates the advantage of work-

ing with the reflectance over the radiation impedance/admittance Zrad(s) (aka immittance). The

impedance has complicated properties, all of which are difficult to verify, whereas the reflectance

is easily understood (it is closer to the physics). For example, we know that for a physical passive

impedance ℜZ ≥ 0. The corresponding property for the reflectance is |Γ(ω)| ≤ 1, with equality

when the input resistance is zero.

It is important to note that because the area A(x) is varying along the direction of propaga-

tion, energy is continuously being scattered back to the input, as captured by the area-dependent

eigenfunctions. It is because of this scattering that the input admittance Yin(s) (Eq. 1.147) and

the reflectance Γ(r, s) (Eq. 1.152) depends on frequency, as explicitly shown in Fig. 1.24 (Morse,

1948, p. 283).
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Exercise:

1. Show that ℜYin(s) ≥ 0 if and only if |Γ ≤ 1|. Hint: Use Eq 1.152 (or 1.147).

2. Showing that the unit circle in the Γ(s) plane maps onto the ω axis in the impedance plane.

Solution: To prove this take the real part of Yin(s) (Eq. 1.147) and show that it is greater than zero

if |Γ(s)| ≤ 1

2

Y(r)
ℜYin(s) =

1− Γ

1 + Γ
+

1− Γ∗

1 + Γ∗

=
(1− Γ)(1 + Γ∗) + (1 + Γ)(1− Γ∗)

|1 + Γ|2

=
2(1− |Γ|2)
|1 + Γ|2 ≥ 0.

In conclusion:

1. if |Γ| < 1, then ℜZin > 0.

2. if |Γ| = 1, then ℜZin = 0.

1.5.11 Lec 37c Finite length horns

For a horn of finite length L the acoustic variables P(x, s),V(x, s) may be expressed in terms of

pressure eigenfunctions. If we define the forward wave P+(x, ω) as launched from x = 0 and the

retrograde wave P−(x, ω) as launched from x = L, we may write the pressure and velocity as

[
P(x)
V(x)

]
=

[
P+(x) P−(x− L)

Y(x)P+(x) −Y(x)P−(x− L)

] [
α
β

]
. (1.153)

Here α(x, ω) scales the forward wave and β(x, ω) scales the retrograde wave. Thus the reflectance

Γ(L, ω) = β/α is defined at the site of reflection (x = L). Typically the characteristic admittance

Y(x) = A(x)/ρoco only depends on the location x but not on the Laplace frequency s. This

formula may not be correct if the horn has losses (Y ∈ C), as discussed in Kirchhoff (1868);

Mason (1927, 1928); Robinson (2017).

To evaluate the coefficients α(ω) and β(ω) we must invert Eq. 1.153. The eigenfunction scale

factors α, β are determined by the load admittance Yload at the cite of reflection x = L.

Notation: Adopting subscript notation: P±
x ≡ P±(x), P+

0 ≡ P+(0) = 1, P−(L) ≡ P−
L = 1,

V±
x ≡ V±(x). Yx = Y(x), and inverting Eq. 1.153 at x = L gives

[
α
β

]

L

=
−1

∆L


−YL✘✘✘✘✘✘✘✿ 1

P−(L− L) −✘✘✘✘✘✘✘✿ 1

P−(L− L)
−YLP+

L P+
L



L

[
P
V

]

L

(1.154)

where the determinant is

∆L = −2YLP+
L✘✘✘✘✘✘✘✿1
P−(L− L).
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Since ZL = 1/YL. [
α
β

]

L

=
1

2P+
L

[
1 ZL
P+
L −ZLP+

L

] [
P
−V

]

L

. (1.155)

This quantifies the general expression for the eigenfunction amplitudes α, β at the reflection site

x = L, where the two mix for the first time. Note that the sign of VL must be negative to satisfy

the definition of every ABCD matrix (i.e., the output velocity must equal the input velocity of the

next cell). The reflection coefficient is given by the ratio of β/α at x = L, which depends on the

load impedance

Zload(x = L, s) = −PL/VL.
When the load impedance equals the local characteristic impedance ZL, β = 0.

Substituting Eq. 1.155 into Eq. 1.153 results in an expression for the input acoustic variables

at x = 0 in terms of those at x = L, with P+
L = 1 and P−

L = 1:

[
P
V

]

0

=
1

2P+
L

[
1 P−

0

Y0 −Y0P−
0

] [
1 −ZL
P+
L ZLP+

L

]

L

[
P
−V

]

L

. (1.156)

Thus [
P
V

]

0

=
1

2P+
L

[
1 + P+

LP−
0 −ZL(1 + P+

LP−
0 )

Y+
0 (P+

0 − P+
LP−

0 ) −Y0ZL(P+
0 − P+

LP−
0 )

] [
P
−V

]

L

. (1.157)

It may be more useful to leave this expression in terms of ΓL(s) than to substitute Eq. 1.154 into

Eq. 1.153. These expressions will be verified by comparing the special cases with this general Consider changing the sign of
−V , for simplicity.
Consider changing the sign of
−V , for simplicity.

case.

Three examples of horns

Summary of four classic horns: Figure 1.24 is taken from the classic book of Olson (1947,

p. 101), showing the radiation impedance Zrad(r, ω) for five horns: 1-parabolic, 2-conical, 3-

exponential, 4-hyperbolic, and 5-cylindrical. A summary of the properties of four of these horns: 1)

the uniform (cylindrical) (A(x) = Ao), 2) parabolic (A(r) = Aor), 3) conical (spherical) (A(r) =
Aor

2) and 4) exponential (A(r) = Aoe
2mr), as summarized in Table 1.5 (p. 198).

1) The uniform horn

The 1D wave equation [A(r) = Ao]
d2

dr2
P =

s2

c2
o

P .

Solution: The two eigenfunctions of this equation are the two d’Alembert waves (Eq. 1.85,

p. 141)

̺(x, t) = α(ω)̺+(t− x/c) + β(ω)̺−(t+ x/c) ↔ α(ω)e−κ(s)x + β(ω)eκ(s)(x−L),

where κ(s) = s/co = ω/c is denoted the wave-evolution function, propagation constant, or wave

number and α, β are defined in Eq. 1.153.

Note that for the uniform horn ω/co = 2π/λ. It is convenient to normalize P+
0 = 1 and P−

L =
1, as was done for the general case, above. When the area is not constant, λ is a complex function
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of frequency, resulting in a complex input impedance (admittance), internal standing waves and

wave propagation loss.

The characteristic admittance (Eq. 1.142) is independent of direction. The signs must be “phys-

ically chosen,” with the velocity V± into the port, to assure that Y > 0, for both waves, where Y is

independent of direction and x.

Applying the boundary conditions: The general solution in terms of the eigen vector matrix

(Eq. 1.153), evaluated at x = L, is
[
P(x)
V(x)

]

L

=

[
e−κx eκ(x−L)

Ye−κx −Yeκ(x−L)

]

L

[
α
β

]

x

=

[
e−κL 1
Ye−κL −Y

] [
α
β

]

L

, (1.158)

where α, β are the relative weights on the two unknown eigenfunctions, to be determined by the

boundary conditions at x = 0, L, κ = s/c and Y = 1/Z = Ao/ρoc.
Solving Eq. 1.158 for α and β with determinant ∆ = −2Ye−κL,

[
α
β

]

L

=
−1

2Ye−κL

[
−Y −1
−Ye−κL e−κL

] [
P
V

]

L

=
1

2

[
eκL −ZeκL
1 Z

] [
P
−V

]

L

. (1.159)

In the final step we swapped all the signs, including on V , and moved Z = 1/Y inside the matrix.

We may uniquely determine these two weights given the pressure and velocity at the boundary

x = L, which is typically determined by the load impedance (PL/VL).

The weights may now be substituted back into Eq. 1.158, to determine the pressure and velocity

amplitudes at any point 0 ≤ x ≤ L.
[
P
V

]

x

=
1

2

[
e−κx eκ(x−L)

Ye−κx −Yeκ(x−L)

]

x

[
eκL −ZeκL
1 Z

] [
P
−V

]

L

. (1.160)

Setting x = 0 and multiplying these out gives the final transmission matrix
[
P
V

]

0

=
1

2

[
eκL + e−κL Z(eκL − e−κL)
Y(eκL − e−κL) eκL + e−κL

]

x

[
P
−V

]

L

. (1.161)

Note the diagonal terms are cosh κL and off-diagonal terms are sinh κL.

Applying the last boundary condition, we evaluate Eq. 1.159 to obtain the ABCD matrix at the

input (x = 0) (Pipes, 1958)
[
P
V

]

0

=

[
cosh κL Z sinh κL
Y sinh κL cosh κL

] [
P
−V

]

L

. (1.162)

Exercise: Evaluate this expression in terms of the load impedance. Solution: Since Zload =
PL/VL, [

P
V

]

0

=

[
Zload cosh κL−Z sinh κL
ZloadY sinh κL− cosh κL

]
. (1.163)

Impedance matrix: Expressing Eq. 1.163 as an impedance matrix gives (algebra required)
[
Po
PL

]
=

Z
sinh(κL)

[
cosh(κL) 1

1 cosh(κL)

] [
Vo
VL

]
.
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Input admittance Yin: Given the input admittance of the horn, it is possible to determine if it is

uniform, without further analysis. Namely, if the horn is uniform and infinite in length, the input

impedance at x = 0 is

Yin(0, s) ≡ V(0, ω)

P(0, ω)
= Y ,

since α = 1 and β = 0. That is, for an infinite uniform horn, there are no reflections.

When the horn is terminated with a fixed impedance ZL at x = L, one may substitute pressure

and velocity measurements into Eq. 1.159 to find α and β, and given these, one may calculate the

reflectance at x = L (Eq. 1.148, p. 198)

ΓL(s) ≡ P
−

P+

∣∣∣∣∣
x=L

=
β

α
=
P(L, ω)−ZV(L, ω)

P(L, ω) + ZV(L, ω)
=
ZL −Z
ZL + Z

given sufficiently accurate measurements of the throat pressure P(0, ω), velocity V(0, ω), and the

characteristic impedance of the input Z = ρoc/A(0).

2) Conical horn

For each horn we must find the natural normalization from the range variable to the normalized

range variable x. For the conical horn the radius is proportional to the range variable r, thus

A(r) = 4π sin2 (Θ/2) r2. [m2]

The angle Θ is a measure of the solid (cone) angle. When Θ = π we have the case of the entire

sphere, so the solid angle is 4π [steradian] and the area is 4πr2. The formula for the area may be

simplified by defining Aθ ≡ 4π sin2(Θ/2) r2
o [m2], resulting in the more convenient relation

A(r) = Aθ (r/ro)
2. [m2].

This is a bit tricky because Aθ is not a constant since it depends on the place where the area was

normalized, in this case ro.
Using the conical horn area A(r) ∝ r2 in Eq. 1.134, p. 193 [or Eq. 1.143 (p. 196)] results in

the spherical wave equation (Section 1.5.2, p. 176)

Prr(r, ω) +
2

r
Pr(r, ω) = κ2P(r, ω). (1.164)

Here F (r) = ∂r lnA(r) = 2/r, the eigenfunctions are δ(t ∓ r/co) ↔ e∓κr/r, and the input

admittance is Y ±
in = Y (1± co/sr) (Table 1.5, p. 198).

3) Exponential horn: The case of the exponential horn

P±(r, ω) = e−mre∓j
√
ω2−ω2

c r/c (1.165)

is of special interest because the radiation impedance is purely reactive below the horn’s cutoff

frequency (ω < ωc = mco), as may be seen from curves 3 and 4 of Fig. 1.24, since no energy can

radiate from an open horn below ωc, because

κ(s) = −m± 

co

√
ω2 − ω2

c

becomes purely real for ω < ωc (non-propagating evanescent waves).


