INTRODUCTION

Acoustic Frequency Spectrum

Infrasonic	Audible	Ultrasonic
20-	50 Hz	15-20 kHz

Infrasonic: Seismic waves

Atmospheric disturbances

Military communications – low frequency for deep propagation

Audible: Speech and hearing

Psychoacoustics, noise, etc.

Physiological and psychological effects

Entertainment – recording, production, and instruments

Ultrasonic: Sonar – submarine detection and communications

Cavitation – cleaners and cell disruptors

NDE and medical imaging – detect flaws, disease, & blood flow; microscopy Medical Imaging and Therapy – Disease diagnosis, blood flow, HIFU ablation,

sonoporation

SAW – communications, delay lines, filters, and correlators

In order to lay the framework for acoustics, let's first have a refresher course (or possibly completely new course) on complex arithmetic:

Definition: The imaginary unit j is defined by the relation $j^2 = -1$ (for engineers, physicist use i).

A complex number can be represented in <u>rectangular form</u> by $\tilde{x} = x_r + jx_i$ where x_r and x_i are real numbers.

The magnitude of a complex number \tilde{x} :

$$\left| \tilde{x} \right| = \sqrt{x_r^2 + x_i^2} = \sqrt{\tilde{x}\tilde{x}^*}$$

where the complex conjugate of \tilde{x} is:

$$\tilde{x}^* = x_{\cdot \cdot} - jx_{\cdot}$$

We can represent complex numbers in a geometric (graphical) form:

Rectangular form: x_r , x_i

Polar Form: $|\hat{x}|, \theta$

Relations: $x_r = |\tilde{x}|\cos\theta$, $x_i = |\tilde{x}|\sin\theta$

$$\left| \hat{x} \right| = \sqrt{x_r^2 + x_i^2}$$
, $\theta = \tan^{-1} \left(\frac{x_i}{x_r} \right)$

Writing \tilde{x} in polar form gives:

$$\tilde{x} = x_r + jx_i = |\tilde{x}|\cos\theta + j|\tilde{x}|\sin\theta$$

$$\tilde{x} = |\tilde{x}|(\cos\theta + j\sin\theta)$$

$$\tilde{x} = |\tilde{x}|e^{j\theta}$$
 from Euler's identity (**memorize**): $e^{j\theta} = \cos\theta + j\sin\theta$

Mathematical operations:

Addition:

If
$$\tilde{x} = x_r + jx_i$$
 and $\tilde{y} = y_r + jy_i$ then $\tilde{x} + \tilde{y} = (x_r + y_r) + j(x_i + y_i)$

(This is much easier than using polar representation: $\tilde{x} + \tilde{y} = |\tilde{x}|e^{j\theta_x} + |\tilde{y}|e^{j\theta_y}$)

Multiplication: (much easier with polar form)

$$\tilde{x} \times \tilde{y} = x_r y_r + j x_i y_r + j x_r y_i - x_i y_i$$

$$\tilde{x} \times \tilde{y} = x_r y_r - x_i y_i + j(x_i y_r + x_r y_i)$$
 (Rectangular form)

$$\tilde{x} \times \tilde{y} = |\tilde{x}| e^{j\theta_x} \times |\tilde{y}| e^{j\theta_y}$$

$$\tilde{x} \times \tilde{y} = |\tilde{x}| |\tilde{y}| e^{i(\theta_x + \theta_y)}$$
 (Polar form)

Division: (much easier with polar form)

$$\frac{\tilde{x}}{\tilde{y}} = \frac{x_r + jx_i}{y_r + jy_i} \times \frac{y_r - jy_i}{y_r - jy_i}$$

$$\frac{\tilde{x}}{\tilde{y}} = \frac{x_r y_r + x_i y_i + j \left(x_i y_r - x_r y_i\right)}{y_r^2 + y_i^2}$$

(Rectangular form)

$$\frac{\tilde{x}}{\tilde{y}} = \frac{\left|\tilde{x}\right| e^{j\theta_x}}{\left|\tilde{y}\right| e^{j\theta_y}}$$

$$\frac{\tilde{x}}{\tilde{y}} = \frac{\left|\tilde{x}\right|}{\left|\tilde{y}\right|} e^{j(\theta_x - \theta_y)}$$
 (Polar form)

Powers:

$$\tilde{x}^{\gamma} = (x_r + jx_i)^{\gamma}$$
$$\tilde{x}^{\gamma} = \left[|\tilde{x}| e^{j\theta_x} \right]^{\gamma}$$

$$\tilde{x}^{\gamma} = \left| \tilde{x} \right|^{\gamma} e^{j\gamma\theta_x} = \left| \tilde{x} \right|^{\gamma} \left[\cos \gamma\theta + j \sin \gamma\theta \right]$$
 (Much more revealing with polar form)

Example 1:

Let
$$\tilde{x} = 1 + i$$
, find $\tilde{x}^8 = (1 + i)^8$

Sol:

Roots: Need to be especially careful with roots...

Example: Find $\sqrt[3]{8}$?

Sol: