Topic of this homework: Partial differential equations: Wave, diffusion, Poisson; Solution methods: separation of variables, Sturm-Liouville BV Theory Transmission lines. Special functions.

Deliverables: Show your work.
Assuming there is no angular dependence only axial variation, the formula for the Laplacian in N dimensions is

$$
\begin{equation*}
\nabla_{r}^{2} T(\mathbf{x}) \equiv \frac{1}{r^{N-1}} \frac{\partial}{\partial r}\left(r^{N-1} \frac{\partial T(\mathbf{x})}{\partial r}\right) \tag{1}
\end{equation*}
$$

For example, in $N=1$ dimension, $\nabla_{x}^{2} T=\partial^{2} T(x) / \partial x^{2}$, whereas in spherical coordinates $(N=3)$

$$
\begin{equation*}
\nabla_{r}^{2} T(\mathbf{x}) \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T(\mathbf{x})}{\partial r}\right) \tag{2}
\end{equation*}
$$

1 Laplace' equation

Rectangular coordinate: The Laplacian is the sum of two $N=1$ independent terms

$$
\begin{equation*}
\nabla_{x y} T(\mathbf{x})=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) T(x, y)=0 \tag{3}
\end{equation*}
$$

The RHS is zero because the only sources of heat are at the walls.

1. Assuming separation of variables $T(x, y)=X(x) Y(y)$, we rewrite the equation as

$$
\nabla_{x y} T(\mathbf{x})=Y(y) \frac{\partial^{2}}{\partial x^{2}} X(x)+X(x) \frac{\partial^{2}}{\partial y^{2}} Y(y)=0
$$

Dividing by $X Y$

$$
\frac{1}{X} \frac{\partial^{2}}{\partial x^{2}} X(x)=k^{2}=-\frac{1}{Y} \frac{\partial^{2}}{\partial y^{2}} Y(y)
$$

factors the equation into the two terms,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} X(x)=k^{2} X(x) \quad \text { and } \quad \frac{\partial^{2}}{\partial y^{2}} Y(y)=-k^{2} Y(y) \tag{4}
\end{equation*}
$$

each of which are equal to the separation constant: k^{2}. Once we find $X, Y, T(x, y)=X(x) Y(y)$.

$$
y=\begin{aligned}
& y \\
& \begin{array}{r}
y \\
T(0, y)=\sin (y) \\
\\
(0,0) \quad T(x, 0)=0
\end{array} \\
& \vec{x}
\end{aligned}
$$

Figure 1: Two grounded parallel conductors at $y=0$ and $y=\pi$. At $x=0$ the temperature is $T(0, y)=\sin (y)$. The problem is to find $T(x, y)$ between the conductors.

To Do: A 2 dimensional box (see Fig. 1) having coordinates (x, y) and ∞ long in z direction, is grounded along the $x=0$ and $x=\pi$ surfaces. Two grounded parallel conductors at $y=0$ and $y=\pi$. At $x=0$ the temperature is $T(0, y)=\sin (y)$. The problem is to use Eq. 3 to find $T(x, y)$.
(a) What are X, Y when $k=0$?
(b) What is the separation constant for the case of Fig. 1?
(c) Given k, what are $X(x)$ and $Y(y)$ as defined by Eqs. 4?
(d) What is the temperature as $x \rightarrow \infty$?
(e) Summarize the four boundary conditions (BC).
(f) Write out the final solution for $T(x, y)$, that agrees with the BCs.
(g) Verify the solution satisfies Laplace's equation and the BCs.
(h) Sketch the solution.
2. Discuss qualitatively what would happen to $T(x, y)$ if the $x=0 \mathrm{BC}$ where changed to $T(0, y)=$ $\sin 10 \pi y ?$

Cylindrical coordinates: ($N=2$). For detailed examples on separation of variables in cylindrical coordinates, see Greenberg (1988, p. 1077).
3. We are seeking the temperature $T(r, z)$ for a cylinder of radius $d=1$ meter and infinitely long, having temperature $T(r=1, z)=0$ on the boundary?
(a) As before, assume separation of variables $T(r, z)=R(r) Z(z)$, and find the separation constant for Laplace's equation
(b) Note the choice of signs is critically important. Why is the signs of k^{2} important?
(a) Find $Z(z)$ and $R(r)$ for cylindrical coordinates $(N=2)$.
(b) Show that the equation and its solution are

$$
\begin{equation*}
\nabla_{r}^{2} R(r)=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right)+k^{2} R(r)=0 \quad \text { thus } \quad R(r)=C J_{0}(k r) \tag{5}
\end{equation*}
$$

(c) Find the first root of $J_{0}\left(r_{0}\right)=0$. Hint: Using either Matlab, Octave or Python, ${ }^{1}$ plot $J_{0}(r)$ to locate the first zero crossing.
(d) Why do we need to know the zero of $J_{0}(r)$?
(e) Write out the solution for $T(r, z)$.

2 Poisson equation.

One of Maxwell's equation is $\nabla \cdot \vec{D}=q(x, y, z)$ where q is the charge distribution. A second relation is $\vec{D}=\epsilon \vec{E}$.

[^0]

Figure 2: Capacitor made from two conduction plates having areas A, separated by a distance d.

To do:

1. Find $\vec{D}(x, y, z)$ if the charge consists of two sheets of two sheets having area $1\left[\mathrm{~cm}^{2}\right]=10^{-4}$ $\left[\mathrm{m}^{2}\right], d=\mu$-meter $\left(10^{-6}[\mathrm{~m}]\right)$ apart, with a voltage of 1 volt between the two plates. Find the capacitance [Fd].
2. What is ϵ ? Give its value along with SI units.
3. Compute C_{o}
4. Find $\nabla \cdot \boldsymbol{D}$.
5. Assuming that $\nabla \times \vec{E}=0$, rewrite these relations to derive the Poisson Equation

$$
\nabla^{2} \Phi(x, y, z)=-q(x, y, z) / \epsilon_{o}
$$

3 Wave equation

For detailed examples on separation of variables of the wave equation, see (Greenberg, 1988, p. 1077).

1. Show that d'Alembert's solution, is in fact a solution to the wave equation:

$$
\frac{\partial^{2} p(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} p(x, t)}{\partial t^{2}}
$$

where $p(x, t)=f(t-x / c)+g(t+x / c)$ and $f(\xi)$ and $f(\xi)$ are any functions, where $f^{\prime}(\xi) \equiv \partial f(\xi) / \partial \xi$.
2. Solution to the wave equation in spherical coordinates:
(a) Write down the wave equation in spherical coordinates.
(b) Show that the following is true (Hint, expand both sides):

$$
\begin{equation*}
\nabla_{\rho}^{2} R(\rho) \equiv \frac{1}{\rho^{2}} \frac{\partial}{\partial \rho} \rho^{2} \frac{\partial}{\partial \rho} R(\rho)=\frac{1}{\rho} \frac{\partial^{2}}{\partial \rho^{2}} \rho R(\rho) \tag{6}
\end{equation*}
$$

(c) Using the results of Eq. 6, show that the solution to the spherical wave equation is

$$
\begin{equation*}
\nabla_{\rho}^{2} p(\rho, t)=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} p(\rho, t) \quad \text { thus: } \quad R(\rho, t)=\frac{f(t-\rho / c)}{\rho}+\frac{g(t+\rho / c)}{\rho} \tag{7}
\end{equation*}
$$

(d) With $f(\xi)=\sin (\xi) U(\xi)$ and $g(\xi)=e^{\xi} U(\xi)$, where $U(\cdot)$ is the Heaviside step function, write down the solutions to the spherical wave equation.
(e) Sketch the above solutions at several different times, as a function of ρ.
(f) What happens when the inbound wave reaches the center at $\rho=0$?

3. Webster horn equation:

(a) Rewrite the Webster horn equation [Class notes; Olson, p. 101 (1947); Morse, p. 269, (1948)]

$$
\frac{\partial}{\partial x}\left[\begin{array}{c}
p(x, t) \tag{8}\\
\nu(x, t)
\end{array}\right]=-\left[\begin{array}{cc}
0 & \frac{\rho_{0}}{A(x)} \\
\frac{A(x)}{\eta_{0} P_{0}} & 0
\end{array}\right] \frac{\partial}{\partial t}\left[\begin{array}{l}
p(x, t) \\
\nu(x, t)
\end{array}\right]
$$

as a 2 d order differential equation in the pressure $p(x, t)$. Here $\nu(x, t)=A(x) u(x, t)$ is the volume velocity, more formally defined as the integral over the normal component of the particle velocity $u(x, t)$, over the cross-sectional area $A(x)$ of the tube, or

$$
\nu \equiv \int_{S} \mathbf{u} \cdot d \mathbf{A}
$$

(b) Compare the Webster horn equation to the Spherical wave equation in ρ. That is let $A(\rho)=$ $A_{0} \rho^{2}$ be the area of the surface of a sphere of radius ρ.
(c) Compare the Webster horn equation to the cylindrical wave equation in r, namely let set $A(r)=A_{0} r$.

4 Special functions:

In Matlab or Octave, use the symbolic Taylor series command for each function and show that:

1. Use the defining series for the Bessel function to obtain $J_{1 / 2}=\sqrt{\frac{2}{\pi x}} \sin x$ given the general definition of $J_{\nu}(x)$:

$$
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(\nu+k+1)}\left(\frac{x}{2}\right)^{2 k}
$$

2. $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
3. $J_{-n}(x)=(-1)^{n} J_{n}(x)$

5 Symmetry:

Find the symmetric, anti-symmetric, real and imaginary parts of

1. $e^{i x}$.
2. $e^{i(x-4)}$
3. 1
4. $U(t)$, the step function 0 for $t<0,1$ for $t>0$, undefined at $t=0$.
5. $1 / t$
6. $\operatorname{sgn}(t) \equiv \frac{|t|}{t}$

References

Greenberg, M. D. (1988), Advanced Engineering Mathematics (Prentice Hall, Upper Saddle River, NJ, 07458), URL http://jontalle.web.engr.illinois.edu/uploads/493/Greenberg.pdf.

[^0]: ${ }^{1}$ or your hand calculator

