Topic of this homework: Analytic functions of a complex variable;
Deliverable: Please, show your work.
For the following the unit step function is defined as:

$$
u(t)= \begin{cases}0 & t<0 \\ \text { undefined } & t=0 \\ 1 & t>0\end{cases}
$$

1 Complex Arithmetic

This may come as a shock, but multiplying two complex numbers is not as straight forward as it may seem. The following is meant to be an enlightening example:

1. Let $a=i$ and $b=-1$. What is $c=a * b$?
2. Let $a=e^{i \pi / 2}$ and $b=e^{i \pi}$. What is $c=a * b$? (Hint: $c \neq-i$. Use polar coordinates.)
3. Let $a=e^{i \pi / 2}$ and $b=e^{-i \pi}$. What is $c=a * b$?
4. The Laplace transform of a delay of $T[\mathrm{~s}]$ is $e^{-s T}$ where the Laplace frequency $s=\sigma+\omega \jmath$. Consider a system that first delays the signal by $T_{1}[\mathrm{sec}]$, and then the output of that system is feed into a second system having delay $T_{2}[\mathrm{~s}]$.
(a) What is the total delay?
(b) What is the Laplace transform of the cascaded system?
(c) What is the phase of the cascaded system?
(d) Justify your answer.

2 Complex Algebra

Find numerical values in the form $a+i b$ for the following:

1. $x^{2}+1=0$
2. $x^{3}+8=0$
3. i^{i} (Show your work, as always!)
4. What is the frequency, in $[\mathrm{Hz}]$, of $a^{t} u(t)$, given a constant $a \in \mathbb{C}$? Here

$$
u(t)= \begin{cases}1 & t>0 \\ 0 & t<0\end{cases}
$$

is called the Heaviside step function.

3 Complex functions

Domain: $s \equiv \sigma+i \omega$, Range: $Z(s) \equiv R(s)+i X(s)$.
The Domain (e.g., s) and Range (e.g., $Z(s)$) are described in the text on page 1114.
In engineering terms think of $Z(s)=X+i Y$ as an impedance having a real part (resistance) X, and an imaginary part (reactance) Y.

Make two axes, one for the $s=\sigma+i \omega$ plane and a second for the $Z(s)=X(s)+i Y(s)$ plane. Label the two sets of axes: On the left (s), the horizontal axis (abscissa) is labeled σ, while the vertical axis (ordinate) is $i \omega$. For the $Z(s)$ axis (on the right), the abscissa is labeled X and the ordinate axis is $i Y$.

Plot the Range $Z(s)$ in terms of the specified Domain in s. In some cases, it may help you to label a few points in the s domain, then label corresponding points in the $Z(s)$ domain.

1. Domain: $s=\sigma$, Range: $Z(s)=1+s$.
2. Domain: $s=i \omega$, Range: $Z(s)=1+s$.
3. Domain: $s=i \omega$, Range: $H(s)=1+s^{2}$.
4. Reverse the range and domain. Thus the Domain is $H(s)=1+s^{2}$ while the Range s. Plot the range ($s=$?) for domain $\operatorname{Real}\{H(s)\}$.

4 Harmonic functions

1. Show that if $F(s)=e^{s}$ that the real and imaginary parts obey the Cauchy-Riemann conditions.
2. If $F(s)=s /(1+s)$, where are the Cauchy-Riemann conditions valid, or not valid? Explain.
3. If $F(s)=\log (s)$, where are the Cauchy-Riemann conditions valid, or not? Explain.
4. If $F(s)=\sqrt{1+s^{2}}$, where are the Cauchy-Riemann conditions valid, or not? Explain.

5 Laplace Transforms

1. Find the Laplace transform of $1, d f(t) / d t, \int_{-\infty}^{t} \delta(t) d t$, and $\int_{-\infty}^{t} u(t) d t$. Assume $f(t) \leftrightarrow F(s)$.
2. If $f(t)=1 / \sqrt{\pi t}$ has a Laplace transform $F(s)=1 / \sqrt{s}$. In engineering shorthand

$$
\frac{1}{\sqrt{\pi t}} \leftrightarrow \frac{1}{\sqrt{s}} .
$$

(a) What is the inverse Laplace transform of $g(t) \leftrightarrow \sqrt{s}$? This is called a semi-inductor and $1 / \sqrt{s}$ is called a semi capacitor. This term appears in the skin effect ${ }^{1}$ at the surface of a conductor. It also appears in fluid mechanics in the viscous boundary layer. ${ }^{2}$ There are many types of boundary layers. ${ }^{3}$
(b) What is $f(-1)$?

Version 1.41 (January 4, 2018) \quad /493/Assignments/CV1 - Version 1.41 (January 4, 2018)

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Skin_effect
 ${ }^{2}$ http://www.thermopedia.com/content/595/
 ${ }^{3}$ https://en.wikipedia.org/wiki/Boundary_layer

