ECE 493	$\mathrm{CV1}-\mathrm{Version}\ 1.41\ \mathrm{(January}\ 4,\ 2018)$	Spring 2018
Univ. of Illinois	Due Tu, Jan 23, 2018	Prof. Allen

Topic of this homework: Analytic functions of a complex variable;

Deliverable: Please, show your work.

For the following the unit step function is defined as:

	0	t < 0
$u(t) = \langle$	undefined	t = 0
	1	t > 0

1 Complex Arithmetic

This may come as a shock, but multiplying two complex numbers is not as straight forward as it may seem. The following is meant to be an enlightening example:

- 1. Let a = i and b = -1. What is c = a * b?
- 2. Let $a = e^{i\pi/2}$ and $b = e^{i\pi}$. What is c = a * b? (Hint: $c \neq -i$. Use polar coordinates.)
- 3. Let $a = e^{i\pi/2}$ and $b = e^{-i\pi}$. What is c = a * b?
- 4. The Laplace transform of a delay of T [s] is e^{-sT} where the Laplace frequency $s = \sigma + \omega j$. Consider a system that first delays the signal by T_1 [sec], and then the output of that system is feed into a second system having delay T_2 [s].
 - (a) What is the total delay?
 - (b) What is the Laplace transform of the cascaded system?
 - (c) What is the phase of the cascaded system?
 - (d) Justify your answer.

2 Complex Algebra

Find numerical values in the form a + ib for the following:

1. $x^2 + 1 = 0$

2.
$$x^3 + 8 = 0$$

- 3. i^i (Show your work, as always!)
- 4. What is the frequency, in [Hz], of $a^t u(t)$, given a constant $a \in \mathbb{C}$? Here

$$u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

is called the Heaviside step function.

3 Complex functions

Domain: $s \equiv \sigma + i\omega$, Range: $Z(s) \equiv R(s) + iX(s)$.

The Domain (e.g., s) and Range (e.g., Z(s)) are described in the text on page 1114.

In engineering terms think of Z(s) = X + iY as an *impedance* having a real part (*resistance*) X, and an imaginary part (*reactance*) Y.

Make two axes, one for the $s = \sigma + i\omega$ plane and a second for the Z(s) = X(s) + iY(s) plane. Label the two sets of axes: On the left (s), the horizontal axis (abscissa) is labeled σ , while the vertical axis (ordinate) is $i\omega$. For the Z(s) axis (on the right), the abscissa is labeled X and the ordinate axis is iY.

Plot the Range Z(s) in terms of the specified Domain in s. In some cases, it may help you to label a few points in the s domain, then label corresponding points in the Z(s) domain.

- 1. Domain: $s = \sigma$, Range: Z(s) = 1 + s.
- 2. Domain: $s = i\omega$, Range: Z(s) = 1 + s.
- 3. Domain: $s = i\omega$, Range: $H(s) = 1 + s^2$.
- 4. Reverse the range and domain. Thus the Domain is $H(s) = 1 + s^2$ while the Range s. Plot the range (s = ?) for domain Real $\{H(s)\}$.

4 Harmonic functions

- 1. Show that if $F(s) = e^s$ that the real and imaginary parts obey the Cauchy-Riemann conditions.
- 2. If F(s) = s/(1+s), where are the Cauchy-Riemann conditions valid, or not valid? Explain.
- 3. If $F(s) = \log(s)$, where are the Cauchy-Riemann conditions valid, or not? Explain.
- 4. If $F(s) = \sqrt{1 + s^2}$, where are the Cauchy-Riemann conditions valid, or not? Explain.

5 Laplace Transforms

- 1. Find the Laplace transform of 1, df(t)/dt, $\int_{-\infty}^{t} \delta(t)dt$, and $\int_{-\infty}^{t} u(t)dt$. Assume $f(t) \leftrightarrow F(s)$.
- 2. If $f(t) = 1/\sqrt{\pi t}$ has a Laplace transform $F(s) = 1/\sqrt{s}$. In engineering shorthand

$$\frac{1}{\sqrt{\pi t}} \leftrightarrow \frac{1}{\sqrt{s}}.$$

- (a) What is the inverse Laplace transform of $g(t) \leftrightarrow \sqrt{s}$? This is called a *semi-inductor* and $1/\sqrt{s}$ is called a semi capacitor. This term appears in the *skin effect*¹ at the surface of a conductor. It also appears in fluid mechanics in the viscous boundary layer.² There are many types of boundary layers.³
- (b) What is f(-1)?

Version 1.41 (January 4, 2018) /493/Assignments/CV1 – Version 1.41 (January 4, 2018)

¹https://en.wikipedia.org/wiki/Skin_effect

²http://www.thermopedia.com/content/595/

³https://en.wikipedia.org/wiki/Boundary_layer