Topic of this homework: Analytic functions: Integration of analytic functions; Cauchy integral formula; Riemann Sheets and Branch cuts; Region of Convergence; inverse Laplace transforms;

Deliverable: Show your work.
For this homework $i=\sqrt{-1}$.

1 Ordering complex numbers

One can always say that $3<4$, namely that real numbers have order. We will explore if complex numbers have order. Let $z=x+i y$ be a complex number.

1. Can you define a meaning to $\left|z_{1}\right|>\left|z_{2}\right|$?
2. If z and w are real numbers, define the meaning of $z>w$.
3. If z and w are complex numbers, define the meaning of $z>w$.
4. How about $\left|z_{1}+z_{2}\right|>3$?

2 Analytic functions

State the regions where the following functions are analytic (Note: I'm not asking you to apply the CR conditions, just state the region. Remember that the analytic function has a power series that converges in the region of convergence (ROC). Thus an analytic function can be differentiated any number of times. Try to expand the function is a power series, and then look for the ROC. Consider also the expansion of $d f(z) / d z$.

1. $f(z)=z^{2}$
2. $f(z)=1 / z$
3. $f(z)=\ln (\sqrt{z})$
4. $f(z)=\sqrt{1-z^{2}}$
5. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with $a_{n}=1$ (independent of n). Find $f^{\prime}(z)$ and state the region where $f(z)$ and $f^{\prime}(z)$ are analytic.

3 Integration of Analytic (and non Analytic) functions

State where the function is and is not analytic. Integrate $w=f(z)=u(x, y)+i v(x, y)$ over curve $C \in z=x+i y$, as given.

1. $f(z)=z, C$ on the unit circle defined as $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
2. $f(z)=\sin (z)$ on the unit circle.
3. $f(z)=1 / z$ on the unit circle.
4. $f(z)=1 /(2-z)$ on the unit circle.
5. $f(z)=1 / \sqrt{z}$ on the unit circle.
6. $f(z)=1 / \sqrt{z}$ twice around the unit circle $(0 \leq \theta \leq 4 \pi)$. This function has a branch cut, can you apply the Cauchy theorem?
7. $f(z)=1 / z^{2}$ on the unit circle.

4 Taylor Series

1. Explain the difference between $1 / .5,1 /(1-.5), 1 / z, 1 /(1-z)$
2. Express $1 /(1-z)$ as a power series in z. What is the ROC?
3. Express $1 /\left(1-z^{2}\right)$ as a power series in z. What is the ROC?
4. Express $1 /(1-z)^{2}$ as a power series in z. What is the ROC?
5. Express $1 / z$ as a power (Laurent) series in z, and give the ROC.
6. Express $1 /\left(1-|z|^{2}\right)$ as a power series in z. What is the ROC? (Hint: This is not analytic! State why?)
7. Express $1 /(2-z)$ as a power series in $1 / z$. What is the ROC?
8. Express the inverse of $1 /(2-z)$ as a power series in z. What is the ROC?
9. Why are poles and zeros of a function important?
10. If $a=0.1$ what is the value of

$$
x=1+a+a^{2}+a^{3} \cdots ?
$$

Show your work.
11. If $a=10$ what is the value of

$$
x=1+a+a^{2}+a^{3} \cdots ?
$$

5 Cauchy integral formula

1. Integrate the following:
(a) $\int_{C} z d z$ with $C: z=e^{i \theta}$ for $\theta=[-\pi, \pi]$.
2. If $w=u+i v$ and $z=x+i y$, find $u(x, y)$ and $v(x, y)$ for $w=c^{z}$ with complex constant $c \in \mathbb{C}$:
(a) $c=e$
(b) $c=1$
(c) $c=\sqrt{2 i}$

6 CR conditions

For the following problem: $i=\sqrt{-1}, s=\sigma+i \omega, s=r e^{i \theta}$, with $r \equiv|s|=\sqrt{\sigma^{2}+\omega^{2}}, \theta \equiv \angle s$, and $f(s)=u(\sigma, \omega)+i v(\sigma, \omega)$. Show that the CR conditions for $f(s)$ may also be expressed in the following coordinate systems:

1. Rectangular:

$$
\begin{equation*}
\frac{\partial f}{\partial \sigma}=\frac{\partial f}{\partial i \omega}, \tag{1}
\end{equation*}
$$

2. Polar:

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} . \tag{2}
\end{equation*}
$$

