Topic of this homework: LinearAlgebra(Schwarz inequality for n dimensional space. Eigenvalues and eigenvectors)

Deliverables: Show your work. Numerical results are not sufficient expect when specifically requested.

1 Gaussian operations

Determine the sequence of P operations (as I discussed in class) that renders each matrix zero below the main diagional. Hint ck the determinant

1. $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 3 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$
2. Compute the determinant of (show your work) $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 & 2.01 \\ 3 & 3 & 3.01\end{array}\right]$
3. Find a matrix that renders $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$ upper-diagional (zeros below the diagional).

2 Eigenvalues and eigenvectors

Write the Eigen matrix $E=\left[e_{1} e_{2} \cdots e_{n}\right]$

1. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
3. $\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 0 & 5 \\ 0 & 0 & 3\end{array}\right]$

3 Inequalities

Prove the Schwarz inequality by following the argument below.

1. Let $V, U, E(a)$ be vectors in R^{n} and a is a real scalar. Taking the norm of the error $E(a)$ gives $\|E(a)\|=\|V-a U\|$. Find the minimum of E with respect to a. (See pages 187-188 of the class notes.)
2. Give a diagram showing what is happening when you minimize $E(a)$ with respect to a. Provide a diagram showing the minimum value of $E\left(a^{*}\right)$ where a^{*} is the value such that the gradient of E with respect to a is zero.
3. Prove the triangular inequality $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$. All of these are to be done for R^{n} where n is greater that 3 . In other words, don't assume that $n=2$ or 3 .
4. What is the name of the triangular inequality when $n=2$? Who first showed this?

4 Gram-Schmidt

Apply Gram-Schmidt method to vectors $v_{1}=(1,1,0,1)^{T}, v_{2}=(1,-2,0,0)^{T}$ and $v_{3}=(1,0,-1,2)^{T}$ to get three orthogonal (or orthonormal) vectors. As shown in class

$$
\begin{equation*}
e_{K}=v_{K}-\sum_{k=1}^{K-1}\left(v_{K} \cdot \hat{e}_{k}\right) \hat{e}_{k} \tag{1}
\end{equation*}
$$

where $\hat{e}_{k}=e_{k} /\left\|e_{k}\right\|$.

5 Vector sums

Given $A \vec{x}=\vec{b}$, expand this as a sum of vectors of the form $x_{1} A_{1}+x_{2} A_{2}+\cdots=\vec{b}$. Give the formula for A_{1}, A_{2}, etc. What is x_{1} here? What is \vec{b} ?

6 Quadratic forms

- Expand the following as a quadratic form

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x^{T}\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 4 & 3 \\
-1 & 3 & 4
\end{array}\right] x
$$

- Now expand this in the form: $f=\lambda_{1} \tilde{x}_{1}^{2}+\lambda_{2} \tilde{x}^{2}+\lambda_{3} \tilde{x}^{3}$
- Is the matrix positive definite? Explain.
- Is this equivalent to completing the squares? Explain.

