Univ. of Illinois

Topic of this homework: Linear Algebra: Solutions of non-symmetric matrices (Tall and Fat), Singular value decomposition (SVD)

Deliverables: Show your work. Numerical results may not be sufficient, unless specifically requested.

1 Least-square solution of a non-square matrix

1.1 Tall (over-specified) systems

You are given the system

$$
\left[\begin{array}{ll}
1 & 0 \tag{1}\\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

1. Find the least squares (LS) solution of the tall (over-specified) system of equations $A x=b$. Mentally note that leaving out the third equation (third row of A), which is very different than the first two, would result in a trivial solution of $x_{1}=1$ and $x_{2}=1$.
2. Justify that the inverse of the "tall" over-specified system of equations as being $\left(A^{T} A\right)^{-1} A^{T}$.
3. Find the LS solution, but unlike Eq. 1, the third (row) is close to the first row

$$
\left[\begin{array}{ll}
1 & 0 \tag{2}\\
0 & 1 \\
1 & \epsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

where $|\epsilon| \ll 1$.
4. Starting from Eq. 1, find the eigen-values and eigen-vectors of the LS solution $A^{T} A$.
5. Summarize your conclusion about the impact of Eq. 2 on the LS solution, as a function of $\mid \epsilon \ll 1$.

1.2 Fat (under-specified) systems of equations

You are given the under-specified system

$$
\left[\begin{array}{ccc}
1 & 2 & \epsilon \tag{3}\\
2 & -1 & -\epsilon
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

with $|\epsilon| \ll 1$.

1. Find the inverse of the fat under-specified system
2. Identify $\operatorname{span}(A)$ and $\operatorname{null}(A)$ for

$$
A=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]
$$

Define the operational definitions of these concepts.
3. Ignore this question. It was incomplete.

2 Singular Value Decomposition (SVD)

You are given

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]_{2 \times 3}
$$

1. Find U, Σ and V such that $A=U \Sigma V^{T}$.

Hint: If $\operatorname{eig}(S)$ computes the matrix of eigenvectors of matrix S, then $U=\operatorname{eig}\left(A A^{T}\right) \in \mathbb{R}^{2 \times 2}$ and $V=\operatorname{eig}\left(A^{T} A\right) \in \mathbb{R}^{3 \times 3}$.
Hint 2: $U^{T} U=I$ and $V^{T} V=I$.
Hint 3: This problem was intended to be done using Matlab/Octave. For those of you that don't have access, for what ever reason, here are the eigen vectors of V :

$$
V=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & -1 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 / 3 \\
\sqrt[-1]{3} \\
-\sqrt[1]{6}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
-1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right]=\operatorname{eig}\left(A^{T} A\right)
$$

Note that the three are orthogonal.
2. Repeat calculation for A^{\prime}

$$
A^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right]
$$

Hint: Take the transpose of the formula for A in terms of U, Σ, V.
3. Define the property of a unitary matrix.
4. Given that $A=U \Sigma V^{T}$, where U and V are orthogonal (real-unitary) and Σ is diagonal, show that U and V are the eigen-matrices of $A A^{T}$ and $A^{T} A$, respectively.
5. What are the ranks of $A^{T} A$ and $A A^{T}$. Give a full explanation.

3 Operator symmetry

Each matrix (operator) A below has dimensions $m \times n$ (m rows and n columns). Define r as the smaller, and l as the larger, of m, n.

For each given matrix symmetry, provide the following information:

1. The name of the symmetry (e.g., Hermitian, unitary, self-adjoint, analytic, causal, etc.)
2. Definiteness: i.e., positive, semi-positive, negative, semi-negative definite
3. Eigen-vector properties (e.g., real, imaginary, complex, conjugate, zero, N, ON)
4. Eigen-value spectrum: i.e., discrete fixed set, infinite set, continuous infinite, etc.

3.1 Matrix Symmetry

Assume that A is $m \times n$, unless otherwise stated and $s=\sigma, \omega j$.

1. $A=A^{T}$
2. $A=\bar{A}$
3. $A=-\bar{A}$
4. $S=A^{T} A$
5. $S=A A^{T}$
6. $A=A^{\dagger}$
7. $A^{\dagger} A$
8. $A A^{\dagger}$
9. Prove that the eigenvalues of $A^{\dagger}=A$, a Hermitian matrix, are real.
10. Prove that the eigenvectors of a symmetric matrix are orthogonal.

3.2 Complex matrix symmetry

1. Impedance matrix $Z(s)=R(s)+j X(s)$, for a network having two nodes is given as

$$
\left[\begin{array}{l}
V_{1}(\omega) \tag{4}\\
V_{2}(\omega)
\end{array}\right]=\left[\begin{array}{cc}
1+s & 1 / s \\
1 / s & 1+1 / s
\end{array}\right]\left[\begin{array}{l}
I_{1}(\omega) \\
I_{2}(\omega)
\end{array}\right]
$$

Is this matrix Hermitian?
2. Admittance matrix for the above impedance matrix $Y(s)=Z^{-1}(s)$ is given as

$$
\left[\begin{array}{l}
I_{1}(\omega) \tag{5}\\
I_{2}(\omega)
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
1+1 / s & -1 / s \\
-1 / s & 1+s
\end{array}\right]\left[\begin{array}{c}
V_{1}(\omega) \\
V_{2}(\omega)
\end{array}\right]
$$

with $\Delta=(1+s)(1+1 / s)-1 / s^{2}=2+s+1 / s-1 / s^{2}$
Is this matrix Hermitian?

3.3 Continuous Symmetry

1. Given the following differential operator

$$
A=\frac{d^{2}}{d t^{2}}+2 \frac{d}{d t}+1
$$

Find the eigen-values and -vectors. Hint: Take the Laplace Transform.

