Univ. of Illinois

HW VC2 - Version 1.15 April 3, 2018
Due Tue, April 10

Spring 2018
Prof. Allen

Topic of this homework: Line, surface and volume integrals, Grad: $\nabla()$, Div: $\nabla \cdot()$, Curl: $\nabla \times()$, Laplacian, Helmholtz theorem, Green's, Stokes and Divergence Thms

Deliverables: Show your work. Numerical results are not sufficient, expect when specifically requested.

There are two differents methods of defining vectors: a) $\vec{Z}=[1,2,3]^{T}$, where as before, the script T is transpose of the row-vector to a column, and b) $\mathbf{Z}=\hat{\mathbf{x}}+2 \hat{\mathbf{y}}+3 \hat{\mathbf{z}}$. They represent exactly the same thing, and the rules of computation are identical. An arrow over the top, or the bold font, both indicate a column vector. You must adapt to these two equivalent representations.

Several of problems are adapted from (Greenberg, 1988; Allen, 2017).

1 Scalar fields and ∇ :

1. Let $T(x, y)$ be a scalar temperature field in 2 dimensions. Describe or sketch the iso-temperature contours at $\mathrm{T}=10,20,30$ degrees.
(a) $T=x^{2}+y^{2}$
(b) $T=10(x-y)$
2. Compute the gradient of $T=x^{2}+y^{2}$.
3. Given some scalar field $\phi(x, y, z)$, find the rate of change, in the direction of maximum change. Hint: Take the gradient.
4. Define and then describe the meaning of the directional derivative

$$
\begin{equation*}
\frac{\partial T}{\partial n} \hat{\mathbf{n}} \tag{1}
\end{equation*}
$$

in the direction of unit vector $\hat{\mathbf{n}}$.

2 Vector fields

Let $\mathbf{v}(x, y, z)=x \hat{\mathbf{x}}-y \hat{\mathbf{y}} \in \mathbb{R}^{3}$.

1. Describe (or sketch) $\mathbf{v}(\mathbf{x})$.
2. Find the curves of constant scalar speed $s(\mathbf{x})$ of $\mathbf{v}(\mathbf{x})$, defined as the norm of the velocity $s(\mathbf{x})=\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.

3 Divergence

1. Find the divergence of the following vector fields:
(a) $\mathbf{v}(\mathbf{x})=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+\log (z) \hat{\mathbf{z}}$
(b) $\mathbf{v}(\mathbf{x})=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+\log (z) \hat{\mathbf{z}}$ evaluated at $\mathbf{x}=[1,2,3]^{T}$.
(c) $\mathbf{v}(\mathbf{x}, t)=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+\log (z) \hat{\mathbf{z}}+t(\hat{\mathbf{x}}+\hat{\mathbf{y}})$
2. Gauss' Law

Given a closed surface \mathcal{S}, the area is denoted as $|\mathcal{S}|$, and the volume enclosed as $\|\mathcal{S}\|$ (see the class notes, Lecture 39, Sect. 1.5.10).
(a) In words, explain:

$$
\begin{equation*}
\iiint_{\|\mathcal{S}\|} \nabla \cdot \boldsymbol{D}\|d \mathcal{S}\|=\iint_{|\mathcal{S}|} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} d|\mathcal{S}| . \tag{1}
\end{equation*}
$$

(b) In words, explain:

$$
\begin{equation*}
\nabla \cdot \boldsymbol{D}=\lim _{|\mathcal{S}| \rightarrow 0}\left\{\frac{\int_{\mathcal{S}} \boldsymbol{D} \cdot \hat{\mathbf{n}} d|\mathcal{S}|}{|\mathcal{S}|}\right\}=\rho(x, y, z) \tag{2}
\end{equation*}
$$

(c) If $\phi(x, y) \equiv x+y$, find the unit vector pointing perpendicular (\perp) to plane $\phi=1$
(d) Explain the relationship between $\int_{a}^{b} F^{\prime} d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$ and the Divergence Thm.
3. Assuming some vector potential field $\mathbf{w}(\mathbf{x})$, evaluate $I=\int_{|\mathcal{S}|} \hat{\mathbf{n}} \cdot \nabla \times \mathbf{w}(\mathbf{x}) d|\mathcal{S}|$. Explain your reasoning. Hint: DoC/CoG.

4 Curl and Stokes Thm

The curl may be defined as the limit of the integral

$$
\begin{equation*}
\nabla \times \boldsymbol{H} \equiv \lim _{|\mathcal{S}| \rightarrow 0}\left\{\frac{\int_{\mathcal{S}} \hat{\boldsymbol{n}} \times \boldsymbol{H} d|\mathcal{S}|}{|\mathcal{S}|}\right\} \tag{1}
\end{equation*}
$$

Stokes' theorem (law) says

$$
\begin{equation*}
\iint_{\mathcal{S}}(\nabla \times \boldsymbol{H}) \cdot \hat{\boldsymbol{n}} d|d \mathcal{S}|=\oint_{\mathcal{B}} \boldsymbol{H} \cdot d \boldsymbol{l} . \tag{2}
\end{equation*}
$$

1. Expand the formula for the curl in rectangular coordinates, about the top row.
2. If $\mathbf{v}(x, y, z)=\nabla(1 / x+1 / y+1 / z)$, find $\nabla \times \mathbf{v}(x, y, z)$.
3. One of Maxwell's Equations, under steady state conditions, is $\nabla \times \mathbf{H}=\mathbf{J}$, where \mathbf{H} $[\mathrm{amps} / \mathrm{m}]$ is the magnetic field strength and $\mathbf{J}\left[\mathrm{amps} / \mathrm{m}^{2}\right]$ is the current density. Apply Stokes' Thm to this equation, and explain the result.
4. Determine when $\nabla \times \boldsymbol{V}(\mathbf{x})$ is independent of $\boldsymbol{V}(\mathbf{x})$ Hint: Consider the definition of the triple product $\boldsymbol{A} \cdot \boldsymbol{B} \times \boldsymbol{C}$.
5. Prove CoG: $\nabla \times \nabla \phi(\mathbf{x})=0$
6. Prove DoC: $\nabla \cdot \nabla \times \boldsymbol{V}=0$

5 Laplacian

1. If $\vec{v}(x, y, z)=\nabla(1 / x+1 / y+1 / z)$, then what is $\nabla \cdot \vec{v}(x, y, z)$? What does this mean?
2. For $u=x e^{y}$ evaluate

$$
\nabla^{2} u=\nabla^{2} x e^{y}
$$

and

$$
\nabla \times \nabla u=
$$

3. For $\vec{v}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$, evaluate

$$
\nabla \cdot(\nabla \times \vec{v})=
$$

and

$$
\nabla \times(\nabla \times \vec{v})=\nabla(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}=
$$

6 Compression-Rotation decomposition Thm.

Helmholtz decomposition theorem: Every vector field [e.g., $\vec{v}(x, y, z)$] may be defined as the sum of the gradient of a scalar potential $\Phi(x, y, z)$, and the curl of a vector potential $\vec{A}(x, y, z)$:

$$
\vec{v}(x, y, z) \equiv \nabla \Phi(x, y, z)+\nabla \times \vec{A}(x, y, z)
$$

Given the two vector identities CoG $\nabla \times \nabla \Phi=0$ and DoC $\nabla \cdot \nabla \times \vec{A}=0$ what can you say about Φ and \vec{A} ?

1. First take the (a) divergence and second (b) the curl of $\vec{v}(x ., y, z)$. Give an example from Maxwell's equations (or fluid flow) of the meaning of each result.
2. When is a field irrotational?
3. Classify $\mathbf{v}(x, y, z)=x \hat{\mathbf{x}}-y \hat{\mathbf{y}} \in \mathbb{R}^{3}$ as (in)compressible and (ir)rotational by computing $\nabla \cdot \mathbf{v}(\mathbf{x})$ and $\nabla \times \mathbf{v}(\mathbf{x})$ and finding its potential $\Phi(\mathbf{x})$ (i.e., $\mathbf{v}(\mathbf{x})=\nabla \boldsymbol{\Phi})$.
4. When is a field incompressible?

6.1 Field classification:

Provide your reasoning. Hint: look at Fig. 1.33 of Lec. 40, Sect. 1.5.11.

1. Classify the following fields as (in)compressible or (ir)rotational?
(a) $\vec{v}(x, y, z)=\nabla\left(3 x^{3}+y \cos (x y)\right)$
(b) $\vec{v}(x, y, z)=x y \hat{\mathbf{x}}-z \hat{\mathbf{y}}+f(z) \hat{\mathbf{z}}$
2. Define the purely rotational (i.e., incompressable) field, and provide your reasoning.

References

Allen, J. B. (2017), An invitation to mathematical physics, and its history (unpublished), URL http://jontalle.web.engr.illinois.edu/uploads/298/anInvitation.pdf.

Greenberg, M. D. (1988), Advanced Engineering Mathematics (Prentice Hall, Upper Saddle River, NJ, 07458), URL http://jontalle.web.engr.illinois.edu/uploads/493/ Greenberg.pdf.

