1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell's equation, Fibonacci sequence

Pythagorean triplets

Problem \# 1: Euclid's formula for the Pythagorean triplets a, b, c is $a=p^{2}-q^{2}, b=2 p q$, and $c=p^{2}+q^{2}$.

- 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and nonzero?

Sol: $p>q>0$ (strictly greater than)

- 1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the nonlinear system of equations for p, q.

First solve linear system of equations for p^{2}, q^{2} :

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
p^{2} \\
q^{2}
\end{array}\right]
$$

Inverting this 2×2 matrix gives (the determinant $\Delta=2$)

$$
\left[\begin{array}{l}
p^{2} \\
q^{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
c
\end{array}\right]
$$

Thus $p= \pm \sqrt{(a+c) / 2}, q= \pm \sqrt{(c-a) / 2}$.

Method 2: The algebraic approach is:

$$
\begin{gathered}
a+c=\left(p^{2}-q^{2}\right)+\left(p^{2}+q^{2}\right)=2 p^{2} \\
-a+c=-\left(p^{2}-q^{2}\right)+\left(p^{2}+q^{2}\right)=2 q^{2},
\end{gathered}
$$

Thus $p=\sqrt{(a+c) / 2}, q=\sqrt{(c-a) / 2}$, where $p, q \in \mathbb{N}$.
Method 1 seems more "transparent" than Method 2.

Problem \# 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of numbers on a clay tablet, archeologically denoted Plimpton-322 (see ??).

- 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a	c
119	169
3367	4825
4601	6649
12709	18541
65	97

Find a formula for a in terms of p and q.
Sol:

$$
\begin{array}{ll}
(a, c)=(119,169) & (p, q)= \pm(12,5) \\
(a, c)=(3367,4825) & (p, q)= \pm(64,27) \\
(a, c)=(4601,6649) & (p, q)= \pm(75,32) \\
(a, c)=(12709,18541) & (p, q)= \pm(125,54) \\
(a, c)=(65,97) & (p, q)= \pm(9,4)
\end{array}
$$

- 2.2: Based on Euclid's formula, show that $c>(a, b)$.

Sol: $c-a=\left(p^{2}+q^{2}\right)-\left(p^{2}-q^{2}\right)=2 q^{2}$
Because $2 q^{2}$ is always positive, $c>a$
$c-b=\left(p^{2}+q^{2}\right)-2 p q=(p-q)^{2}>0$
Note that by the definition of $p, q \in \mathbb{N}, p>q$.

- 2.3: What happens when $c=a$?

Sol: Then its not a triangle since $b=0$. The triangle is degenerate.

- 2.4: Is $b+c$ a perfect square? Discuss.

Sol: $b+c=p^{2}+2 p q+q^{2}=(p+q)^{2}$. Since p and q are integers, $b+c$ will always be a perfect square ($\sqrt{b+c}$ will always be an integer).

Pell's equation:

Problem \# 3: Pell's equation is one of the most historic (i.e., important) equations of Greek number theory because it was used to show that $\sqrt{2} \in \mathbb{I}$. We seek integer solutions of

$$
x^{2}-N y^{2}=1
$$

As shown in Sec. ??, the solutions x_{n}, y_{n} for the case of $N=2$ are given by the linear 2×2 matrix recursion

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=1_{\jmath}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

with $\left[x_{0}, y_{0}\right]^{T}=[1,0]^{T}$ and $1 \jmath=\sqrt{-1}=e^{j \pi / 2}$. It follows that the general solution to Pell's equation for $N=2$ is

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=\left(e^{\jmath \pi / 2}\right)^{n}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] .
$$

To calculate solutions to Pell's equation using the matrix equation above, we must calculate

$$
A^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{n}=e^{\jmath \pi n / 2}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \cdots\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

which becomes tedious for $n>2$.

- 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as Pell's equation. Hint: Use Matlab's function [E, Lambda] = eig(A) to check your results!
Sol: The companion matrix is

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

- 3.2: Solutions to Pell's equation were used by the Pythagoreans to explore the value of $\sqrt{2}$. Explain why Pell's equation is relevant to $\sqrt{2}$.
Sol: As discussed in Sec. 2.5.2, as the iteration n increases, the ratio of the x_{n} / y_{n} approaches $\sqrt{2}$.
- 3.3: Find the first three values of $\left(x_{n}, y_{n}\right)^{T}$ by hand and show that they satisfy Pell's equation for $N=2$. Sol: See class notes (slide 9.4.2) for this calculation. By hand, find the eigenvalues $\lambda_{ \pm}$of the 2×2 Pell's equation matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

Sol: The eigenvalues are given by the roots of the equation $\left(1-\lambda_{ \pm}\right)^{2}=2$. Thus $\lambda_{ \pm}=1 \pm \sqrt{2}=$ \{2.1412, -. 4142\}

- 3.4: By hand, show that the matrix of eigenvectors, E, is

$$
E=\left[\begin{array}{ll}
\vec{e}_{+} & \vec{e}_{-}
\end{array}\right]=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
-\sqrt{2} & \sqrt{2} \\
1 & 1
\end{array}\right] .
$$

Sol:

The eigenvectors $\vec{e}_{ \pm}$may be found by solving

$$
A\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\lambda_{ \pm}\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right] \rightarrow\left(A-\lambda_{ \pm} I\right)\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=0
$$

For λ_{+}, this gives

$$
0=\left[\begin{array}{cc}
1-(1+\sqrt{2}) & 2 \\
1 & 1-(1+\sqrt{2})
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{2} & 2 \\
1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]
$$

which gives the relation between the elements of $\vec{e}_{+}, e_{1}, e_{2}$, as $e_{1}=\sqrt{2} e_{2}$.
The eigenvectors are defined to be unit length and orthogonal, namely

1. $\left\|\vec{e}_{k}\right\|^{2}=\vec{e}_{k} \cdot \vec{e}_{k}=1$
2. $\vec{e}_{+} \cdot \vec{e}_{-}=0$.

Once we normalize \vec{e}_{+}to have unit length, we obtain the first eigenvector

$$
\vec{e}_{+}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right]
$$

Repeating this for λ_{-}gives

$$
\vec{e}_{-}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
\sqrt{2} \\
1
\end{array}\right]
$$

Thus, the matrix of eigenvalues is

$$
E=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
-\sqrt{2} & \sqrt{2} \\
1 & 1
\end{array}\right]
$$

- 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

$$
E^{-1} A E=\Lambda \equiv\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]
$$

Sol: Using the formula for a matrix inverse, we find

$$
E^{-1}=\frac{1}{\operatorname{det}(E)}\left[\begin{array}{cc}
e_{22} & -e_{12} \\
-e_{21} & e_{11}
\end{array}\right]=\frac{3}{-2 \sqrt{2}} \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & -\sqrt{2} \\
-1 & -\sqrt{2}
\end{array}\right]=\frac{-\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & -\sqrt{2} \\
-1 & -\sqrt{2}
\end{array}\right]
$$

Thus

$$
\begin{aligned}
E^{-1} A E & =\frac{-\sqrt{3}}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & -\sqrt{2} \\
-1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{cc}
-\sqrt{2} & \sqrt{2} \\
1 & 1
\end{array}\right] \\
& =\frac{-1}{2 \sqrt{2}}\left[\begin{array}{cc}
1 & -\sqrt{2} \\
-1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
(-\sqrt{2}+2) & (\sqrt{2}+2) \\
(-\sqrt{2}+1) & (\sqrt{2}+1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-\sqrt{2} & 0 \\
0 & 1+\sqrt{2}
\end{array}\right]=\Lambda
\end{aligned}
$$

- 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the $n=10$ solution $\left(x_{10}, y_{10}\right)^{T}$ to Pell's equation with $N=2$.
Sol: $x_{10}=-3363$ and $y_{10}=-2378$. Note this formulation gives the negative solution, but since the values for $n=10$ are real, when they are squared in Pell's equation, it makes no difference whether they are negative or positive.

The Fibonacci sequence

The Fibonacci sequence is famous in mathematics and has been observed to play a role in the mathematics of genetics. Let x_{n} represent the Fibonacci sequence,

$$
\begin{equation*}
x_{n+1}=x_{n}+x_{n-1}, \tag{NS-3.1}
\end{equation*}
$$

where the current input sample x_{n} is equal to the sum of the previous two inputs. This is a "discrete time" recurrence relationship. To solve for x_{n}, we require some initial conditions. In this exercise, let us define $x_{0}=1$ and $x_{n<0}=0$. This leads to the Fibonacci sequence $\{1,1,2,3,5,8,13, \ldots\}$ for $n=0,1,2,3, \ldots$.

Equation NS-3.1 is equivalent to the 2×2 matrix equations

$$
\left[\begin{array}{l}
x_{n} \tag{NS-3.2}\\
y_{n}
\end{array}\right]=A\left[\begin{array}{l}
x_{n-1} \\
y_{n-1}
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Problem \# 4: Here we seek the general formula for x_{n}. Like Pell's equation, the Fibonacci equation has a recursive eigenanalysis solution. To find it we must recast x_{n} as a 2×2 matrix relationship and then proceed, as we did for the Pell case.
-4.1: Show that the Fibonacci sequence $x_{n}=x_{n-1}+x_{n-2}$ may be generated by

$$
\left[\begin{array}{l}
x_{n} \tag{NS-3.3}\\
y_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right], \quad\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Sol: Using the Matrix Eigen-equation, powers of the eigen equation $\mathbf{A}^{n}=\mathbf{E} \Lambda^{n} \mathbf{E}^{-1}$. The final solution is

$$
\left[\begin{array}{l}
x_{n} \tag{NS-3.4}\\
y_{n}
\end{array}\right]=\boldsymbol{E}\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]^{n} \boldsymbol{E}^{-1}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] .
$$

-4.2: What is the relationship between y_{n} and x_{n} ?
Sol: This equation says that $x_{n}=x_{n-1}+y_{n-1}$ and $y_{n}=x_{n-1}$. The latter equation may be rewritten as $y_{n-1}=x_{n-2}$. Thus

$$
x_{n}=x_{n-1}+x_{n-2}
$$

as requested.
-4.3: Write a Matlab/Octave program to compute x_{n} using the matrix equation above. Test your code using the first few values of the sequence. Using your program, what is x_{40} ? Note: Consider using the eigenanalysis of A, described by Eq. ?? of the text.
Sol: You can try something like:
function $\mathrm{xn}=\mathrm{fib}(\mathrm{n})$
$A=[11 ; 10] ;[E, D]=e i g(A) ; x y=E * D \wedge n * i n v(E) *[1 ; 0] ;$
$\mathrm{xn}=\mathrm{xy}(1)$;
For this initial condition, $x_{40}=165,580,141=\frac{1}{\sqrt{5}}\left(\frac{(1+\sqrt{(5)}}{2}\right)^{41}$.
-4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to obtain the general formula for the Fibonacci sequence

$$
\begin{equation*}
x_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right] . \tag{NS-3.5}
\end{equation*}
$$

-4.5: What are the eigenvalues $\lambda_{ \pm}$of the matrix A ?
Sol: The eigenvalues of the Fibonacci matrix are given by

$$
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=\lambda^{2}-\lambda-1=(\lambda-1 / 2)^{2}-(1 / 2)^{2}-1=(\lambda-1 / 2)^{2}-5 / 4=0,
$$

thus $\lambda_{ \pm}=\frac{1 \pm \sqrt{5}}{2}=[1.618,-0.618]$.

- 4.6: How is the formula for x_{n} related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation $\left(A-\lambda_{ \pm} I\right) \vec{e}_{ \pm}=\overrightarrow{0}$, and normalized to 1) are given by

$$
\vec{e}_{+}=\left[\begin{array}{c}
\frac{\lambda_{+}}{\sqrt{\lambda_{+}^{2}+1}} \\
\frac{1}{\sqrt{\lambda_{+}^{2}+1}}
\end{array}\right] \quad \vec{e}_{-}=\left[\begin{array}{c}
\frac{\lambda_{-}}{\sqrt{\lambda_{-}^{2}+1}} \\
\frac{1}{\sqrt{\lambda_{-}^{2}+1}}
\end{array}\right] \quad E=\left[\begin{array}{ll}
\vec{e}_{+} & \vec{e}_{-}
\end{array}\right]
$$

From the eigenanalysis, we find that

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=E\left[\begin{array}{cc}
\lambda_{+}^{n} & 0 \\
0 & \lambda_{-}^{n}
\end{array}\right] E^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{+}^{n} & 0 \\
0 & \lambda_{-}^{n}
\end{array}\right] \frac{1}{\left(e_{11} e_{22}-e_{12} e_{21}\right)}\left[\begin{array}{cc}
e_{22} & -e_{12} \\
-e_{21} & e_{11}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Solving for x_{n} we find that

$$
\begin{aligned}
x_{n} & =\frac{1}{\left(e_{11} e_{22}-e_{12} e_{21}\right)}\left(\lambda_{+}^{n} e_{11} e 22-\lambda_{-}^{n} e_{12} e_{21}\right) \\
& =\frac{1}{\frac{\sqrt{5}}{\sqrt{\left(\lambda_{+}^{2}+1\right)\left(\lambda_{-}^{n}+1\right)}}}\left[\lambda_{+}^{n}\left(\frac{\lambda_{+}^{n}}{\sqrt{\left(\lambda_{+}^{2}+1\right)\left(\lambda_{-}^{n}+1\right)}}\right)-\lambda_{-}^{n}\left(\frac{\lambda_{-}^{n}}{\sqrt{\left(\lambda_{+}^{2}+1\right)\left(\lambda_{-}^{n}+1\right)}}\right)\right] \\
& =\frac{1}{\sqrt{5}}\left[\lambda_{+}^{n+1}-\lambda_{-}^{n+1}\right]
\end{aligned}
$$

- 4.7: What happens to each of the two terms

$$
[(1 \pm \sqrt{5}) / 2]^{n+1} ?
$$

Sol: $[(1+\sqrt{5}) / 2]^{n+1} \rightarrow 0$ and $[(1+\sqrt{5}) / 2]^{n+1} \rightarrow \infty$
-4.8: What happens to the ratio x_{n+1} / x_{n} ?
Sol: $x_{n+1} / x_{n} \rightarrow(1+\sqrt{5}) / 2$, because $((1-\sqrt{5}) / 2)^{n} \rightarrow 0$ as $n \rightarrow \infty$ thus for large $n, x_{n} \approx[(1+\sqrt{5}) / 2]^{n+1}$.
Problem \# 5: Replace the Fibonacci sequence with

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2},
$$

such that the value x_{n} is the average of the previous two values in the sequence.

- 5.1: What matrix A is used to calculate this sequence?

Sol:

$$
A=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right]
$$

- 5.2: Modify your computer program to calculate the new sequence x_{n}. What happens as $n \rightarrow \infty$?
Sol: As $n \rightarrow \infty, x_{n} \rightarrow 2 / 3$
- 5.3: What are the eigenvalues of your new A? How do they relate to the behavior of x_{n} as $n \rightarrow \infty$? Hint: You can expect the closed-form expression for x_{n} to be similar to Eq. NS-3.5. Sol: The eigenvalues are $\lambda_{+}=1$ and $\lambda_{-}=-0.5$. From Eq. ??, the expression for A^{n} is

$$
A^{n}=\left(E \Lambda E^{-1}\right)^{n}=E \Lambda^{n} E^{-1}=\left[\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right]^{n}=\left[\begin{array}{cc}
\lambda_{+}^{n} & 0 \\
0 & \lambda_{-}^{n}
\end{array}\right] .
$$

The solution is the sum of two sequences, one a constant and the other an oscillation that quickly fades. As $n \rightarrow \infty, \lambda_{+}^{n}=1^{n} \rightarrow 1$ and $\lambda_{-}^{n}=(-1 / 2)^{n} \rightarrow 0$. The solution becomes

$$
x_{n}=\frac{2}{3}\left[\lambda_{+}^{n}-\lambda_{-}^{n}\right]=\frac{2}{3}\left[1^{n}-(-1)^{n}\right] \rightarrow \frac{2}{3} .
$$

Problem \# 6: Consider the expression

$$
\sum_{1}^{N} f_{n}^{2}=f_{N} f_{N+1} .
$$

- 6.1: Find a formula for f_{n} that satisfies this relationship. Hint: It holds for only the Fibonacci recursion formula.
Sol: Write this out for N and $N-1$:

$$
\begin{aligned}
f_{1}^{2}+f_{2}^{2}+\cdots+f_{N-1}^{2}+f_{N}^{2} & =f_{N} f_{N+1} \\
f_{1}^{2}+f_{2}^{2}+\cdots+f_{N-1}^{2} & =f_{N-1} f_{N}
\end{aligned}
$$

Subtracting gives

$$
\begin{aligned}
& f_{N}^{\text {L }}=f_{\kappa} f_{N+1}-f_{N-1}, f_{N}=f_{N}\left(f_{N+1}-f_{N-1}\right) \\
& f_{N}=f_{N+1}-f_{N-1}
\end{aligned}
$$

Thus the relation only holds for the Fibonacci recursion formula.

