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4.2 Problems VC-2

4.2.1 Topics of this homework:
Partial differential equations; fundamental theorem of vector calculus (Helmholtz’s theorem); wave equation;
Maxwell’s equations (ME) and variables (E,D;B,H); Second-order vector differentials; Webster horn equation.

Notation: The following notation is used in this homework:

1. s = σ + jω is the Laplace frequency, as used in the Laplace transform.

2. A Laplace transform pair is indicated by the symbol↔: for example, f(t)↔ F (s).

3. πk is the kth prime; for example, πk ∈ P, πk = [2, 3, 5, 7, 11, 13, . . .] for k = 1, . . . , 6).

4.2.2 Partial differential equations (PDEs): Wave equation
Problem # 1: Solve the wave equation in one dimension by defining ξ = t∓ x/c.

– 1.1: Show that d’Alembert’s solution, %(x, t) = f(t− x/c) + g(t+ x/c), is a solution to
the acoustic pressure wave equation in one dimension:
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where f(ξ) and g(ξ) are arbitrary functions. Ans:

Problem # 2: Solving the wave equation in spherical coordinates (i.e., three dimensions)

– 2.1: Write the wave equation in spherical coordinates %(r, θ, φ, t). Consider only the
radial term r (i.e., dependence on angles θ and φ is assumed to be zero). Hint: The form of the
Laplacian as a function of the number of dimensions is given in Eq. ?? (page ??). Alternatively,
look it up on the internet or in a calculus book.
Ans:

– 2.2: Show that this equation is true:
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Hint: Expand both sides of the equation. Ans:

– 2.3: Use the results from Eq. VC-2.1 to show that the solution to the spherical wave
equation is
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Ans:



62 CHAPTER 4. VECTOR DIFFERENTIAL EQUATIONS

– 2.4: Using f(ξ) = sin(ξ)u(ξ) and g(ξ) = eξu(ξ), write the solutions to the spherical
wave equation, where u(ξ) is the Heaviside step function.
Ans:

– 2.5: Sketch this f(ξ) and g(ξ) for several times (e.g., 0, 1, and 2 seconds), and describe
the behavior of the pressure %(r, t) as a function of time t and radius r.
Ans:

– 2.6: What happens when the inbound wave reaches the center at r = 0?
Ans:

4.2.3 Helmholtz’s formula
Every differentiable vector field may be written as the sum of a scalar potential φ and a vector potential w. This
relationship is best known as the fundamental theorem of vector calculus (also called Helmholtz’s formula):

v = −∇φ+∇×w. (VC-2.4)

This formula seems to be a natural extension of the algebraic products A·B ⊥ A×B, since A·B ∝ ‖A‖‖B‖ cos(θ)
and A×B ∝ ‖A‖‖B‖ sin(θ), as developed in Appendix ??, page ??. Thus these orthogonal components have
magnitude 1 when we take the norm, due to Euler’s identity (cos2(θ) + sin2(θ) = 1).

As shown in Table ?? (p. ??), Helmholtz’s formula separates a vector field (i.e., v(x)) into compressible and
rotational parts:

1. The rotational (e.g., angular) part is defined by the vector potential w, which requires that∇×∇×w 6= 0.
A field is irrotational (conservative) when∇×v = 0, meaning that the field v can be generated using only a
scalar potential, v = ∇φ (note that this is how a conservative field is usually defined, by saying there exists
some φ such that v = ∇φ).2

2. The compressible (e.g., radial) part of a field is defined by the scalar potential φ, which requires that∇·∇φ =
∇2φ 6= 0. A field is incompressible (solenoidal) when∇ · v = 0, meaning that the field v can be generated
using only a vector potential, v = ∇×w.

The definitions and generating potential functions of irrotational (conservative) and incompressible (solenoidal)
fields naturally follow from two key vector identities: (1)∇ · (∇×w) = 0 and (2) ∇× (∇φ) = 0.

Problem # 3: Define the following:

– 3.1: A conservative vector field
Ans:

– 3.2: An irrotational vector field
Ans:

– 3.3: An incompressible vector field
Ans:

– 3.4: A solenoidal vector field
Ans:

– 3.5: When is a conservative field irrotational?
Ans:

2A note about the relationship between the generating function and the test: You might imagine special cases where ∇ × w 6= 0 but
∇ × ∇ ×w = 0 (or ∇φ 6= 0 but ∇2φ = 0). In these cases, the vector (or scalar) potential can be recast as a scalar (or vector) potential.
For example, consider a field v = ∇φ0 + b, where b = xx̂ + yŷ + zẑ. Note that b can actually be generated by either a scalar potential
(φ1 = 1

2
[x2 + y2 + z2], such that ∇φ1 = b) or a vector potential (w0 = 1

2
[z2x̂ + x2ŷ + y2ẑ], such that ∇ ×w0 = b). We find that

∇× v = 0; therefore v must be irrotational. We say this irrotational field is generated by∇φ = ∇(φ0 + φ1).
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– 3.6: When is an incompressible field irrotational?
Ans:

Problem # 4: For each of the following, (i) compute∇·v, (ii) compute∇×v, and (iii) classify
the vector field (e.g., conservative, irrotational, incompressible, etc.).

– 4.1: v(x, y, z) = −∇(3yx3 + y log(xy))
Ans:

– 4.2: v(x, y, z) = xyx̂− zŷ + f(z)ẑ
Ans:

– 4.3: v(x, y, z) = ∇× (xx̂− zŷ)
Ans:

4.2.4 Maxwell’s Equations
The variables have the following names and defining equations (see Table ??, p. ??):

Symbol Equation Name Units
E ∇×E = −Ḃ Electric field strength [volts/m]

D = εoE ∇ ·D = ρ Electric displacement (flux density) [coul/m2]
H ∇×H = J + Ḋ Magnetic field strength [amps/m]

B = µoH ∇ ·B = 0 Magnetic induction (flux density) [webers/m2]

Note that J = σE is the current density (which has units of [amps/m2]). Furthermore, the speed of light in vacuo
is co = 3×108 = 1/

√
µoεo [m/s], and the characteristic resistance of light ro = 377 =

√
µo/εo [Ω (i.e., ohms)].

4.2.5 Speed of light
Problem # 5: The speed of light in vacuo is co = 1/

√
µoεo ≈ 3×108 [m/s]. The characteristic

resistance in vacuo is ro =
√
µo/εo ≈ 377 [Ω].

– 5.1: Find a formula for the in-vacuo permittivity εo and permeability in terms of co and
ro. Ans: Based on your formula, what are the numeric values of εo and µo?

Ans:

– 5.2: In a few words, identify the law given by this equation, define what it means, and
explain the formula: ∫

S
n̂ · v dA =

∫
V
∇ · v dV.

Ans:

4.2.6 Application of Maxwell’s equations

Problem # 6: The electric Maxwell equation is ∇ × E = −Ḃ, where E is the electric field
strength and Ḃ is the time rate of change of the magnetic induction field, or simply the magnetic
flux density. Consider this equation integrated over a two-dimensional surface S, where n̂ is a
unit vector normal to the surface (you may also find it useful to define the closed path C around
the surface): ∫∫

S

[∇×E] · n̂dS = − ∂

∂t

∫∫
S

B · n̂dS.
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– 6.1: Apply Stokes’s theorem to the left-hand side of the equation.
Hint: view this relation in therms of the “integral forms” of the curl. Ans:

– 6.2: Consider the right-hand side of the equation. How is it related to the magnetic flux
Ψ through the surface S?
Ans:

– 6.3: Assume the right-hand side of the equation is zero. Can you relate your answer in
question 6.1 to one of Kirchhoff’s laws?
Ans:

Problem # 7: The magnetic Maxwell equation is ∇ ×H = C ≡ J + Ḋ, where H is the
magnetic field strength, J = σE is the conductive (resistive) current density, and the displace-
ment current Ḋ is the time rate of change of the electric flux density D. Here we defined a new
variable C as the total current density.

– 7.1: First consider the equation over a two-dimensional surface S:∫∫
S

[∇×H] · n̂dS =

∫∫
S

[J + Ḋ] · n̂dS =

∫∫
S

C · n̂dS.

Then apply Stokes’s theorem to the left-hand side of this equation. In a sentence or two, explain the meaning of
the resulting equation. Hint: What is the right-hand side of the equation? Ans:

Problem # 8: Consider the next equation in three dimensions. Take the divergence of both
sides and integrate over a volume V (closed surface S):∫∫∫

V

∇ · [∇×H]dV =

∫∫∫
V

∇ ·CdV.

– 8.1: What happens to the left-hand side of this equation? Hint: Can you apply a vector
identity? Ans: Apply the divergence theorem (sometimes known as Gauss’s theorem) to the

right-hand side of the equation, and interpret your result. Hint: Can you relate your result to
one of Kirchhoff’s laws?
Ans:

4.2.7 Second-order differentials
Problem # 9: This problem is about second-order vector differentials.

– 9.1: If v(x, y, z) = ∇φ(x, y, z), then what is∇ · v(x, y, z)?
Ans:

– 9.2: Evaluate∇2φ and ∇×∇φ for φ(x, y) = xey.
Ans:

– 9.3: Evaluate∇ · (∇× v) and ∇× (∇× v) for v = xx̂ + yŷ + zẑ.
Ans:

– 9.4: When V (x, y, z) = ∇(1/x+ 1/y + 1/z), what is∇× V (x, y, z)?
Ans:

– 9.5: When was Maxwell born and when did he die? How long did he live (within ±10
years)?
Ans:
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4.2.8 Capacitor analysis

Problem # 10: Find the solution to the Laplace equation between two infinite3 parallel plates
separated by a distance d. Assume that the left plate at x = 0 is at voltage V (0) = 0 and the
right plate at x = d is at voltage Vd ≡ V (d).

– 10.1: Write Laplace’s equation in one dimension for V (x).
Ans:

– 10.2: Write the general solution to your differential equation for V (x).
Ans:

– 10.3: Apply the boundary conditions V (0) = 0 and V (d) = Vd to determine the constants
in your equation from question 10.2.
Ans:

– 10.4: Find the charge density per unit area (σ = Q/A, where Q is charge and A is area)
on the surface of each plate. Hint: E = −∇V , and Gauss’s law states that

∫∫
S
D·n̂dS = Qenc.

Ans:

– 10.5: Determine the per-unit-area capacitance C of the system.
Ans:

4.2.9 Webster horn equation
Problem # 11: Horns illustrate an important generalization of the solution of the one dimen-
sional wave equation in regions where the properties (i.e., area of the tube) vary along the axis
of wave propagation. Classic applications of horns are in vocal tract acoustics, loudspeaker
design, cochlear mechanics, and any case that has wave propagation. Write the formula for
the Webster horn equation, and explain the variables.
Ans:
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3We study plates that are infinite because this means the electric field lines are perpendicular to the plates, running directly from one plate
to the other. However, we solve for per-unit-area characteristics of the capacitor.


