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An exact analysis is given for a point source in air above a ground surface. By representing the 
plane-wave reflection coefficient as the Laplace transform of an image source distribution, a 
well-behaved image integral, instead of the usual Sommerfeld integral, is obtained. The 
approach is valid for both locally and extended reacting surfaces. For a locally reacting ground 
surface, the image integral is an especially simple, rapidly convergent integral. The integral for 
local reaction is investigated analytically for a number of limiting cases. The resulting analytic 
solutions are compared with analytic solutions obtained from more standard approaches. 
Finally, the image integral for local reaction is analyzed numerically, and an upper limit on the 
numerical integration is given. It is shown that with realistic values of ground impedance, the 
prescribed integration limit allows the image integral to be easily and accurately computed 
numerically. 

PACS numbers: 43.28.Fp, 43.20.Fn 

INTRODUCTION 

The sound field resulting from a point source above the 
ground has been studied by many authors.•-12 For a homo- 
geneous atmosphere, the problem is the so-called Sommer- 
feld problem, which has a solution involving a difficult Som- 
merfeld integral. To evaluate the Sommerfeld integral, 
various assumptions and approximations have been adopt- 
ed. 1-12 In contrast, we use an exact method based on an im- 
age source distribution. The method was originally proposed 
by Lindell and Alanen for vertical electric and magnetic di- 
poles in radiowave propagation. 13,14 With the image formu- 
lation, the reflection coefficient is expressed as a Laplace 
transform over an image source function. The final expres- 
sion for the acoustic field involves a well-behaved image inte- 
gral instead of the usual Sommerfeld integral. 

The reflection coefficient for an extended reacting sur- 
face has essentially the same form as the reflection coeffi- 
cient for an electric dipole. Consequently, the derivation for 
extended reaction is very similar to that given in Ref. 14. For 
a locally reacting surface, however, the reflection coefficient 
has a different form from that of either an electric or magnet- 
ic dipole. 13'14 Nevertheless, the image method is still appli- 
cable, and, in fact, is much simpler to apply than for an 
extended reacting surface. For a locally reacting surface, the 
image source contribution can be easily obtained from a very 
simple image source integral. The integrand is well-behaved, 
and the integral converges rapidly for a realistic ground im- 
pedance. Because the integral is well behaved and conver- 
gent, it is straightforward to develop criteria for accurate 
numerical evaluation of the integral. 

• Present address: Applied Research Laboratory and the Graduate Pro- 
gram in Acoustics, Pennsylvania State University, P.O. Box 30, State Col- 
lege, PA 16804. 

I. IMAGE THEORY 

Consider a point source located at a height h above the 
ground with the coordinates (x, y, z) -- (0, 0, h), as shown 
in Fig. 1. Here Pl and k• are, respectively, the density and 
wave number for air. The corresponding effective quantities 
for air within porous ground are taken to be p•_ and k 2. To 
account for viscous and thermal dissipation of sound in the 
ground, we take/92 and k 2 to be complex. 

The complex pressure field for a constant frequency 
point source at (0, 0, h) satisfies the following equations: 

(V2+k•)P•=-4rrtS(•--•h , z>0, (1) 

(V2+ k22)p2 =0, z<0, (2) 
where P• and P2 are sound pressures tn the air (z < 0) and in 
the porous ground (z<0), respectively. The observation 

h 

kl ,Pl 

(p, z) 

ground 
.p 

FIG. 1. A point source above a ground plane. The point source is located at 
(x,y,z) = (0,0,h). The wave number and density for the air arep• and k, 
respectively. The corresponding effective quantities for air within the po- 
rous ground are/92 and k_•. The receiver is located at r-- (p,z), where 
p = (x • + y,•/2. The variables R• and R, are the distance between source 
and receiver and image source and receiver, respectively. 
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point is F and 2 is a vertical unit vector. The boundary condi- 
tions at the air-ground interface are 

P•=P2, z=0. (3) 

I 8P• 1 
-- , z=0. (4) 

p• 0z p-, 0z 
Fourier transforming Eqs. ( 1 )-(4) with respect to the 

horizontal plane (x and y), gives 

ø•-,•l +k•2z• 4mS(z--h), z>0, (5) 
8z a 

3-'•, +k z - • zzP2 = 0, z<0, (6) 

P, z=0, (7) 

- - z=0, (8) 

where 

and 

(9) 

kz==4k}-k}-k} =x/(k• 2-k•)+k•: (10) 

are the vertical wave numbers for z > 0 and z < 0, respective- 
ly. The solution in the k.,, k•, and z domain is 

•, = A{exp(ik,z I z -- h I) + R(k,z) 

Xexp[ik,,(z+h)]}, z>0, (11) 
•2 = A( 1 + R(k,.. ) )exp(ik•zh) 

Xexp(-ik•zz), z<0, (12) 
with 

A := 2rri/k• (13) 
and 

R(k u) = 
pzk• --p,k• 

p•kl: + p•k2• 

p:k,, --p,xJ(k• --k•) +k•, 
(14) 

where R (klz) is the plane-wave reflection coefficient. 
Equation (11 ) suggests that the solution above the 

ground can be separated into two parts: the direct free-space 
wave fi'om the physical source at (0, 0, h) and a reflected 
wave from an image source. The strength and location of the 
image source is to be determined. With this decomposition in 
mind, we write the total field as the sum of a free-space com- 
ponent and an image component, 

where 

?u• = .4 exp(iku Jz -- h J), (16) 
•'•,.,,g½ = .4R(k u )exp[ik u (z q- h) ]. (17) 
At this point, inverse Fourier transforming •, in Eq. 

( I 1) with respect to k, and k• would lead to the standard 
Sommerfeld result. An alternative approach, based on Refs. 
13 and 14, is to assume that the reflection coefficient R (k•,) 

can be represented by a Laplace transform, 

R(kl•) = s(q)e q(•"•dq, (18) 

where s(q) is an image source distribution that will be deter- 
mined later. The factor ß multiplying k•, in the exponential 
is left arbitrary for the moment so that we can later apply Eq. 
(18) to both extended and locally reacting surfaces. As will 
be shown in the next section, we used 6= 1 and 

ß = (k ,2 _ k • ) ' •a, respectively, to obtain s(q) for locally 
reacting and extended reacting surfaces. 

Upon substituting Eq. (18) into Eq. (17), we obtain 

•,m•g• = s(q){ Ae•"l• ' • © "•H}dq ' (19) 

Now we substitute Eqs. (19) and (16) into Eq. (15) and 
perform the inverse Fourier transform with respect to k• 
and k•. Note that part inside the { } in Eq. (19) has the 
same form as the free-space expression given in Eq. (16). 
Since the free-space result is a known analytic expression we 
can write immediately, 

Pr• (F) -- -- (20) 
IF- I 

and 

: s(q) Iq-(h q-ißq) l dq, (21) 
with 

J? + •(h + ieq)J•_ •p2 + (z + h + ieq) 2 , (22) 

where the root is in the first quadrant andp = xx/• is the 
horizontal distance. To obtain Eq. (21), the order of the 
Fourier transform and the Laplace transform were inter- 
changed so that we obtain the integral of a source distribu- 
tion times a free-space Green's function with a complex 
source position. Combining Eq. (20) and •. (21), gives 

elk,J? •hJ • etk,l? 4 •(h + ieq) I P,(D-- [?--2hJ + s(q) j?+•(h+ieq)jdq. 
(23) 

In Eq. (23), the total field above the ground has been ex- 
pressed as a sum of the original point soume field and the 
field from an image line source distribution s(q) in a homo- 
geneous complex space, with the image located at (0, 0, 

II. IMAGE SOURCE DISTRIBUTION 

The exact image source distribntion s(q), which has 
been defined in Eq. (18), is obtained from the inverse La- 
place transform. Although we are primarily interested in the 
result for a locally reacting surface, for the sake of complete- 
ness we first outline the form of the solution for the extended 

reaction. 

A. Extended reacting surface 

The reflection coefficient R(k u) in Eq. (14) can be 
written as 
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p2(fk•) +p•(fk•) 2 + 1 

p• (ek•) 2 -- • 
(24) 

As indicated in Eq. (18), we can obtain the image 
source distribution s(q) by using an inverse Laplace trans- 
form. With the expression in Eq. (24) for R (k•) the result 
for s(q) is 

s(q) - P2 --P• 8(q) -- yP2 P2 -P• sinh(yq) 
P2 +Pl P• P2 

+ 2y p2 sinh[y(q -- q')] q' dq' 
-- P2--Pl yP2 p2 7• 5(q) - e P• 

•--•- / dq'. (25) 
Using the above image strength s(q) in Eq. (23), gives 

the total sound pressure above a surface with extended reac- 
tion. Since the image strength itself involves an integral, the 
necessary calculation is a double integration. However, the 
numerical calculation can be easily done. The procedure is 
similar to that given in Ref. 14 for electromagnetic waves. 

B. køeall• r•aetinfl surface 
For many naturally occurring ground surfaces, the local 

reaction approximation is valid. For such surfaces the La- 
place transform representation of the reflection coe•cient 
simplifies considerably since we have k2• z k2, and 

m(klz ) • P 2klz --plk2z p2klz -plk2 
p2k• +p•k2• p2k• +p•k2 

k• -- k•/Zg (26) 
k• + k•/Zg 

where Z e • R + iX is the normalized specific acoustic 
ground impedance. The image source distribution s(q) ob- 
tained by computing the inverse Laplace transform of 
R(k•) is 

s(q) = •(q) -- 2(k•/Z•)e (•,/z•)•, (27) 
where for local reaction, 6 in Eq. (18) is taken to be 1. Use of 
the above result for the image strength s(q) in Eq. ( 23 ) gives 

eik,l•--•h[ eik,l•+•hl 
P•(•) -- • • 

- &h I + &h I 

--2 k• •e dq (28) (k•/Z•) • ik'l• +2(h+iq) I 
Z• I• + 2(h + iq) 1 

or 

t• ik'R' t• •k'R' k I fo © (k,/Zn)q ---- 2 e 

P• (7) R I 4 R2 Z• 
•ik, 17 + 2(h + iq) I 

x dq, (29) 
+ &(h + iq)l 

where R• = [7-- 2h • and R2 = 1+2h I. 
Equation (29) shows that the image source contribu- 

tion to the sound field above the ground comes from a mir- 
ror-image point source (the second term) plus an image in- 
tegral. Since k• is real and positive, and Z• is a complex 
number with a positive real part, most of the contribution to 
the integral in Eq. (29) comes from moderate values ofq. As 
will be discussed in Sec. IV, the numerical evaluation of the 

integral in Eq. (29) is straightforward. The ease with which 
Eq. (29) can be numerically computed is one of the main 
points of this article. [ Note that the sign of exp (ik•/R2)/R2 
in Eq. (29), is necessarily positive in our Laplace transform 
formulation but in the Sommerfeld formulation may be cho- 
sen to be either positive or negative. ] 

III. LIMITING CASES 

Before discussing the numerical evaluation of the inte- 
gral in Eq. (29) it is worthwhile to first consider some limit- 
ing cases that can be given analytically. 

For Zg = o• and Zg = 0, Eq. (29) becomes the expect- 
ed source and perfect image 

elk,R, eik,R. 
P•(7) -- -t- --, (30) 

R• R 2 

where the ( + ) and ( -- ) are for Z• = • and Z• = 0, re- 
spectively. 

When the source and receiver are on the same vertical 

line (171 = z), and z + h>32 [IZe [/real(Z•) ], where 2 is 
the wavelength in air, Eq. (29) gives 

P•(7) - 

(31) 

Equation ( 31 ) has the expected form of a downgoing spheri- 
cal wave plus a reflection coefficient times an upgoing 
spherical wave. The result in Eq. (31) indicates that the 
Laplace transform method is not limited to nearly horizon- 
tal propagation. 

Another limiting case of interest is [R2/(z 
In this case, Eq. (29) can be approximated as 

e •'•' e "•'• k• e '•'•' •o • .. (•,/z•)q dq P•(7)• + -- 2 e 
R • R2 Z• R2 

elk,R, •ik•R2 
-- -- , (32) 

R• R2 

which is appropriate for 0-• 90 ø. 
As a final analytic limit, we consider grazing incidence 

and obtain from Eq. (29) the standard error function solu- 
tion. For R2>)z + h, the image integral in Eq. (29) can be 
approximated as 
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2 k• e- dq 
Zg o 17 + •(h + iq) I 

where erfc is the complementary error function and 0 o is 
defined through the relations 

sin(0o) - •'ø 2 , cos(0o) - z + h R,• (34) 
The numerical distance d and the reflection coefficient 
R (0o) are defined, respectively, as 

d==4ik•R2 ZgcosO o+ 1 2 Z• ' (35) 
R (0o) Zg cos 0 o - 1 - (36) 

Zg cos 0o + 1 

For the quantity [7 + •(h + iq)[ in the exponent in Eq. (33), 
we use the approximation 

17 q- •(h + iq)l=x/p2 + (z + h + iq) 2 
1 

•R 2 q-/cos Ooq -- • q2 (37) 
and in the denominator the approximation, 

I?--•(h+iq)]=x[•+(z+h+iq)-'•R2. (38) 
Substituting Eq. (33) into (29), gives 

eik•R• e•k•R2 
P• (7) -• + -- 

R• R 2 

X{1 + [1 -- R(Oo)]A/•de -a: erfc( -- id)} 

eik,R, eik,R= 
+ {R(Oo) + [1 --R(Oo)]F(d)}, 

R2 
(39) 

with 

F(d) = 1 + ix/•de a: erfc( - M) . (40) 
The result in Eq. (39) agrees with the error function solution 
of other authors. 2'3'•'ø 

IV. NUMERICAL CALCULATION 

In this section we discuss the details of numerically eval- 
uating the integral in Eq. (29). As the integral stands, the 
upper liimit on q is infinity. Hence we want to examine the 
integrand to see what upper limit is actually required for a 
useful result in typical calculations. We show a simple means 
for establishing a general upper limit that allows a straight- 
forward numerical evaluation of the integral. To demon- 
strate the accuracy of the approach, we apply it to two differ- 
ent propagation problems. 

In establishing a general upper integration limit, we take 
a conservative approach and assume the falloff of the inte- 
grand in Eq. (29) is controlled primarily by the factor 
exp( -- k•q/Zg), which we shall call the "source strength 

factor." This assumption sometimes gives an upper limit 
that is greater than actually needed. However, since the inte- 
grand is so easily computed, a more sophisticated analysis 
does not seem worthwhile. 

We write the source strength factor as 

exp( - k•q/Z• ) = exp( - aq)exp(i[3q) , (41) 
where 

a = k•R/(R 2 +X 2) (42) 
and 

[3= k•X/(R 2 + X2) . (43) 

Hence in terms of the real and imaginary parts ofZg (R and 
X, respectively) we have the relation [3 = (X/R ) a. 

Since the real exponential exp(- aq) in the source 
strength factor dominates the image integral, we can esti- 
mate an upper limit for numerical integration, * quppe, , by 
choosing q•*pp•,. = constant/a. For our purposes it suffices to 
choose the constant to be 2rr and write 

2•r X2 + R 2 
qupper -- 2. , (44) 

a R 

where A is the acoustic wavelength in air. (Note that in actu- 
al calculations a more conservative upper limit on the inte- 
gration could be used. For example, one might use 
qupper = 1.Squpper.) 

With the value in Eq. (44) for * qupper, the real exponen- 
tial decays to exp( -- 2•-) m0.002 over the integration range. 
Over the same interval, the complex exponential exp(i[3q) 
= exp [ i2•r(X/R ) (q/q•*pp•) ] undergoes X/R oscillations. 
For realistic ground impedances we often haveX/R • l, and 
in general we can expect X/R to be less than 10. • s.•6 Hence 
no matter whether one chooses the constant to be 2•r or some 

other value, having X/R < 10 assures us that the source 
strength factor does not oscillate wildly. Thus for realistic 
ground surfaces we can expect the source strength factor 
exp( - k•q/Zg ) to be bounded and well-behaved. 

As a first application of the method we consider propa- 
gation over a locally reacting ground surface with source and 
receiver heights that are typical of experiments in outdoor 
sound propagation, 1.8 and 1.5 m, respectively. Figure 2 
shows examples of the normalized image integral integrand 
as a function of q for a propagation range of 1500 m. In the 
figure the value of qupper is indicated with an arrow on the q 
axis. The following values for frequency, impedance, and 
qupper were used: (a) f= 100 Hz, Zg (13, 12.4), * = qupper 
= 84.4; (b) f= 200 Hz, Zg (8, 10), * : qupper = 34.9; (C) 

f= 500 HZ, Zg = (7.2, 8.2), quppcr = 11.3;(d)f= 1000 Hz, 
Zg (6,4), * = 3. The values for q•*pr were computed : quppe,' 

from Eq. (44), and the values used for Zg are realistic impe- 
l5 16 

dances for grass-covered ground. ' We have used imped- 
ance values with X/R m 1 so that exp (i[3q) has a single oscil- 
lation. This choice makes it easy to see that the total inte- 
grand in Fig. 2 is practically zero when • * q • qupper, regardless 
of the frequency. 

For cases where the ratio X/R is considerably greater 
that unity, the factor exp (i[3q) has many oscillations, but the 
total integrand still becomes negligibly small when 
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(a) 

0'81 • 
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0.4[ • 
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Hz 
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1.0 T• x 
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ø'ø i \"/• 

f=200 Xz 

100 0 iO 20 3• 40 

(d) 
0.5 

0.0 • - 

l// 
-0.5 

-1.0 [ , , 

f=1000 Hz 

q (m) 

FIG. 2. Normalized integrarids of the image integral at several frequencies 
as a function of q, the imaginary part of the image source position. The 
propagation range is 1500 m, and the source and receiver heights are 1.8 m 
and 1.5 m, respectively. The solid and dashed lines are, respectively, the real 
and imaginary parts of the integrand. The arrows indicate the estimated q 
values, q-*vw,', that would be used for the upper limit of integratiou. The 
numerical values for impedauce and qu*ppe, are given in the text. 

q•qupp•r' Hence, with enough integration points to track the 
additional oscillations, the integral can be easily computed 
by numerically integrating to q • qupper using a simple inte- 
gration scheme such as the trapezoidal rule. Alternatively, 
one could use a specialized integration scheme, such as Filon 
integration, •7 which is designed specifically for oscillatory 
integrands. However, since the integrand can be evaluated 
very quickly, sophisticated integration schemes are probably 
only worthwhile in applications such as broadband propaga- 
tion where extreme speed is valuable. 

In the above example we considered a single range. To 
see the influence of the range on the convergence rate, we 
show in Fig. 3 the excess attenuation at 500 Hz as a function 
of range for different values of a variable integration limit, 
qupper' [Note: We define excess attenuation as 
-- 20 log,(P•R •), where P• is defined in Eq. (29), and R l is 

defined in Fig. 1. The excess attenuation defined here is 
transmission loss minus spherical spreading loss.] At 500 
Hz, the value of the estimated upper limit, * qupper, is 11.3. 
When qupper )13 = 1.15qupper, the excess attenuation con- 
verges to a fixed value at any given range, as one would 
expect from the results shown in Fig. 2. 

Finally we compare the convergent result in Fig. 3 to a 
parabolic equation (PE) calculation.•S'•o Figure 4 shows 
that the agreement is very good, as the two curves overlay 
almost perfectly. The agreement between the two complete- 
ly different calculations gives us confidence that both are 
numerically accurate solutions to the given problem. 

-10 

• 30 

40 

-- q,,,,.=25 

-- q,,•=13 

-- ß q,,,•=11.3 

l'ro0 t500 

Range (m) 

FIG. 3. Convergence test for the calculation in Fig. 2. The input parameters 
are the same as in Fig. 2, except for the upper integration limit, quppcr, which 
takes on the values shown in the figure. 

In the above example, where the source and receiver 
were at typical measurements heights, the free-space 
Green's function, exp[il7 + •(h + I + + iq)I, in 
the image integral in Eq. (29), was extremely well-behaved. 
Consequently the image integral was straightforward to 
compute numerically. With trapezoidal integration, for ex- 
ample, 10 to 20 points gave acceptable accuracy. In cases 
where the source and receiver are closer to the ground (with- 
in a small fraction of a wavelength), the free-space Green's 
function can cause the total integrand to be oscillatory so 
that more integration points are needed. As an extreme case 
we consider a second example in Fig. 5 where the frequency 
is again 500 Hz, but the source and receiver are both 0.01 m 
above the ground. The figure shows the normalized inte- 
grand versus q for a worst-case situation (range * = qupper 
= 11.3 m). Even though the integrand is oscillatory, it nev- 

ertheless is negligible when • * q•qupper, SO its integral is still 

-10 

-- q,•:13 
- pg 

3•0 ' ' ' 600 900 1200 1500 

Range (m) 

FIG. 4. Excess attenuation versus range for f-- 500 Hz, Z• -- (7.19, 8.2), 
and source and receiver heights of 1.8 and 1.5 m, respectively. The solid line 
is obtained from numerical integration of Eq. ( 29 ) with q,,.,p•, = 13 m as the 
upper integration limit. The dashed line is a parabolic equation calculation 
based on the method in Refs. 18 and 19. 
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0.2 ÷ 

0.0 

-0.2 

-0.4 

-0.6 

-0.õ 

-1.0 

I 

o 2 4 6 {• 1'o i2 

q (m) 

FIG. 5. Normalized integrand of the image integral as a function of q, the 
imaginary part of the image source position. The frequency is 500 Hz. and 
the ground impedance is (7.19, 8.2). The propagation range is i i .3 m, and 
lhe source and receiver are both at a height of 0.01 m. ]'he solid and dashed 
lines are. respectively, the real and imaginary parts of the integrand. 

easily computed. In Fig. 6 we compute the excess attenu- 
ation versus range using the same upper integration limit as 
before (qu,,er ----- 1.15quvr•r) and again compare the image 
result to a PE calculation. Since there is a small difference 

(about i dB) between the PE calculation and the image re- 
suit, we include the standard error function solution, 2'3'6'• 
given in Eqs. (39) and (40), as an independent check. The 
error function solution is accurate for small grazing angles 
and, as expected, is in excellent agreement with the image 
result. Hence we can conclude that the image calculation 
and error function solution are both accurate and that the 

PE calculation is slightly in error. The small error in the PE 
calculation is a result of using a PE starting field that does 
not exactly satisfy the boundary condition at z----0 for a 
source very near the ground. Figure 6 shows clearly the val- 
ue of having an exact solution as a check for a general but 
approximate method such as the PE. 

-10- 

'• -- q.w=13 
O- -- PE 

10- 

40 
, , , • 0 300 600 900 I O0 1.500 

Range (m) 

FIO. 6. Same as in Fig. 4 except the source and receiver are both at 0.01 m. 
The error function solution given in Eqs. (39} and (40) is included as an 
independent check. The agreement between the image calculalion and the 
error function solution indicates that both results are accurate and that the 

PE calculation is slightly in error. 

For the comparison shown in Fig. 6, 64 integration 
points were needed to obtain an accurate result. Even though 
a considerable number of points were required, the calcula- 
tion was still very fast because the integrand can be comput- 
ed rapidly. In addition, because a general upper limit on the 
integration was known, we could easily automate the calcu- 
lation by having the computer program increase the number 
of integration points in the interval [0, 1.15 qu*vp•r ] until the 
desired level of accuracy was reached. Thus the method de- 
scribed here allows a numerical result of arbitrary accuracy 
to be computed with ease. 

V. SUMMARY AND CONCLUSIONS 

In this article we write the total acoustic field due to a 

point source above a complex impedance plane as the free- 
space field plus an image-source field. It is shown that the 
image is a line source that lies in a complex z space. The 
formulation is simple, concise, and intuitive. Unlike the 
Sommerfeld integral approach, which invariably results in a 
steepest descent approximation and later an error function 
integral, the exact image integral obtained here can be nu- 
merically integrated with ease. The accuracy of the solution 
can be checked by the convergence of the integral itself, 
which proves to be very fast. The method presented here 
appears to be a useful alternative to existing methods for 
computing sound propagation in a homogeneoas atmo- 
sphere above a ground surface, especially for applications 
where an exact numerical result is needed. 
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