Topic of this homework: Linear Algebra: Solutions of non-symmetric matrices (Tall and Fat), Singular value decomposition (SVD)

Deliverables: Show your work. Numerical results may not be sufficient, unless specifically requested.

1 Least-square solution of a non-square matrix

1.1 Tall (over-specified) systems

You are given the system

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.
\]

1. Find the least squares (LS) solution of the tall (over-specified) system of equations \(Ax = b \). Mentally note that leaving out the third equation (third row of \(A \)), which is very different than the first two, would result in a trivial solution of \(x_1 = 1 \) and \(x_2 = 1 \).

2. Justify that the inverse of the “tall” over-specified system of equations as being \((A^T A)^{-1} A^T\).

3. Find the LS solution, but unlike Eq. 1, the third (row) is close to the first row

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\]

where \(|\epsilon| \ll 1\).

4. Starting from Eq. 1, find the eigen-values and eigen-vectors of the LS solution \(A^T A \).

5. Summarize your conclusion about the impact of Eq. 2 on the LS solution, as a function of \(|\epsilon| \ll 1\).

1.2 Fat (under-specified) systems of equations

You are given the under-specified system

\[
\begin{bmatrix}
1 & 2 & \epsilon \\
2 & -1 & -\epsilon
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
1 \\
-1
\end{bmatrix}.
\]

with \(|\epsilon| \ll 1\).

1. Find the inverse of the fat under-specified system

2. Identify \(\text{span}(A)\) and \(\text{null}(A)\) for

\[
A = \begin{bmatrix}
1 & 2 \\
2 & -1
\end{bmatrix}
\]

Define the operational definitions of these concepts.

3. Ignore this question. It was incomplete.
2 Singular Value Decomposition (SVD)

You are given

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}_{2 \times 3}. \]

1. Find \(U, \Sigma \) and \(V \) such that \(A = U \Sigma V^T \).

Hint: If \(\text{eig}(S) \) computes the matrix of eigenvectors of matrix \(S \), then \(U = \text{eig}(AA^T) \in \mathbb{R}^{2 \times 2} \) and \(V = \text{eig}(A^T A) \in \mathbb{R}^{3 \times 3} \).

Hint 2: \(U^T U = I \) and \(V^T V = I \).

Hint 3: This problem was intended to be done using Matlab/Octave. For those of you that don’t have access, for what ever reason, here are the eigenvectors of \(V \):

\[
V = \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} \sqrt{3} \\ \sqrt{2} \\ \sqrt{6} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ -1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix} = \text{eig}(A^T A)
\]

Note that the three are orthogonal.

2. Repeat calculation for \(A' \)

\[A' = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \]

Hint: Take the transpose of the formula for \(A \) in terms of \(U, \Sigma, V \).

3. Define the property of a unitary matrix.

4. Given that \(A = U \Sigma V^T \), where \(U \) and \(V \) are orthogonal (real-unitary) and \(\Sigma \) is diagonal, show that \(U \) and \(V \) are the eigen-matrices of \(AA^T \) and \(A^T A \), respectively.

5. What are the ranks of \(A^T A \) and \(AA^T \). Give a full explanation.

3 Operator symmetry

Each matrix (operator) \(A \) below has dimensions \(m \times n \) (m rows and n columns). Define \(r \) as the smaller, and \(l \) as the larger, of \(m, n \).

For each given matrix symmetry, provide the following information:

1. The name of the symmetry (e.g., Hermitian, unitary, self-adjoint, analytic, causal, etc.)
2. Definiteness: i.e., positive, semi-positive, negative, semi-negative definite
3. Eigen-vector properties (e.g., real, imaginary, complex, conjugate, zero, N, ON)
4. Eigen-value spectrum: i.e., discrete fixed set, infinite set, continuous infinite, etc.

3.1 Matrix Symmetry

1. \(A = A^T \)
2. \(A = \overline{A} \)
3. \(A = -A \)
4. \(A^T A \)
5. \(A A^T \)
6. \(A = A^\dagger \)
7. \(A^\dagger A \)
8. \(AA^\dagger \)
9. Prove that the eigenvalues of \(A^\dagger = A \), a Hermitian matrix, are real.
10. Prove that the eigenvectors of a symmetric matrix are orthogonal.

3.2 Complex matrix symmetry

1. Impedance matrix \(Z(s) = R(s) + jX(s) \), for a network having two nodes is given as
 \[
 \begin{bmatrix}
 V_1(\omega) \\
 V_2(\omega)
 \end{bmatrix} = \begin{bmatrix} 1 + s & 1/s \\ 1/s & 1 + 1/s \end{bmatrix} \begin{bmatrix} I_1(\omega) \\
 I_2(\omega)
 \end{bmatrix}
 \]
 (4)
 Is this matrix Hermitian?

2. Admittance matrix for the above impedance matrix \(Y(s) = Z^{-1}(s) \) is given as
 \[
 \begin{bmatrix} I_1(\omega) \\
 I_2(\omega)
 \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} 1 + 1/s & -1/s \\ -1/s & 1 + s \end{bmatrix} \begin{bmatrix} V_1(\omega) \\
 V_2(\omega)
 \end{bmatrix}
 \]
 (5)
 with \(\Delta = (1 + s)(1 + 1/s) - 1/s^2 = 2 + s + 1/s - 1/s^2 \)
 Is this matrix Hermitian?

3.3 Continuous Symmetry

1. Given the following differential operator
 \[
 A = \frac{d^2}{dt^2} + 2\frac{d}{dt} + 1.
 \]
 Find the eigen values and vectors. Hint: Take the Laplace Transform.