Syllabus ECE 493/Math 487

Jont B. Allen
ECE Department, University of Illinois at Urbana-Champaign

November 15, 2018

Abstract

Rubric Linear Algebra, Advanced Calculus, Boundary value problems, Sturm-Liouville Theory, Complex Variables

ECE-493 is divided into 4 basic sections (I-IV), divided into 40 topics, delivered as $24=4 * 6$ lectures. There will be two mid-term exams and one final. There are (in theory) 14 homework assignments, with a 15 that does not count toward your final grade (HW0 is used for evaluation in the first week). Each exam (I, II and Final) will count as 30% of your final grade, while the Assignments (HW1-14) and class participation, count for 10%.
I Linear Algebra ..[Ch. 8, 10, 11, 9, 12]
Lect. \#.Topic[Chapter.Section]
1 1.Basic definitions [8.1: p. 391]2.Elementary operations[8.2: p. 392-395]
2 3. Solutions to $A x=b$ [App. B, p. 1267-1270]
4.Matrix inverse[8.3: p. 396-411]
3 5.Matrix Algebra; Eigenvalues \& vectors [10.1,2: p. 465-480, 11: p. 541-582]
6.Transformations (change of basis)4 7.Vector spaces \mathbb{R}^{n}[9: p. 412-456]
5 8a.Optimal approximation (Least squares) [9.10: p. 457-460
8b.Legendre Functions (out of place?) 4.4: p 212-217]II Advanced Calculus[Ch. 13, 15, 16]
Lect. \#.Topic
6 9.Partial differentiation ($\frac{\partial}{\partial x}$)[13: p. 613-682]
10.Line surface and volume integrals [15: p. 714-756]
7 11.Gradient (∇), Divergence $(\nabla \cdot)$, Curl $(\nabla \times)$, Laplacian $\left(\nabla^{2}\right)$ [16: p. 757-843]
8 12.Implicit Functions and Jacobian (Change of Vars) [13.6, p. 642-655]]
9 13.Potentials and conservative fields [16.2 p. 758-760]
10 14.Theorems: Green, Stokes, Divergence[16.3-10, p. 761-843]

Exam I

III Boundary value (BV) problems
Lect. \#.Topic
[Chapter.Section]
11 15. PDE: parabolic, hyperbolic, elliptical, discriminant
16. PDE as a limit of system of ODEs (transmission lines)
17. $2^{\text {nd }}$ order PDE from a pair of first order ODEs
[]
12 18. Separation of variables
[2: p. 46-47; 19.2,3: p. 1017-1048; 20.2-3: p. 1058-1087]
13 21. Special Equations of Physics: Laplace, Diffusion, Wave
[18.2 p. 944-953]
14 22. Special functions, Fourier Series, Bessel, Legendre Polynomials, Rieman Zeta
20. Sturm-Liouville BV Theory
[17.7, p. 887-905, 20.3 p. 1029-1034]
15 23. Fourier: Integrals, Transforms, Series, DFT
[17 p. 844-942]
16 24. Laplace Transforms
[p. 1271-1275]
19. The vector space \mathbb{C}^{1}
[9.5-7, p. 421-443]
Exam II
IV Complex Variables (The frequency domain)
[Ch. 21, 23, 24]
Lect. \#. Topic
[Chapter.Section]
17 25. complex frequency $s \equiv \sigma+i \omega \in \mathbb{C} Z(s) \in \mathbb{C}$, $e^{s}\left(e^{-i \omega T}\right), \log (s), \sum_{n} s^{n}$
[Ch. 21: p. 1108-1149]
26. Singularities, poles, branch cuts [21.4, p. 1131-1135, 23.1-5: p. 1182-1208, 24.2: 1209-1259]

18 27. Differential calculus on \mathbb{C}
28. Cauchy-Riemann Eqs., Analytic functions, Harmonic functions [24.5 p. 1240-1259]

19 29. Irrotational fields (e.g., velocity potential $\mathbf{u}=\nabla \phi(x, y, z)$ [p. 829]
20 30. Integral calculus on \mathbb{C}
31. $\oint z^{n} d z$ on the unit circle [22.3]

21 32. Cauchy's theorem []
33. Cauchy's integral formula [23.5]
35. Cauchy's Residue Theorem [24.5]

22 34. Series: Maclaurin, Taylor, Laurent [24.3]
36. Jordan's Lemma

23 37. Inverse Transforms: Laplace \mathcal{L}^{-1} and Fourier \mathcal{F}^{-1}
[p. 1271-1275?]
24 38. Applications of: Rational functions $\left(Z(s)=a+b s+c s^{2} / A+B s\right)$ and Partial fraction expansions $Z(s)=s+a /(s+b /(s+c /(s+\cdots)))$
[p. 1263-1266]
39. ODE's with initial condition (vs. Boundary value problems)

Final

References

Abbreviations: WP: Wikipedia; COV: change of variables; BV: boundary value; p.: page; Ch.: chapter; ODE: ordinary differential equation; PDF: partial differential equation; MM: Mickey Mouse; DFT: Discrete Fourier Transform /home/jba/Work/UIUC/ECE493/Admin/AllenSyllabus.08.tex
Version: 1.12 November 15, 2018

