Taxonomy of *n×n* Matrices

Nonsingular Matrices (0.5).

A matrix $\mathbf{A} \in \mathcal{M}_n$ is nonsingular iff

- \mathbf{A}^{-1} exists $\det \mathbf{A} \neq 0$
- $\operatorname{rnk} \mathbf{A} = n$ $\dim \mathcal{R}(\mathbf{A}) = n$
- rows (cols) are lin- $0 \notin \sigma(\mathbf{A})'$ early independent

Nilpotent Matrices (*p39*). A matrix $\mathbf{A} \in \mathcal{M}_n$ is nilpotent to index k if $\mathbf{A}^k = \mathbf{0}$ but

Hermitian Matrices (4.1.1). A matrix $\mathbf{A} \in \mathcal{M}_n$ is Hermitian if $\mathbf{A} = \mathbf{A}^H$.

- A Hermitian matrix is parametrized by n^2 free real variables.
- (4.1.1.1) For any $\mathbf{B} \in \mathcal{M}_n$, $\mathbf{B} + \mathbf{B}^H$, $\mathbf{B}^H \mathbf{B}$, and $\mathbf{B}\mathbf{B}^H$ are Hermitian.
- (4.1.1.2,3) Hermitian matrices are closed under addition, multiplication by a scalar, raising to an integer power, and (if nonsingular) inversion.
- (4.1.2) Any matrix **A** has a unique decomposition $\mathbf{A} = \mathbf{B} + j\mathbf{C}$ where **B** and **C** are Hermitian: $\mathbf{B} = (\mathbf{A} + \mathbf{A}^H)/2$ and $\mathbf{C} = (\mathbf{A} - \mathbf{A}^H)/(2j)$
- (4.1.3c) The eigenvalues of a Hermitian matrix are all real.
- (4.1.4a) **A** is Hermitian iff $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is real for all $\mathbf{x} \in \mathbb{C}^n$.
- (4.1.4c) \mathbf{A} is Hermitian iff $\mathbf{S}^H \mathbf{A} \mathbf{S}$ is Hermitian for all $\mathbf{S} \in \mathcal{M}_n$ (or: iff $\mathbf{x}^H \mathbf{A} \mathbf{y} =$

Matrix Properties

Eigenvalues and -vectors (1.1.2). If $\lambda \in \mathbb{C}$ and $\mathbf{x} \neq \mathbf{0}$ satisfy the equation $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, they are considered eigenvalue and eigenvector, respectively, of the matrix $\mathbf{A} \in \mathcal{M}_n$. The *eigenvalue spectrum* $\sigma(\mathbf{A})$ of \mathbf{A} is the set of all eigenvalues.

- (1.2.4) The eigenvalue spectrum $\sigma(\mathbf{A})$ coincides with the roots of the *charac*teristic polynomial $p_{\mathbf{A}}(t) = \det(t\mathbf{I} - \mathbf{A})$.
- (1.2.6) Every $\mathbf{A} \in \mathcal{M}_n$ has exactly n eigenvalues, counting multiplicities (c.m.).
- (2.4.2, Cayley-Hamilton) $p_{\mathbf{A}}(\mathbf{A}) = \mathbf{0}$. If **A** is nonsingular, then there is a polynomial q(t) of degree at most n - 1, such that $\mathbf{A}^{-1} = q(\mathbf{A})$.
- (1.4.1) The eigenvalues of \mathbf{A}^T are the same as those of \mathbf{A} , c.m. The eigenvalues of \mathbf{A}^H are the complex conjugates of the eigenvalues of \mathbf{A} , c.m.
- (1.4.2) The set of eigenvectors associated with a particular $\lambda \in \sigma(\mathbf{A})$ is a subspace of \mathbb{C}^n , called *eigenspace* of **A** corresponding to λ .
- (1.4.3) The dimension of the eigenspace of $\mathbf{A} \in \mathcal{M}_n$ corresponding to the eigenvalue λ is its geometric multiplicity.
- (1.4.3) The multiplicity of λ as a zero of $p_{\mathbf{A}}(t)$ is the *algebraic multiplicity* of λ . The algebraic multiplicity is greater or equal than the geometric multiplicity.
- (1.3.8) Eigenvectors corresponding to different eigenvalues are linearly independent.
- (1.3.20) Be $\mathbf{A} \in \mathcal{M}_{m,n}$ and $\mathbf{B} \in \mathcal{M}_{n,m}$. Then **BA** has the same eigenvalues as **AB**, c.m., together with an additional n - m eigenvalues equal to 0.
- (p37) For nonsingular $\mathbf{A} \in \mathcal{M}_n$, if $\lambda \in \sigma(\mathbf{A})$, then $\lambda^{-1} \in \sigma(\mathbf{A}^{-1})$, corresponding to the same eigenvector.
- (p43) If $\lambda \in \sigma(\mathbf{A})$, then $\lambda^k \in \sigma(\mathbf{A}^k)$.
- If $\lambda \in \sigma(\mathbf{A})$, then $(1 + \lambda) \in \sigma(\mathbf{I} + \mathbf{A})$.
- (4.3.1, Weyl) For Hermitian $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n$, with their eigenvalues arranged in increasing order, for $k = 1, \ldots, n$:

$$\lambda_k(\mathbf{A}) + \lambda_1(\mathbf{B}) \le \lambda_k(\mathbf{A} + \mathbf{B}) \\ \le \lambda_k(\mathbf{A}) + \lambda_n(\mathbf{B}).$$

• (4.5.9, Ostrowski) For $\mathbf{A} \in \mathcal{M}_n$ Hermilg.eps (0, 0) Submatrices (0.7). With index sets $\alpha \subseteq \{1, \ldots, m\}$, $\beta \subseteq \{1, \ldots, n\}$ and $\mathbf{A} \in \mathcal{M}_{m,n}$, $\mathbf{A}(\alpha, \beta)$ denotes the submatrix that is indexed by rows α and columns β .

- For $\mathbf{A} \in \mathcal{M}_n$, if $\alpha = \beta$, $\mathbf{A}(\alpha, \beta) = \mathbf{A}(\alpha)$ is a *principal submatrix* of \mathbf{A} .
- The determinant of a square submatrix of $\mathbf{A} \in \mathcal{M}_{m,n}$ is called a *minor*.
- The determinant of a principal submatrix of $\mathbf{A} \in \mathcal{M}_n$ is a *principal minor*.

Adjoint Matrix (0.8.2). The adjoint of $\mathbf{A} \in \mathcal{M}_n$ is the matrix $\mathbf{B} \in \mathcal{M}_n$ of *cofactors* defined by

$$b_{ij} = (-1)^{i+j} \det \mathbf{A}_{ji}.$$

- $(\operatorname{adj} \mathbf{A})\mathbf{A} = \mathbf{A}(\operatorname{adj} \mathbf{A}) = (\det \mathbf{A})\mathbf{I}.$
- If \mathbf{A} invertible, $\mathbf{A}^{-1} = (\det^{-1} \mathbf{A}) \operatorname{adj} \mathbf{A}$.

Range and Null Space (0.2.3). The range of a matrix $\mathbf{A} \in \mathcal{M}_{m,n}$ is $\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{C}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{C}^n \}.$

The null space of a matrix $\mathbf{A} \in \mathcal{M}_{m,n}$ is $\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{C}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\}.$

- $(0.2.3) \dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}) = n.$
- $(0.4.4g) \dim \mathcal{R}(\mathbf{A}) = \operatorname{rnk} \mathbf{A}.$
- (0.6.6) $\mathcal{R}(\mathbf{A}) = \mathcal{N}^{\perp}(\mathbf{A}^H).$

Rank (0.4). The rank of a matrix $\mathbf{A} \in \mathcal{M}_{m,n}$ is the largest number of rows (columns) of \mathbf{A} that constitute a linearly independent set.

- (0.4.4) rnk $\mathbf{A} = \dim \mathcal{R}(\mathbf{A}) = n \dim \mathcal{N}(\mathbf{A}).$
- (0.4.6a) **A**, **A**^H, **A**^T, **A**^{*} have the same rank.
- (0.4.6b) rank is unchanged by left/right multiplication with a nonsingular matrix.
- (0.4.6c) If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m,n}$, then rnk $\mathbf{A} =$ rnk \mathbf{B} iff there are nonsingular $\mathbf{X} \in \mathcal{M}_n$ and $\mathbf{Y} \in \mathcal{M}_m$ s.t. $\mathbf{B} = \mathbf{X}\mathbf{A}\mathbf{Y}$.
- (0.4.6d) rnk $\mathbf{A}^H \mathbf{A} = \text{rnk } \mathbf{A}$.
- (0.4.5a) rnk $\mathbf{A} \leq \min(m, n)$.
- (0.4.5c) If $\mathbf{A} \in \mathcal{M}_{m,k}$ and $\mathbf{B} \in \mathcal{M}_{k,n}$ rnk \mathbf{A} + rnk $\mathbf{B} - k \leq$ rnk \mathbf{AB}

 $\operatorname{rnk} \mathbf{AB} \leq \min(\operatorname{rnk} \mathbf{A}, \operatorname{rnk} \mathbf{B}).$

- (0.4.5d) If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m,n}$,
- $\operatorname{rnk}(\mathbf{A} + \mathbf{B}) \le \operatorname{rnk}\mathbf{A} + \operatorname{rnk}\mathbf{B}.$
- (p95) For $\mathbf{A} \in \mathcal{M}_n$,

A^{k-1} ≠**0**.• (*p37*) λ_i = 0, i = 1,..., n...

Idempotent Matrices (p37). A matrix $\mathbf{P} \in \mathcal{M}_n$ is idempotent if $\mathbf{P}^2 = \mathbf{P}$.

- $\operatorname{rnk} \mathbf{P} = \operatorname{tr} \mathbf{P}$.
- $(p37) \lambda_i \in \{0, 1\}, i = 1, ..., n$. The geometric multiplicity of the eigenvalue 1 is rnk **P**.
- \mathbf{P}^{H} , $\mathbf{I}-\mathbf{P}$, and $\mathbf{I}-\mathbf{P}^{H}$ are all idempotent.
- $\mathbf{P}(\mathbf{I} \mathbf{P}) = (\mathbf{I} \mathbf{P})\mathbf{P} = \mathbf{0}.$
- $\mathbf{P}\mathbf{x} = \mathbf{x}$ iff \mathbf{x} lies in the range of \mathbf{P} .
- $\mathcal{N}(\mathbf{P}) = \mathcal{R}(\mathbf{I} \mathbf{P}).$
- $(TODO) \mathbf{P}$ is its own generalized inverse, \mathbf{P}^{\dagger} .

Nondefective (Diagonalizable) Matrices (1.3.6). A matrix $\mathbf{A} \in \mathcal{M}_n$ is diagonalizable if it is similar to a diagonal matrix,

i.e., $\mathbf{A} = \mathbf{S}\mathbf{\Lambda}\mathbf{S}^{-1}$. • (1.3.7) The columns of \mathbf{S} are eigenvectors of \mathbf{A} the diagonal entries of \mathbf{A} corrected as the diagonal entries of \mathbf{A} and $\mathbf{$

- tors of \mathbf{A} , the diagonal entries of $\boldsymbol{\Lambda}$ corresponding eigenvalues.
- (1.4.4) **A** is diagonalizable iff it is nondefective, i.e., the geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue.
- (1.3.9) If **A** has *n* distinct eigenvalues, it is diagonalizable.
- (p46) rnk $\mathbf{A} = \#$ nonzero eigenvalues.

Normal Matrices (2.5). A matrix $\mathbf{A} \in \mathcal{M}_n$ is normal if $\mathbf{A}^H \mathbf{A} = \mathbf{A} \mathbf{A}^H$.

- (2.5.4) **A** is normal iff it is unitarily similar to a diagonal matrix.
- (2.5.4) **A** is normal iff it has an orthonormal set of *n* eigenvectors.
- Normal matrices are closed under unitary equivalence, raising to an integer power, and (if nonsingular) inversion.
- The singular values of a normal matrix are the absolute values of the eigenvalues.
- The eigenvalues of \mathbf{A}^{H} are the conjugates of the eigenvalues of \mathbf{A} and have the same eigenvectors.
- A normal matrix is Hermitian iff its eigenvalues are all real.
- A normal matrix is skew-Hermitian iff its eigenvalues all have zero real parts.
- A normal matrix is unitary iff its eigenvalues all have an absolute value of 1.
- If \mathbf{A} and \mathbf{B} are normal and $\mathbf{AB} = \mathbf{BA}$ then \mathbf{AB} is normal.

• (2.5.4)
$$||A||_{\mathrm{F}}^2 = \sum_{i=1}^n |\lambda_i|^2$$
.

 $\mathbf{x}^H \mathbf{A}^H \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$).

- (4.1.5, Spectral Theorem) \mathbf{A} is Hermitian iff there is a unitary matrix $\mathbf{U} \in \mathcal{M}_n$ and a real diagonal matrix $\mathbf{\Lambda} \in \mathcal{M}_n$ s.t. $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^H$.
- If **A** and **B** are Hermitian then so are AB + BA and j(AB BA).
- (4.2.2, Rayleigh-Ritz) $\min(\lambda) \leq \mathbf{x}^H \mathbf{A} \mathbf{x} \leq \max(\lambda), \ \mathbf{x}^H \mathbf{x} = 1.$

Positive Definite Matrices (4.1.1). A Hermitian matrix $\mathbf{A} \in \mathcal{M}_n$ is *positive definite* (pd) if $\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$ for all nonzero $\mathbf{x} \in \mathbb{C}^n$. If $\mathbf{x}^H \mathbf{A} \mathbf{x} \ge 0$, **A** is said to be *positive semidefinite* (psd).

- (7.1.2) Any principal submatrix of a pd matrix is pd.
- (7.1.3) Any nonnegative linear combination of psd matrices is psd.
- (7.1.4,5) For $p(s)d \mathbf{A} \in \mathcal{M}_n$, λ_i (for i = 1, ..., n), det \mathbf{A} , tr \mathbf{A} , and all principal minors are positive (nonnegative).
- (7.2.1) $\mathbf{A} \in \mathcal{M}_n$ is p(s)d iff all eigenvalues are positive (nonnegative).
- (7.2.8) $\mathbf{A} \in \mathcal{M}_n$ is pd iff there is a nonsingular $\mathbf{C} \in \mathcal{M}_n$ s.t. $\mathbf{A} = \mathbf{C}^H \mathbf{C}$. Any solution \mathbf{C} can be written as $\mathbf{C} = \mathbf{V} \mathbf{A}^{1/2}$ with $\mathbf{V} \in \mathcal{M}_n$ unitary.
- (p409) Any psd rank-m matrix $\mathbf{A} \in \mathcal{M}_n$ may be written as $\mathbf{A} = \mathbf{C}^H \mathbf{C}$ with some $\mathbf{C} \in \mathcal{M}_{m,n}$.
- (7.1.6) For pd $\mathbf{A} \in \mathcal{M}_n$ and $\mathbf{C} \in \mathcal{M}_{n,m}$, $\mathbf{C}^H \mathbf{A} \mathbf{C}$ is *psd*, and rnk $\mathbf{C}^H \mathbf{A} \mathbf{C} = \text{rnk } \mathbf{C}$.

Skew-Hermitian Matrices. A matrix $\mathbf{K} \in \mathcal{M}_n$ is skew-Hermitian if $\mathbf{K} = -\mathbf{K}^H$.

- (p175) **S** is Hermitian iff j**S** is skew-Hermitian.
- K is skew-Hermitian iff $\mathbf{x}^H \mathbf{K} \mathbf{y} = -\mathbf{x}^H \mathbf{K}^H \mathbf{y}$ for all \mathbf{x} and \mathbf{y} .
- Skew-Hermitian matrices are closed under addition, multiplication by a scalar, raising to an odd power, and (if nonsingular) inversion.
- (p175) \mathbf{K}^2 is Hermitian.
- (p175) The eigenvalues of a skew-Hermitian matrix are either 0 or pure imaginary.

Triangular Matrices (0.9.3). A matrix $\mathbf{T} \in \mathcal{M}_n$ is upper (lower) triangular if $t_{ij} = 0$ for j < i (j > i). Strictness if true for $j \leq i$ $(j \geq i)$.

• Upper/lower triangular matrices are closed under addition, multiplication,

tian and $\mathbf{S} \in \mathcal{M}_n$ nonsingular, with all eigenvalues arranged in increasing order, for all $k = 1, \ldots, n$ there is a positive real number θ_k in the range

$$\lambda_1(\mathbf{SS}^H) \le \theta_k \le \lambda_n(\mathbf{SS}^H) \quad \text{s.t.} \\ \lambda_k(\mathbf{SAS}^H) = \theta_k \lambda_k(\mathbf{A}).$$

Inverse Matrix. For any $\mathbf{A} \in \mathcal{M}_{m,n}$, having a SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}$, there is a *Moore-Penrose generalized inverse* or *pseudoinverse* $\mathbf{A}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{H}$, where $\mathbf{\Sigma}^{\dagger}$ is the transpose of $\mathbf{\Sigma}$ in which the positive singular values are replaced by their reciprocals.

- (p421) **A**[†]**A** and **AA**[†] are Hermitian.
- (p421) $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$ and $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger}$.
- (0.5) For any nonsingular $\mathbf{A} \in \mathcal{M}_n$, there is a unique $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$ s.t. $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.
- Any full-rank skinny $\mathbf{A} \in \mathcal{M}_{m,n}, m \geq n$, has a left inverse $\mathbf{B} \in \mathcal{M}_{n,m}$ s.t. $\mathbf{B}\mathbf{A} = \mathbf{I}_n$. The left inverse with the smallest norm is the pseudoinverse $\mathbf{B} = \mathbf{A}^{\dagger} = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H$.
- Any full-rank fat $\mathbf{A} \in \mathcal{M}_{m,n}$, $m \leq n$, has a right inverse $\mathbf{B} \in \mathcal{M}_{n,m}$ s.t. $\mathbf{AB} = \mathbf{I}_m$. The right inverse with the smallest norm is the pseudoinverse $\mathbf{B} = \mathbf{A}^{\dagger} = \mathbf{A}^H (\mathbf{AA}^H)^{-1}$
- $(\mathbf{A}^{H})^{\dagger} = (\mathbf{A}^{\dagger})^{H}$, and $(\mathbf{A}^{H})^{-1} = (\mathbf{A}^{-1})^{H}$ (if **A** nonsingular).
- (0.7.4, Matrix Inversion Lemma) Be $\mathbf{A} \in \mathcal{M}_m$ and $\mathbf{R} \in \mathcal{M}_n$ nonsingular, and $\mathbf{X} \in \mathcal{M}_{m,n}$ and $\mathbf{Y} \in \mathcal{M}_{n,m}$. Then

$$(\mathbf{A} + \mathbf{X}\mathbf{R}\mathbf{Y})^{-1} = \mathbf{A}^{-1}$$
$$- \mathbf{A}^{-1}\mathbf{X} (\mathbf{R}^{-1} + \mathbf{Y}\mathbf{A}^{-1}\mathbf{X})^{-1} \mathbf{Y}\mathbf{A}^{-1}$$
$$(c\mathbf{I}_m + \mathbf{X}\mathbf{Y})^{-1}$$
$$= \frac{1}{c} (\mathbf{I}_m - \mathbf{X} (c\mathbf{I}_n + \mathbf{Y}\mathbf{X})^{-1} \mathbf{Y})$$
$$(c\mathbf{I}_m + \mathbf{X}\mathbf{X}^H)^{-1}$$
$$= \frac{1}{c} (\mathbf{I}_m - \mathbf{X} (c\mathbf{I}_n + \mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H).$$

- For $\mathbf{X} \in \mathcal{M}_{m,n}$ and $\mathbf{Y} \in \mathcal{M}_{n,m}$, $\mathbf{Y}(c\mathbf{I} + \mathbf{X}\mathbf{Y})^{-1} = (c\mathbf{I} + \mathbf{Y}\mathbf{X})^{-1}\mathbf{Y}.$
- For nonsingular $\mathbf{A}, \mathbf{B} \in \mathcal{M}_m$ $\mathbf{A}^{-1} = \mathbf{B}^{-1} + \mathbf{B}^{-1}(\mathbf{B} - \mathbf{A})\mathbf{A}^{-1}.$
- If $\mathbf{A} \in \mathcal{M}_m$ and the inverses exist, any pair of \mathbf{A} , $(c\mathbf{I} \mathbf{A})^{-1}$, and $(c\mathbf{I} + \mathbf{A})^{-1}$ commutes. Further,

$$\mathbf{A}(\mathbf{I} - \mathbf{A})^{-1} = (\mathbf{I} - \mathbf{A})^{-1} - \mathbf{I}$$

lg.eps(0, 1)

rnk $\mathbf{A} \geq \#$ nonzero eigenvalues. (*p*46) Equality for diagonalizable \mathbf{A} .

Trace (0.4). For $\mathbf{A} \in \mathcal{M}_n$, tr $\mathbf{A} = \sum_{i=1}^n a_{ii}$.

- (1.2.12) tr $\mathbf{A} = \sum_{i=1}^{n} \lambda_i(\mathbf{A}).$
- $\operatorname{tr}(\alpha \mathbf{A}) = \alpha \operatorname{tr}(\mathbf{A}).$
- $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A}).$
- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}).$
- $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}).$
- $\operatorname{tr}(\mathbf{a}\mathbf{b}^T) = \mathbf{a}^T\mathbf{b}.$
- $\operatorname{tr}(\mathbf{a}\mathbf{b}^H) = \overline{\mathbf{a}^H\mathbf{b}}.$

•
$$tr(ABCD) = tr(BCDA)$$

= $tr(CDAB) = tr(DABC)$

• $\operatorname{tr}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \operatorname{tr}(\mathbf{B}).$

Determinant (0.3). For $\mathbf{A} \in \mathcal{M}_n$,

$$\det \mathbf{A} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det \mathbf{A}_{ij}$$
$$= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det \mathbf{A}_{ij},$$

where $\mathbf{A}_{ij} \in \mathcal{M}_{n-1}$ is the submatrix obtained by deleting row *i* and column *j*.

- (1.2.12) det $\mathbf{A} = \prod_{i=1}^{n} \lambda_i(\mathbf{A}).$
- $(0.3.1) \det \mathbf{A}^T = \det \mathbf{A}.$
- $(0.3.1) \det \mathbf{A}^H = \overline{\det \mathbf{A}}.$
- $\det c \mathbf{A} = c^n \det \mathbf{A}$.
- Interchanging any pair of columns of A multiplies det A by -1 (likewise rows).
- Multiplying any column of **A** by *c* multiplies det **A** by *c* (likewise rows).
- Adding any multiple of one column onto another column leaves det **A** unaltered (likewise rows).
- For $\mathbf{A}, \mathbf{B} \in \mathcal{M}_n$, det $\mathbf{AB} = \det \mathbf{A} \det \mathbf{B}$.
- For nonsingular $\mathbf{A} \in \mathcal{M}_n$, $\det(\mathbf{A} + \mathbf{x}\mathbf{y}^H) = \det(\mathbf{A}) (1 + \mathbf{y}^H \mathbf{A}^{-1}\mathbf{x}).$

• If
$$\mathbf{A} \in \mathcal{M}_n$$
 and $\mathbf{D} \in \mathcal{M}_k$,

$$det \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = det \mathbf{Q}$$
$$= det(\mathbf{A}) det(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})$$
$$= det(\mathbf{D}) det(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}).$$

The quantity $\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$ is called the *Schur complement* of \mathbf{A} in \mathbf{Q} .

- For $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathcal{M}_n$ $\mathbf{A}\mathbf{C} = \mathbf{C}\mathbf{A} : \det \mathbf{Q} = \det(\mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B})$
 - $\mathbf{A} \mathbf{D} \quad \mathbf{D} \mathbf{A} \mathbf{D} \quad \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{C}$
 - AB = BA: det Q = det(DA CB)
 - $\mathbf{DB} = \mathbf{BD}$: det $\mathbf{Q} = \det(\mathbf{DA} \mathbf{BC})$
- $\mathbf{DC} = \mathbf{CD} : \det \mathbf{Q} = \det(\mathbf{AD} \mathbf{BC})$
- (7.8.1, Hadamard's inequality) If **A** is positive semidefinite, then det $\mathbf{A} \leq \prod_{i=1}^{n} a_{ii}$.

• (*p111*) The direct sum $\mathbf{A}_1 \oplus \ldots \oplus \mathbf{A}_k$ is normal iff each \mathbf{A}_j is normal.

Projection Matrices. A matrix $\mathbf{P} \in \mathcal{M}_n$ is a projection matrix if it is Hermitian and idempotent, i.e., $\mathbf{P}^H = \mathbf{P}^2 = \mathbf{P}$.

- **P** is positive semidefinite.
- $\mathbf{I} \mathbf{P}$ is a projection matrix.
- With any subspace $S \subseteq \mathbb{C}^n$, any vector $\mathbf{x} \in \mathbb{C}^n$ can be decomposed as $\mathbf{x} = \mathbf{P}_S \mathbf{x} + \mathbf{P}_S^{\perp} \mathbf{x}$ with $\mathbf{P}_S^{\perp} = \mathbf{I}_n \mathbf{P}_S$ where \mathbf{P}_S is the unique projection matrix on S. Also, $\mathcal{R}(\mathbf{P}_S) = S$.
- Be $S = \mathcal{R}(\mathbf{A})$. Then the projection matrix on S is $\mathbf{P}_S = \mathbf{A}\mathbf{A}^{\dagger}$. If $\mathbf{B} \in \mathcal{M}_{n,k}$ is a basis for the subspace S, then $\mathbf{P}_S = \mathbf{B}(\mathbf{B}^H\mathbf{B})^{-1}\mathbf{B}^H$. If \mathbf{U} is a unitary basis for the subspace
 - \mathcal{S} , then $\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{H}$.
- If **P** and **Q** are projection matrices, then the following are equivalent:
 - $\circ \, {\bf P} {\bf Q}$ is a projection matrix
 - $\circ \mathbf{P} \mathbf{Q}$ is positive semidefinite
 - $\circ \mathbf{PQ} = \mathbf{Q}$
 - $\circ \mathbf{QP} = \mathbf{Q}$

Nonderogatory Matrices (1.4.4). A matrix $\mathbf{A} \in \mathcal{M}_n$ is nonderogatory if every eigenvalue has geometric multiplicity 1.

raising to an integer power, and (if nonsingular) inversion.

- $\lambda_i = t_{ii}, i = 1, \ldots, n.$
- det $\mathbf{T} = \prod_{i=1}^{n} t_{ii}$.
- rnk $\mathbf{T} \geq \#$ of nonzero t_{ii} .
- (0.9.4, p62) For a block-triangular

 $\mathbf{T} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C} \end{bmatrix}$

the eigenvalues are those of $\mathbf{A} \in \mathcal{M}_n$ together with those of $\mathbf{C} \in \mathcal{M}_m$, c.m. Thus, det $\mathbf{T} = \det \mathbf{A} \det \mathbf{C}$. Further,

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{C}^{-1} \end{bmatrix}$$

Unitary Matrices (2.1). A complex matrix $\mathbf{U} \in \mathcal{M}_n$ is unitary if $\mathbf{U}^H \mathbf{U} = \mathbf{I}$.

- Unitary matrices are closed under multiplication, raising to an integer power, and inversion.
- **U** is unitary iff \mathbf{U}^H is unitary.
- U is unitary iff $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$ for all x.
- $|\lambda_i| = 1, i = 1, \dots, n.$
- $|\det \mathbf{U}| = 1.$
- A square matrix is unitary iff its columns form an orthonormal basis.
- The space of unitary matrices in \mathcal{M}_n is parametrized by n^2 free real variables and called *unitary group*.
- and called *unitary group*. • U is unitary iff $\mathbf{U} = e^{j\mathbf{K}}$ or $j\mathbf{K} = \ln(\mathbf{U})$ for some Hermitian K (no 1:1 mapping).
- (Cayley transform) U is unitary iff $U = (I + jK)^{-1}(I - jK)$ for some Hermitian K.

Permutation Matrices (0.9.5). $\mathbf{A} \in \mathcal{M}_n$ is a permutation matrix if its columns are a permutation of the columns of \mathbf{I} .

Matrix Relations

Similarity (1.3). A matrix $\mathbf{A} \in \mathcal{M}_n$ is similar to a matrix $\mathbf{B} \in \mathcal{M}_n$ if there exists a nonsingular matrix $\mathbf{S} \in \mathcal{M}_n$ s.t. $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$.

• (*p43*) Similarity invariants are: trace, determinant, rank, characteristic polynomial, eigenvalues.

Unitary Equivalence (2.2). A matrix $\mathbf{A} \in \mathcal{M}_n$ is unitarily equivalent (or unitarily similar) to a matrix $\mathbf{B} \in \mathcal{M}_n$ if there exists a unitary matrix $\mathbf{U} \in \mathcal{M}_n$ s.t. $\mathbf{B} = \mathbf{U}^H \mathbf{A} \mathbf{U}$.

• (2.2.2) Additional unitary similarity invariants are: Frobenius norm (and thus tr $\mathbf{A}^{H}\mathbf{A}$).

 $\mathbf{A}(\mathbf{I} + \mathbf{A})^{-1} = \mathbf{I} - (\mathbf{I} + \mathbf{A})^{-1}.$

Decompositions

Minimum-Rank Factorization (0.4.6e). Every rank- $k \mathbf{A} \in \mathcal{M}_{m,n}$ may be written as $\mathbf{A} = \mathbf{X}\mathbf{B}\mathbf{Y}$ with $\mathbf{X} \in \mathcal{M}_{m,k}$, $\mathbf{Y} \in \mathcal{M}_{k,n}$, and $\mathbf{B} \in \mathcal{M}_k$. In particular, a rank-1 matrix may be written as $\mathbf{A} = \mathbf{x}\mathbf{y}^H$.

Singular Value Decomposition (7.3.5). Every rank-k matrix $\mathbf{A} \in \mathcal{M}_{m,n}$ may be written as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}$$

where $\mathbf{U} \in \mathcal{M}_m$ and $\mathbf{V} \in \mathcal{M}_n$ are unitary. The matrix $\mathbf{\Sigma} \in \mathcal{M}_{m,n}$ contains the k nonzero entries $\sigma_{11}, \ldots, \sigma_{kk}$ in nonincreasing order and zeros elsewhere.

- The real singular values $\sigma_i = \sigma_{ii}$ are the nonnegative square roots of the eigenvalues of $\mathbf{A}\mathbf{A}^H$ and therefore unique.
- The columns of U are eigenvectors of AA^H, the columns of V are eigenvectors of A^HA.
- (p422) The first k columns of U form an orthonormal basis for the range of A, the last n-k columns of V form an orthonormal basis for the null space of A.
- (*p*418) The singular values are invariant under conjugation, transposition, and left or right multiplication with a unitary matrix.
- $\operatorname{rnk} \mathbf{A} = \#$ nonzero singular values.

Schur Triangularization (2.3). Every $\mathbf{A} \in \mathcal{M}_n$ is unitarily similar to an upper triangular matrix, i.e., $\mathbf{U}^H \mathbf{A} \mathbf{U} = \mathbf{T}$, with $t_{ii} = \lambda_i, i = 1, ..., n$. Neither **U** nor **T** are unique.

QR Factorization (2.6). Every $\mathbf{A} \in \mathcal{M}_{n,m}$ with $n \geq m$ can be written as $\mathbf{A} = \mathbf{QR}$, where $\mathbf{Q} \in \mathcal{M}_{n,m}$ has orthonormal columns and $\mathbf{R} \in \mathcal{M}_m$ is upper triangular.

• If A is nonsingular, then R may be chosen s.t. all r_{ii} are positive, in which event both Q and R are unique.

Cholesky Decomposition (7.2.9). A matrix $\mathbf{A} \in \mathcal{M}_n$ is positive definite iff there is a nonsingular lower triangular $\mathbf{L} \in \mathcal{M}_n$ with positive diagonal entries s.t. $\mathbf{A} = \mathbf{L}\mathbf{L}^H$ (or an upper triangular \mathbf{R} with $\mathbf{A} = \mathbf{R}^H \mathbf{R}$).

kth Root (7.2.6). For any positive (semi)definite matrix $\mathbf{A} \in \mathcal{M}_n$, there is a unique positive (semi)definite Hermitian kth (k > 0) root $\mathbf{B} \in \mathcal{M}_n$ s.t. $\mathbf{B}^k = \mathbf{A}$. This kth root is denoted by $\mathbf{B} = \mathbf{A}^{1/k}$.

- $\bullet \mathbf{AB} = \mathbf{BA}.$
- $\operatorname{rnk} \mathbf{B} = \operatorname{rnk} \mathbf{A}$.
- **B** is positive definite iff **A** is.
- $\mathbf{B} = p(\mathbf{A})$ for some polynomial $p(\cdot)$.
- (p54) Every diagonalizable matrix has a square root.

Matrix Operators

Kronecker Product (II 4). For $\mathbf{A} \in \bullet$ (II 4.3) $\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A}) \operatorname{vec} \mathbf{B}$ $\mathcal{M}_{m,n}$ and $\mathbf{B} \in \mathcal{M}_{p,q}$, $\operatorname{vec}(\mathbf{ABC}) = (\mathbf{B}^T \otimes \mathbf{I}) \operatorname{vec} \mathbf{A}$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \cdots & \vdots \end{bmatrix}$$

$$\begin{bmatrix} a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

• (II 4.2) $(\mathbf{A} \otimes \mathbf{B})^H = \mathbf{A}^H \otimes \mathbf{B}^H$

$$(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C})$$

$$(\mathbf{A} + \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{C}.$$

• (*II 4.2.10*) Mixed products:

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{A}\mathbf{C} \otimes \mathbf{B}\mathbf{D}.$$

• Inversion: If **A** and **B** nonsingular, then $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}.$ • (II 4.3) $\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A}) \operatorname{vec} \mathbf{B}$ $\operatorname{vec}(\mathbf{AB}) = (\mathbf{B}^T \otimes \mathbf{I}) \operatorname{vec} \mathbf{A}$ $= (\mathbf{I} \otimes \mathbf{A}) \operatorname{vec} \mathbf{B}.$ • (II p. 252) $\operatorname{vec}^T(\mathbf{Y})(\mathbf{A} \otimes \mathbf{B}) \operatorname{vec}(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^T \mathbf{Y}^T \mathbf{B} \mathbf{X})$

Hadamard Product (II 5). For $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m.n}$

$$\mathbf{A} \circ \mathbf{B} = [a_{ij}b_{ij}] \in \mathcal{M}_{m,n}.$$

- (II 5.1.7) $\operatorname{rnk} \mathbf{A} \circ \mathbf{B} \leq \operatorname{rnk} \mathbf{A} \operatorname{rnk} \mathbf{B}.$
- (II p311) det $\mathbf{A} \circ \mathbf{B} \ge \det \mathbf{A} \det \mathbf{B}$.