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Matrix Taxonomy

Schur triang.

Defective

Skew-
Hermitian

Positive
definite

Cholesky dcp. k-th root

Nonsingular Matrices (0.5).

’ Positive
definite

A matrix A € M,, is nonsingular iff
o A~! exists edet A #£0
ernk A =n edimR(A)=n
e rows (cols) are lin- ¢ 0 ¢ o(A)
early independent

Nilpotent Matrices (p39). A matrix A €

M, is nilpotent to index k if A¥ = 0 but

(diagonalizable)

QR decomposition
SVD decomposition

Nonsquare

Nondefective

Hermitian Matrices (4.1.1). A matrix
A € M, is Hermitian if A = AH |

e A Hermitian matrix is parametrized by
n? free real variables.

e (/.1.1.1) For any B € M,,, B + B¥,
BB, and BB are Hermitian.

e (4/.1.1.2,3) Hermitian matrices are closed
under addition, multiplication by a
scalar, raising to an integer power, and
(if nonsingular) inversion.

e (4.1.2) Any matrix A has a unique de-
composition A = B 4 jC where B and
C are Hermitian: B = (A + Af)/2 and
C = (A — Af)/(2))

e (/.1.3¢c) The eigenvalues of a Hermitian
matrix are all real.

e (4.1.4a) A is Hermitian iff x7 Ax is real
for all x € C".

e (4.1.4c) A is Hermitian iff S AS is Her-
mitian for all S € M,, (or: iff xT Ay =
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Matrix Properties

Eigenvalues and -vectors (1.1.2). If A €
C and x # 0 satifsy the equation Ax = \x,
they are considered eigenvalue and eigenvec-
tor, respectively, of the matrix A € M,,.
The eigenvalue spectrum o(A) of A is the
set of all eigenvalues.

e (1.2.4) The eigenvalue spectrum o(A)
coincides with the roots of the charac-
teristic polynomial pa(t) = det(tI — A).

e (1.2.6) Every A € M, has exactly
n eigenvalues, counting multiplicities
(c.m.).

o (2.4.2, Cayley-Hamilton) pa(A) = 0. If
A is nonsingular, then there is a polyno-
mial ¢(t) of degree at most n — 1, such
that A=1 = q(A).

o (1.4.1) The eigenvalues of AT are the
same as those of A, c.m. The eigenval-
ues of AH are the complex conjugates of
the eigenvalues of A, c.m.

o (1.4.2) The set of eigenvectors associated
with a particular A € o(A) is a subspace
of C™, called eigenspace of A correspond-
ing to .

e (1.4.8) The dimension of the eigenspace
of A € M,, corresponding to the eigen-
value A is its geometric multiplicity.

e (1.4.8) The multiplicity of A as a zero
of pa(t) is the algebraic multiplicity of
A. The algebraic multiplicity is greater
or equal than the geometric multiplicity.

e (1.3.8) Eigenvectors corresponding to
different eigenvalues are linearly indepen-
dent.

e (1.3.20) Be A € M,,, , and B € M,, ..
Then BA has the same eigenvalues as
AB, c.m., together with an additional
n —m eigenvalues equal to 0.

e (p37) For nonsingular A € M, if A €
o(A), then A™! € o(A™1), correspond-
ing to the same eigenvector.

o (p43) If X € 0(A), then \* € o(AF).

eIf A co(A), then (1+XA) e c(I+ A).

e (4.53.1, Weyl) For Hermitian A, B € M,,,
with their eigenvalues arranged in in-
creasing order, for k =1,...,n:

A(A) +A1(B) < A (A+B)
® (4.5.9, Ostrowski) For A € M, Hermi-

lg.eps (0, 0)

Submatrices (0.7). With index sets a C
{1,...,m}, BC{l,...,n} and A € My, p,
A(a, ) denotes the submatrix that is in-
dexed by rows a: and columns f3.
eFor A e M,,,if a =0, Ao, 3) = A(«)
is a principal submatriz of A.
e The determinant of a square submatrix
of A € M,, ,, is called a minor.
e The determinant of a principal subma-
trix of A € M,, is a principal minor.

Adjoint Matrix (0.8.2). The adjoint of
A € M, is the matrix B € M,, of cofac-
tors defined by

bij = (*1)i+j det A],
o (adjA)A = A(adj A) = (det A)L
o If A invertible, A~' = (det™" A)adj A.

Range and Null Space (0.2.3). The
range of a matrix A € M,, ,, is
R(A)={yeC":y=Ax, xe C"}.
The null space of a matrix A € M,, , is
N(A)={xeC": Ax=0}.

¢ (0.2.8) dimR(A) + dim N (A) = n.

e (0.4.49) dimR(A) =rnk A.

e (0.6.6) R(A) = N*-(AH).

Rank (0.4). The rank of a matrix
A € M,, , is the largest number of rows
(columns) of A that constitute a linearly
independent set.

e (0.4.4) kA =
dim NV (A).

e (0.4.6a) A, A" AT A* have the same
rank.

e (0.4.6b) rank is unchanged by left/right
multiplication with a nonsingular ma-
trix.

e (0.4.6c) If A,B € M,, ,,, then rnk A =
rnk B iff there are nonsingular X € M,,
and Y € M,, s.t. B=XAY.

e (0.4.6d) rmnk AF A =1k A.

e (0.4.5a) rnk A < min(m,n).

e (0.4.5¢) It A € My, ), and B € My,

mk A +mkB -k <rnk AB

rnk AB < min(rnk A, rnk B).

o (0.4.5d) I A,B € My,
k(A + B) < rnk A + rnk B.
° (p?5) ForHA e M,, )

dimR(A) = n —



A1 £ 0.
e (p37) N\i=0,i=1,...,n..

Idempotent Matrices (p37). A matrix
P € M,, is idempotent if P2 = P.

ernkP =trP.

e (p37) ;i € {0,1}, i =1,...,n. The geo-
metric multiplicity of the eigenvalue 1 is
rnk P.

o P I—P, and I-P¥ are all idempotent.

ePI-P)=(1I-P)P=0.

e Px = x iff x lies in the range of P.

e N(P)=R(I-P).

e (TODO) P is its own generalized inverse,
Pt

Nondefective (Diagonalizable) Matri-
ces (1.5.6). A matrix A € M,, is diagonal-
izable if it is similar to a diagonal matrix,
ie, A=SAS™!.

e (1.3.7) The columns of S are eigenvec-
tors of A, the diagonal entries of A cor-
responding eigenvalues.

e (1.4.4) A is diagonalizable iff it is non-
defective, i.e., the geometric multiplicity
is equal to the algebraic multiplicity for
each eigenvalue.

e (1.3.9) If A has n distinct eigenvalues, it
is diagonalizable.

e (p46) rnk A = # nonzero eigenvalues.

Normal Matrices (2.5). A matrix A €

M,, is normal if AHA = AAH.

e (2.5.4) A is normal iff it is unitarily sim-
ilar to a diagonal matrix.

e (2.5.4) A is normal iff it has an orthonor-
mal set of n eigenvectors.

e Normal matrices are closed under uni-
tary equivalence, raising to an integer
power, and (if nonsingular) inversion.

e The singular values of a normal matrix
are the absolute values of the eigenval-
ues.

e The eigenvalues of A are the conju-
gates of the eigenvalues of A and have
the same eigenvectors.

e A normal matrix is Hermitian iff its
eigenvalues are all real.

e A normal matrix is skew-Hermitian iff its
eigenvalues all have zero real parts.

e A normal matrix is unitary iff its eigen-
values all have an absolute value of 1.

e If A and B are normal and AB = BA
then AB is normal.

_ e (25.4) Al = 24N

x? Aty for all x,y € C").

e (4.1.5, Spectral Theorem) A is Hermitian
iff there is a unitary matrix U € M,
and a real diagonal matrix A € M,, s.t.
A =UAUZ.

e If A and B are Hermitian then so are
AB + BA and j(AB — BA).

e (4.2.2, Rayleigh-Ritz)
min()\) < x7 Ax < max()\), x¥x = 1.

Positive Definite Matrices (4.1.1). A
Hermitian matrix A € M,, is positive def-
inite (pd) if x¥Ax > 0 for all nonzero
x € C*. If xHAx > 0, A is said to be
positive semidefinite (psd).

e (7.1.2) Any principal submatrix of a pd
matrix is pd.

e (7.1.8) Any nonnegative linear combina-
tion of psd matrices is psd.

e (7.1.4,5) For p(s)d A € M,, \; (for
1 =1,...,n), det A, tr A, and all prin-
cipal minors are positive (nonnegative).

o (7.2.1) A € M,, is p(s)d iff all eigenval-
ues are positive (nonnegative).

e (7.2.8) A € M,, is pd iff there is a non-
singular C € M,, s.t. A = CHC. Any
solution C can be written as C = VA!/2
with V € M,, unitary.

e (p409) Any psd rank-m matrix A € M,
may be written as A = CC with some
Ce My

e (7.1.6) For pd A € M,, and C € My, 1,
CHAC is psd, and rnk C?¥AC = rmk C.

Skew-Hermitian Matrices. A matrix
K € M,, is skew-Hermitian if K = K.

e (p175) S is Hermitian iff jS is skew-
Hermitian.

e K is skew-Hermitian iff xPKy
—xTKHfy for all x and y.

e Skew-Hermitian matrices are closed un-
der addition, multiplication by a scalar,
raising to an odd power, and (if nonsin-
gular) inversion.

e (p175) K? is Hermitian.

o (p175) The eigenvalues of a skew-
Hermitian matrix are either 0 or pure
imaginary.

Triangular Matrices (0.9.3). A matrix
T € M, is upper (lower) triangular if
tij = 0 for j < i (j > ). Strictness if true
for j <i (j > ).

e Upper/lower triangular matrices are
closed under addition, multiplication,

line



tian and S € M,, nonsingular, with all
eigenvalues arranged in increasing order,
forall k = 1,...,n there is a positive real
number 6 in the range

A (SSH) < 6, < M\, (SST) st
M (SAST) = 9,0 (A).

Inverse Matrix. For any A € M,, ,,

having a SVD A = UEVH, there is a
Moore- Pem'ose genemlzzed imverse or pSeu-
doinverse AT = VETUH | where 1 is the
transpose of 3 in which the positive singu-
lar values are replaced by their reciprocals.
o (p421) ATA and AAT are Hermitian.
o (p421) AATA = A and ATAAT = AT,
e (0.5) For any nonsingular A € M,
there is a unique AT = A=1st. A~TA =
AA' =1
o Any full-rank skinny A € M, ,, m > n,
has a left inverse B € M,, ,,, s.t. BA =
I,. The left inverse with the smallest
norm is the Hpseudomverse B = At =
(ATA)"IA
o Any full-rank fat A € My, ,,, m < n,
has a right inverse B € M,, ,,, s.t. AB =
I,,. The right inverse with the smallest
norm is the pseudoinverse B = Af =
AH (AAH)71
o (A (AHH and (AH)~1 =
(A—HH (if A nonsingular).
e (0.7.4, Matriz Inversion Lemma) Be
A € M,, and R € M,, nonsingular, and
X e My, and Y € My, . Then

(A+XRY) ! =A""

~ATX (R4 YATIX)
(L, +XY) ™!
-1 (Im — X (I, + YX) ! Y)

C

YA~!

(L, + XXH)~1
= 1 (T = X (eI, + XHX) T X)),

e For X € Mm,n and Y € Mn,mv

Y(I+XY) ™ = (I+YX)'Y.
e For nonsingular A,B € M,,
A'=B'+B Y (B-A)AL

o If A € M,, and the inverses exist, any
pair of A, (cI — A)™!, and (eI + A)™!
commutes. Further,

AD-A)'=1-A)"'-1

AT o oanN—1 - v o an—1

lg.eps (0, 1)

rnk A > # nonzero eigenvalues.
(p46) Equality for diagonalizable A.

Trace (0.4). For A € My, tr A =3""  a;.

¢ (1.2.12) tr A=3",
o tr(aA) = atr(A).
o tr(AT) = tr(A).
e tr(A + B) = tr(A) + tr(B).
e tr(AB) = tr(BA).
e tr(ab”) = alb.
e tr(ab?) = a’b.
¢ tr(ABCD) = tr(BCDA)
= tr(CDAB) = tr(DABC).
e tr(A ®B) = tr(A) tr(B).

Ai(A).

Determinant (0.3). For A € M,,,

det A =37 (=1)"*a;; det Ay
=i (=1 ag; det Ay,

where A;; € M,y is the submatrix ob-
tained by deleting row ¢ and column j.

e (1.2.12) det A =TI \;(A).

e (0.3.1) det AT = det A.

e (0.5.1) det A = det A.

e detcA = c"det A.

e Interchanging any pair of columns of A
multiplies det A by —1 (likewise rows).
e Multiplying any column of A by ¢ multi-

plies det A by ¢ (likewise rows).

e Adding any multiple of one column onto
another column leaves det A unaltered
(likewise rows).

e For A;B € M,,, det AB = det A det B.

e For nonsingular A € M,,,
det(A + xy”) = det(A) (1 + y" A 'x).

oIf A e M,, and D € My,

det [é g} =detQ
= det(A)det(D — CA™'B)
= det(D) det(A — BD'C).

The quantity D — CA™!'B is called the
Schur complement of A in Q.
For A,B,C,D € M,,

AC = CA : detQ = det(AD — CB)
AB = BA : det Q = det(DA — CB)
DB = BD : det Q = det(DA — BC)
DC = CD : det Q = det(AD — BC)

e (7.8.1, Hadamard’s inequality) 1f A
positive bemldeﬁnite, then
det A <TT%

—1 @is-



~ e (pl11) The direct sum A; @ ...

@ Ay is

normal iff each Aj; is normal.

Projection Matrices. A matrix P € M,,
is a projection matrix if it is Hermitian and
idempotent, i.e., P¥ = P2 = P.
e P is positive semidefinite.
eI — P is a projection matrix.
e With any subspace & C C", any vector
x € C" can be decomposed as
X = P5x+P§X with PSl =1, —Ps
where Pgs is the unique projection matrix
on S. Also, R(Ps) = S.
e Be § = R(A). Then the projection ma-
trix on S is Ps = AAT.
If B € M, is a basis for the subspace
S, then Ps = B(BfB)"'B%.
If U is a unitary basis for the subspace
S, then Ps = UU#Y
o If P and Q are projection matrices, then
the following are equivalent:
o P — Q is a projection matrix
o P — Q is positive semidefinite
cPQ=1Q
o QP =Q
Nonderogatory Matrices (1.4.4). A ma-

trix A € M,, is nonderogatory if every
eigenvalue has geometric multiplicity 1.

raising to an integer power, and (if non-
singular) inversion.
o\, =1, 1= 1
edet T =1II'L
ernkT > # of nonzero ti;.
e (0.9.4, p62) For a block-triangular
A B
w-[o 2
the eigenvalues are those of A € M,
together with those of C € M,,, c.m.
Thus, det T = det A det C. Further,
T-1_ |[AT0 —AT'BC!
0 c! '

Unitary Matrices (2.1). A complex ma-

trix U € M,, is unitary if UPU = 1.

e Unitary matrices are closed under mul-
tiplication, raising to an integer power,
and inversion.

e U is unitary iff U is unitary.

o U is unitary iff ||Ux|| = ||x|| for all x.
olN|=1i=1,.

o |detU| = 1.

e A square matrix is unitary iff its columns
form an orthonormal basis.

e The space of unitar, ry matrices in M,
is parametrized by n° free real variables
and called unitary group.

e U is unitary iff U = /¥ or jK = In(U)
for some Hermitian K (no 1:1 mapping).

e (Cayley transform) U is unitary iff
U = I+ jK) (I - jK) for some Her-
mitian K.

Permutation Matrices (0.9.5). A € M,

is a permutation matrix if its columns are
a permutation of the columns of 1.

Matrix Relations

Similarity (7.3). A matrix A € M,

is similar to a matrix B € M,, if there

exists a nonsingular matrix S € M, s.t.

B =S"'AS.

e (p48) Similarity invariants are: trace, de-
terminant, rank, characteristic polyno-
mial, eigenvalues.

Unitary Equivalence (2.2). A matrix

A € M,, is unitarily equivalent (or unitarily

similar) to a matrix B € M,, if there exists

a unitary matrix U € M,, s.t. B = U2 AU.

e (2.2.2) Additional unitary similarity in-

variants are: Frobenius norm (and thus
tr ATA).

line



Al+A) "=1—(1+A) "

Decompositions

Minimum-Rank Factorization (0.4.6¢).
Every rank-k A € M,, , may be written
as A = XBY with X € M, 1, Y € My,
and B € M. In particular, a rank-1 ma-
trix may be written as A = xy".

Singular Value Decomposition (7.3.5).
Every rank-k matrix A € M,,,, may be
written as
A=UxV7

where U € M,, and V € M, are uni-
tary. The matrix 3 € M,, , contains the k
nonzero entries oy1,...,0k, i nonincreas-
ing order and zeros elsewhere.

e The real singular values o; = o;; are the
nonnegative square roots of the eigenval-
ues of AAH and therefore unique.

e The columns of U are eigenvectors of
AAH the columns of V are eigenvectors
of AHA.

o (p422) The first k columns of U form an
orthonormal basis for the range of A, the
last n—k columns of V form an orthonor-
mal basis for the null space of A.

e (p418) The singular values are invariant
under conjugation, transposition, and
left or right multiplication with a unitary
matrix.

e rnk A = # nonzero singular values.

Schur Triangularization (2.3). Every
A € M,, is unitarily similar to an upper
triangular matrix, i.e., UPYAU = T, with
tii = X\, i = 1,...,n. Neither U nor T are
unique.

QR Factorization (2.6). Every A €
My, with n > m can be written as A =
QR, where Q € M,, ,, has orthonormal
columns and R € M,, is upper triangular.
e If A is nonsingular, then R may be cho-
sen s.t. all r;; are positive, in which event
both Q and R are unique.

Cholesky Decomposition (7.2.9). A ma-
trix A € M,, is positive definite iff there is a
nonsingular lower triangular L € M,, with
positive diagonal entries s.t. A = LL# (or
an upper triangular R with A = R¥R).

kth Root (7.2.6). For any positive
(semi)definite matrix A € M, there is
a unique positive (semi)definite Hermitian
kth (k > 0) root B € M,, s.t. B¥ = A.
This kth root is denoted by B = Al/k,

e AB = BA.

ernkB =rnk A.

e B is positive definite iff A is.

e B = p(A) for some polynomial p(-).

e (p54) Every diagonalizable matrix has a

square root.

Matrix Operators

Kronecker Product (II 4). For A €
My, and B e M

p,q>
allB alnB
A®B= : :
arnlB a'rnnB

o (I14.2) (AeB)" =A" @B”
(A@B)C=A® (B®C)
(A+B)eC=A®C+B®C.

e (II 4.2.10) Mixed products:

(A®B)(C®D)=AC®BD.

e Inversion: If A and B nonsingular, then

(AoB) '=A"'@B .

lg.eps (0, 2)

e (I 4.3) vec(ABC) = (CT @ A) vecB
vec(AB) = (BT @ I) vec A
= (I® A)vecB.

o (ITp. 252)
vec” (Y)(A®B) vec(X) = tr(ATYTBX)

Hadamard Product (II 5). For A,B ¢
Mm,n
A o B = [a;5bi5] € My .
o (I 5.1.7)
rmk A o B <rnk A rnkB.
e (II p311) det A o B > det A det B.



