Taxonomy of $\boldsymbol{n} \times \boldsymbol{n}$ Matrices

Matrix Taxonomy

Nonsingular Matrices (0.5).

A matrix $\mathbf{A} \in \mathcal{M}_{n}$ is nonsingular iff

- \mathbf{A}^{-1} exists
- $\operatorname{det} \mathbf{A} \neq 0$
- $\operatorname{rnk} \mathbf{A}=n \quad \bullet \operatorname{dim} \mathcal{R}(\mathbf{A})=n$
- rows (cols) are lin- $\bullet 0 \notin \sigma(\mathbf{A})$ early independent
Nilpotent Matrices (p39). A matrix $\mathbf{A} \in$ \mathcal{M}_{n} is nilpotent to index k if $\mathbf{A}^{k}=\mathbf{0}$ but

Hermitian Matrices (4.1.1). A matrix $\mathbf{A} \in \mathcal{M}_{n}$ is Hermitian if $\mathbf{A}=\mathbf{A}^{H}$.

- A Hermitian matrix is parametrized by n^{2} free real variables.
- (4.1.1.1) For any $\mathbf{B} \in \mathcal{M}_{n}, \mathbf{B}+\mathbf{B}^{H}$, $\mathbf{B}^{H} \mathbf{B}$, and $\mathbf{B B}{ }^{H}$ are Hermitian.
- (4.1.1.2,3) Hermitian matrices are closed under addition, multiplication by a scalar, raising to an integer power, and (if nonsingular) inversion.
- (4.1.2) Any matrix \mathbf{A} has a unique decomposition $\mathbf{A}=\mathbf{B}+j \mathbf{C}$ where \mathbf{B} and \mathbf{C} are Hermitian: $\mathbf{B}=\left(\mathbf{A}+\mathbf{A}^{H}\right) / 2$ and $\mathbf{C}=\left(\mathbf{A}-\mathbf{A}^{H}\right) /(2 j)$
- (4.1.3c) The eigenvalues of a Hermitian matrix are all real.
- (4.1.4a) \mathbf{A} is Hermitian iff $\mathbf{x}^{H} \mathbf{A} \mathbf{x}$ is real for all $\mathbf{x} \in \mathbb{C}^{n}$.
- (4.1.4c) \mathbf{A} is Hermitian iff $\mathbf{S}^{H} \mathbf{A S}$ is Hermitian for all $\mathbf{S} \in \mathcal{M}_{n}$ (or: iff $\mathbf{x}^{H} \mathbf{A} \mathbf{y}=$

Matrix Properties

Eigenvalues and -vectors (1.1.2). If $\lambda \in$ \mathbb{C} and $\mathbf{x} \neq \mathbf{0}$ satifsy the equation $\mathbf{A x}=\lambda \mathbf{x}$, they are considered eigenvalue and eigenvector, respectively, of the matrix $\mathbf{A} \in \mathcal{M}_{n}$. The eigenvalue spectrum $\sigma(\mathbf{A})$ of \mathbf{A} is the set of all eigenvalues.

- (1.2.4) The eigenvalue spectrum $\sigma(\mathbf{A})$ coincides with the roots of the characteristic polynomial $p_{\mathbf{A}}(t)=\operatorname{det}(t \mathbf{I}-\mathbf{A})$.
- (1.2.6) Every $\mathbf{A} \in \mathcal{M}_{n}$ has exactly n eigenvalues, counting multiplicities (c.m.).
- (2.4.2, Cayley-Hamilton) $p_{\mathbf{A}}(\mathbf{A})=\mathbf{0}$. If \mathbf{A} is nonsingular, then there is a polynomial $q(t)$ of degree at most $n-1$, such that $\mathbf{A}^{-1}=q(\mathbf{A})$.
- (1.4.1) The eigenvalues of \mathbf{A}^{T} are the same as those of \mathbf{A}, c.m. The eigenvalues of \mathbf{A}^{H} are the complex conjugates of the eigenvalues of \mathbf{A}, c.m.
- (1.4.2) The set of eigenvectors associated with a particular $\lambda \in \sigma(\mathbf{A})$ is a subspace of \mathbb{C}^{n}, called eigenspace of \mathbf{A} corresponding to λ.
- (1.4.3) The dimension of the eigenspace of $\mathbf{A} \in \mathcal{M}_{n}$ corresponding to the eigenvalue λ is its geometric multiplicity.
- (1.4.3) The multiplicity of λ as a zero of $p_{\mathbf{A}}(t)$ is the algebraic multiplicity of λ. The algebraic multiplicity is greater or equal than the geometric multiplicity.
- (1.3.8) Eigenvectors corresponding to different eigenvalues are linearly independent.
- (1.3.20) $\mathrm{Be} \mathbf{A} \in \mathcal{M}_{m, n}$ and $\mathbf{B} \in \mathcal{M}_{n, m}$. Then BA has the same eigenvalues as AB, c.m., together with an additional $n-m$ eigenvalues equal to 0 .
- (p37) For nonsingular $\mathbf{A} \in \mathcal{M}_{n}$, if $\lambda \in$ $\sigma(\mathbf{A})$, then $\lambda^{-1} \in \sigma\left(\mathbf{A}^{-1}\right)$, corresponding to the same eigenvector.
- (p43) If $\lambda \in \sigma(\mathbf{A})$, then $\lambda^{k} \in \sigma\left(\mathbf{A}^{k}\right)$.
- If $\lambda \in \sigma(\mathbf{A})$, then $(1+\lambda) \in \sigma(\mathbf{I}+\mathbf{A})$.
- (4.3.1, Weyl) For Hermitian $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{n}$, with their eigenvalues arranged in increasing order, for $k=1, \ldots, n$:

$$
\begin{aligned}
\lambda_{k}(\mathbf{A})+\lambda_{1}(\mathbf{B}) & \leq \lambda_{k}(\mathbf{A}+\mathbf{B}) \\
& \leq \lambda_{k}(\mathbf{A})+\lambda_{n}(\mathbf{B}) .
\end{aligned}
$$

- (4.5.9, Ostrowski) For $\mathbf{A} \in \mathcal{M}_{n}$ Hermi-

Submatrices (0.7). With index sets $\alpha \subseteq$ $\{1, \ldots, m\}, \beta \subseteq\{1, \ldots, n\}$ and $\mathbf{A} \in \mathcal{M}_{m, n}$, $\mathbf{A}(\alpha, \beta)$ denotes the submatrix that is indexed by rows α and columns β.

- For $\mathbf{A} \in \mathcal{M}_{n}$, if $\alpha=\beta, \mathbf{A}(\alpha, \beta)=\mathbf{A}(\alpha)$ is a principal submatrix of \mathbf{A}.
- The determinant of a square submatrix of $\mathbf{A} \in \mathcal{M}_{m, n}$ is called a minor.
- The determinant of a principal submatrix of $\mathbf{A} \in \mathcal{M}_{n}$ is a principal minor.
Adjoint Matrix (0.8.2). The adjoint of $\mathbf{A} \in \mathcal{M}_{n}$ is the matrix $\mathbf{B} \in \mathcal{M}_{n}$ of cofactors defined by

$$
b_{i j}=(-1)^{i+j} \operatorname{det} \mathbf{A}_{j i} .
$$

- $(\operatorname{adj} \mathbf{A}) \mathbf{A}=\mathbf{A}(\operatorname{adj} \mathbf{A})=(\operatorname{det} \mathbf{A}) \mathbf{I}$.
- If \mathbf{A} invertible, $\mathbf{A}^{-1}=\left(\operatorname{det}^{-1} \mathbf{A}\right) \operatorname{adj} \mathbf{A}$.

Range and Null Space (0.2.3). The range of a matrix $\mathbf{A} \in \mathcal{M}_{m, n}$ is $\mathcal{R}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{C}^{m}: \mathbf{y}=\mathbf{A x}, \mathbf{x} \in \mathbb{C}^{n}\right\}$.
The null space of a matrix $\mathbf{A} \in \mathcal{M}_{m, n}$ is $\mathcal{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{C}^{n}: \mathbf{A x}=\mathbf{0}\right\}$.

- (0.2.3) $\operatorname{dim} \mathcal{R}(\mathbf{A})+\operatorname{dim} \mathcal{N}(\mathbf{A})=n$.
- (0.4.4g) $\operatorname{dim} \mathcal{R}(\mathbf{A})=\operatorname{rnk} \mathbf{A}$.
- (0.6.6) $\mathcal{R}(\mathbf{A})=\mathcal{N}^{\perp}\left(\mathbf{A}^{H}\right)$.

Rank (0.4). The rank of a matrix $\mathbf{A} \in \mathcal{M}_{m, n}$ is the largest number of rows (columns) of \mathbf{A} that constitute a linearly independent set.

- (0.4.4) $\operatorname{rnk} \mathbf{A}=\operatorname{dim} \mathcal{R}(\mathbf{A})=n-$ $\operatorname{dim} \mathcal{N}(\mathbf{A})$.
- (0.4.6a) $\mathbf{A}, \mathbf{A}^{H}, \mathbf{A}^{T}, \mathbf{A}^{*}$ have the same rank.
- (0.4.6b) rank is unchanged by left/right multiplication with a nonsingular matrix.
- (0.4.6c) If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m, n}$, then $\operatorname{rnk} \mathbf{A}=$ rnk \mathbf{B} iff there are nonsingular $\mathbf{X} \in \mathcal{M}_{n}$ and $\mathbf{Y} \in \mathcal{M}_{m}$ s.t. $\mathbf{B}=\mathbf{X A Y}$.
- (0.4.6d) $\mathrm{rnk}^{\mathrm{H}} \mathbf{A}=\operatorname{rnk} \mathbf{A}$.
- (0.4.5a) $\mathrm{rnk} \mathbf{A} \leq \min (m, n)$.
- (0.4.5c) If $\mathbf{A} \in \mathcal{M}_{m, k}$ and $\mathbf{B} \in \mathcal{M}_{k, n}$
$\operatorname{rnk} \mathbf{A}+\operatorname{rnk} \mathbf{B}-k \leq \operatorname{rnk} \mathbf{A B}$
$\operatorname{rnk} \mathbf{A B} \leq \min (\operatorname{rnk} \mathbf{A}, \operatorname{rnk} \mathbf{B})$.
- (0.4.5d) If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m, n}$,
$\operatorname{rnk}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rnk} \mathbf{A}+\operatorname{rnk} \mathbf{B}$.
- (p95) For $\mathbf{A} \in \mathcal{M}_{n}$,
$\mathbf{A}^{k-1} \neq \mathbf{0}$.
- (p37) $\lambda_{i}=0, i=1, \ldots, n$..

Idempotent Matrices (p37). A matrix
$\mathbf{P} \in \mathcal{M}_{n}$ is idempotent if $\mathbf{P}^{2}=\mathbf{P}$.

- $\operatorname{rnk} \mathbf{P}=\operatorname{tr} \mathbf{P}$.
- (p37) $\lambda_{i} \in\{0,1\}, i=1, \ldots, n$. The geometric multiplicity of the eigenvalue 1 is rnk \mathbf{P}.
- $\mathbf{P}^{H}, \mathbf{I}-\mathbf{P}$, and $\mathbf{I}-\mathbf{P}^{H}$ are all idempotent.
- $\mathbf{P}(\mathbf{I}-\mathbf{P})=(\mathbf{I}-\mathbf{P}) \mathbf{P}=\mathbf{0}$.
- $\mathbf{P x}=\mathbf{x}$ iff \mathbf{x} lies in the range of \mathbf{P}.
- $\mathcal{N}(\mathbf{P})=\mathcal{R}(\mathbf{I}-\mathbf{P})$.
- (TODO) \mathbf{P} is its own generalized inverse, \mathbf{P}^{\dagger}.
Nondefective (Diagonalizable) Matrices (1.3.6). A matrix $\mathbf{A} \in \mathcal{M}_{n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., $\mathbf{A}=\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}$.
- (1.3.7) The columns of \mathbf{S} are eigenvectors of \mathbf{A}, the diagonal entries of $\boldsymbol{\Lambda}$ corresponding eigenvalues.
- (1.4.4) A is diagonalizable iff it is nondefective, i.e., the geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue.
- (1.3.9) If \mathbf{A} has n distinct eigenvalues, it is diagonalizable.
- (p46) $\operatorname{rnk} \mathbf{A}=\#$ nonzero eigenvalues.

Normal Matrices (2.5). A matrix $\mathbf{A} \in$ \mathcal{M}_{n} is normal if $\mathbf{A}^{H} \mathbf{A}=\mathbf{A} \mathbf{A}^{H}$.

- (2.5.4) \mathbf{A} is normal iff it is unitarily similar to a diagonal matrix.
- (2.5.4) \mathbf{A} is normal iff it has an orthonormal set of n eigenvectors.
- Normal matrices are closed under unitary equivalence, raising to an integer power, and (if nonsingular) inversion.
- The singular values of a normal matrix are the absolute values of the eigenvalues.
- The eigenvalues of \mathbf{A}^{H} are the conjugates of the eigenvalues of \mathbf{A} and have the same eigenvectors.
- A normal matrix is Hermitian iff its eigenvalues are all real.
- A normal matrix is skew-Hermitian iff its eigenvalues all have zero real parts.
- A normal matrix is unitary iff its eigenvalues all have an absolute value of 1 .
- If \mathbf{A} and \mathbf{B} are normal and $\mathbf{A B}=\mathbf{B A}$ then $\mathbf{A B}$ is normal.
- (2.5.4) $\|A\|_{\mathrm{F}}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}$.
$\mathbf{x}^{H} \mathbf{A}^{H} \mathbf{y}$ for all $\left.\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}\right)$.
- (4.1.5, Spectral Theorem) A is Hermitian iff there is a unitary matrix $\mathbf{U} \in \mathcal{M}_{n}$ and a real diagonal matrix $\boldsymbol{\Lambda} \in \mathcal{M}_{n}$ s.t. $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{H}$.
- If \mathbf{A} and \mathbf{B} are Hermitian then so are $\mathbf{A B}+\mathbf{B A}$ and $j(\mathbf{A B}-\mathbf{B A})$.
- (4.2.2, Rayleigh-Ritz)

$$
\min (\lambda) \leq \mathbf{x}^{H} \mathbf{A} \mathbf{x} \leq \max (\lambda), \mathbf{x}^{H} \mathbf{x}=1
$$

Positive Definite Matrices (4.1.1). A Hermitian matrix $\mathbf{A} \in \mathcal{M}_{n}$ is positive definite (pd) if $\mathbf{x}^{H} \mathbf{A} \mathbf{x}>0$ for all nonzero $\mathbf{x} \in \mathbb{C}^{n}$. If $\mathbf{x}^{H} \mathbf{A} \mathbf{x} \geq 0, \mathbf{A}$ is said to be positive semidefinite (psd).

- (7.1.2) Any principal submatrix of a pd matrix is pd.
- (7.1.3) Any nonnegative linear combination of psd matrices is psd.
- (7.1.4,5) For $\mathrm{p}(\mathrm{s}) \mathrm{d} \mathbf{A} \in \mathcal{M}_{n}, \lambda_{i}$ (for $i=1, \ldots, n)$, $\operatorname{det} \mathbf{A}, \operatorname{tr} \mathbf{A}$, and all principal minors are positive (nonnegative).
- (7.2.1) $\mathbf{A} \in \mathcal{M}_{n}$ is $\mathrm{p}(\mathrm{s}) \mathrm{d}$ iff all eigenvalues are positive (nonnegative).
- (7.2.8) $\mathbf{A} \in \mathcal{M}_{n}$ is pd iff there is a nonsingular $\mathbf{C} \in \mathcal{M}_{n}$ s.t. $\mathbf{A}=\mathbf{C}^{H} \mathbf{C}$. Any solution \mathbf{C} can be written as $\mathbf{C}=\mathbf{V A}^{1 / 2}$ with $\mathbf{V} \in \mathcal{M}_{n}$ unitary.
- (p409) Any psd rank-m matrix $\mathbf{A} \in \mathcal{M}_{n}$ may be written as $\mathbf{A}=\mathbf{C}^{H} \mathbf{C}$ with some $\mathbf{C} \in \mathcal{M}_{m, n}$.
- (7.1.6) For pd $\mathbf{A} \in \mathcal{M}_{n}$ and $\mathbf{C} \in \mathcal{M}_{n, m}$, $\mathbf{C}^{H} \mathbf{A C}$ is psd, and $\operatorname{rnk} \mathbf{C}^{H} \mathbf{A C}=\operatorname{rnk} \mathbf{C}$.

Skew-Hermitian Matrices. A matrix $\mathbf{K} \in \mathcal{M}_{n}$ is skew-Hermitian if $\mathbf{K}=-\mathbf{K}^{H}$.

- (p175) \mathbf{S} is Hermitian iff $j \mathbf{S}$ is skewHermitian.
- \mathbf{K} is skew-Hermitian iff $\mathbf{x}^{H} \mathbf{K y}=$ $-\mathbf{x}^{H} \mathbf{K}^{H} \mathbf{y}$ for all \mathbf{x} and \mathbf{y}.
- Skew-Hermitian matrices are closed under addition, multiplication by a scalar, raising to an odd power, and (if nonsingular) inversion.
- (p175) \mathbf{K}^{2} is Hermitian.
- (p175) The eigenvalues of a skewHermitian matrix are either 0 or pure imaginary.
Triangular Matrices (0.9.3). A matrix $\mathbf{T} \in \mathcal{M}_{n}$ is upper (lower) triangular if $t_{i j}=0$ for $j<i(j>i)$. Strictness if true for $j \leq i(j \geq i)$.
- Upper/lower triangular matrices are closed under addition, multiplication,
tian and $\mathbf{S} \in \mathcal{M}_{n}$ nonsingular, with all eigenvalues arranged in increasing order, for all $k=1, \ldots, n$ there is a positive real number θ_{k} in the range

$$
\begin{array}{r}
\lambda_{1}\left(\mathbf{S S}^{H}\right) \leq \theta_{k} \leq \lambda_{n}\left(\mathbf{S S}^{H}\right) \quad \text { s.t. } \\
\lambda_{k}\left(\mathbf{S A S}^{H}\right)=\theta_{k} \lambda_{k}(\mathbf{A}) .
\end{array}
$$

Inverse Matrix. For any $\mathbf{A} \in \mathcal{M}_{m, n}$, having a SVD $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}$, there is a Moore-Penrose generalized inverse or pseudoinverse $\mathbf{A}^{\dagger}=\mathbf{V} \boldsymbol{\Sigma}^{\dagger} \mathbf{U}^{H}$, where $\boldsymbol{\Sigma}^{\dagger}$ is the transpose of $\boldsymbol{\Sigma}$ in which the positive singular values are replaced by their reciprocals.

- $(p 421) \mathbf{A}^{\dagger} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\dagger}$ are Hermitian.
- (p421) $\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A}=\mathbf{A}$ and $\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$.
- (0.5) For any nonsingular $\mathbf{A} \in \mathcal{M}_{n}$, there is a unique $\mathbf{A}^{\dagger}=\mathbf{A}^{-1}$ s.t. $\mathbf{A}^{-1} \mathbf{A}=$ $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$.
- Any full-rank skinny $\mathbf{A} \in \mathcal{M}_{m, n}, m \geq n$, has a left inverse $\mathbf{B} \in \mathcal{M}_{n, m}$ s.t. $\mathbf{B A}=$ \mathbf{I}_{n}. The left inverse with the smallest norm is the pseudoinverse $\mathbf{B}=\mathbf{A}^{\dagger}=$ $\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}$.
- Any full-rank fat $\mathbf{A} \in \mathcal{M}_{m, n}, m \leq n$, has a right inverse $\mathbf{B} \in \mathcal{M}_{n, m}$ s.t. $\mathbf{A} \overline{\mathbf{B}}=$ \mathbf{I}_{m}. The right inverse with the smallest norm is the pseudoinverse $\mathbf{B}=\mathbf{A}^{\dagger}=$ $\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1}$
- $\left(\mathbf{A}^{H}\right)^{\dagger}=\left(\mathbf{A}^{\dagger}\right)^{H}, \quad$ and $\left(\mathbf{A}^{H}\right)^{-1}=$ $\left(\mathbf{A}^{-1}\right)^{H}$ (if \mathbf{A} nonsingular).
- (0.7.4, Matrix Inversion Lemma) Be $\mathbf{A} \in \mathcal{M}_{m}$ and $\mathbf{R} \in \mathcal{M}_{n}$ nonsingular, and $\mathbf{X} \in \mathcal{M}_{m, n}$ and $\mathbf{Y} \in \mathcal{M}_{n, m}$. Then

$$
\begin{aligned}
&(\mathbf{A}+\mathbf{X R Y})^{-1}=\mathbf{A}^{-1} \\
&-\mathbf{A}^{-1} \mathbf{X}\left(\mathbf{R}^{-1}+\mathbf{Y} \mathbf{A}^{-1} \mathbf{X}\right)^{-1} \mathbf{Y} \mathbf{A}^{-1} \\
&\left(c \mathbf{I}_{m}\right.+\mathbf{X Y})^{-1} \\
&=\frac{1}{c}\left(\mathbf{I}_{m}-\mathbf{X}\left(c \mathbf{I}_{n}+\mathbf{Y X}\right)^{-1} \mathbf{Y}\right) \\
&\left(c \mathbf{I}_{m}+\mathbf{X} \mathbf{X}^{H}\right)^{-1} \\
&=\frac{1}{c}\left(\mathbf{I}_{m}-\mathbf{X}\left(c \mathbf{I}_{n}+\mathbf{X}^{H} \mathbf{X}\right)^{-1} \mathbf{X}^{H}\right)
\end{aligned}
$$

- For $\mathbf{X} \in \mathcal{M}_{m, n}$ and $\mathbf{Y} \in \mathcal{M}_{n, m}$,

$$
\mathbf{Y}(c \mathbf{I}+\mathbf{X Y})^{-1}=(c \mathbf{I}+\mathbf{Y X})^{-1} \mathbf{Y}
$$

- For nonsingular $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m}$

$$
\mathbf{A}^{-1}=\mathbf{B}^{-1}+\mathbf{B}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{A}^{-1}
$$

- If $\mathbf{A} \in \mathcal{M}_{m}$ and the inverses exist, any pair of $\mathbf{A},(c \mathbf{I}-\mathbf{A})^{-1}$, and $(c \mathbf{I}+\mathbf{A})^{-1}$ commutes. Further,

$$
\mathbf{A}(\mathbf{I}-\mathbf{A})^{-1}=(\mathbf{I}-\mathbf{A})^{-1}-\mathbf{I}
$$

rnk $\mathbf{A} \geq \#$ nonzero eigenvalues.
(p46) Equality for diagonalizable \mathbf{A}.
Trace (0.4). For $\mathbf{A} \in \mathcal{M}_{n}, \operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} a_{i i}$.

- (1.2.12) $\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} \lambda_{i}(\mathbf{A})$.
- $\operatorname{tr}(\alpha \mathbf{A})=\alpha \operatorname{tr}(\mathbf{A})$.
- $\operatorname{tr}\left(\mathbf{A}^{T}\right)=\operatorname{tr}(\mathbf{A})$.
- $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$.
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
- $\operatorname{tr}\left(\mathbf{a b}^{T}\right)=\underline{\mathbf{a}^{T} \mathbf{b}}$.
- $\operatorname{tr}\left(\mathbf{a b}^{H}\right)=\overline{\mathbf{a}^{H} \mathbf{b}}$.
- $\operatorname{tr}(\mathbf{A B C D})=\operatorname{tr}(\mathbf{B C D A})$
$=\operatorname{tr}(\mathbf{C D A B})=\operatorname{tr}(\mathbf{D A B C})$.
- $\operatorname{tr}(\mathbf{A} \otimes \mathbf{B})=\operatorname{tr}(\mathbf{A}) \operatorname{tr}(\mathbf{B})$.

Determinant (0.3). For $\mathbf{A} \in \mathcal{M}_{n}$, $\operatorname{det} \mathbf{A}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} \mathbf{A}_{i j}$

$$
=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} \mathbf{A}_{i j}
$$

where $\mathbf{A}_{i j} \in \mathcal{M}_{n-1}$ is the submatrix obtained by deleting row i and column j.

- (1.2.12) $\operatorname{det} \mathbf{A}=\Pi_{i=1}^{n} \lambda_{i}(\mathbf{A})$.
- (0.3.1) $\operatorname{det} \mathbf{A}^{T}=\operatorname{det} \mathbf{A}$.
- (0.3.1) $\operatorname{det} \mathbf{A}^{H}=\overline{\operatorname{det} \mathbf{A}}$.
- $\operatorname{det} c \mathbf{A}=c^{n} \operatorname{det} \mathbf{A}$.
- Interchanging any pair of columns of \mathbf{A} multiplies $\operatorname{det} \mathbf{A}$ by -1 (likewise rows).
- Multiplying any column of \mathbf{A} by c multiplies $\operatorname{det} \mathbf{A}$ by c (likewise rows).
- Adding any multiple of one column onto another column leaves $\operatorname{det} \mathbf{A}$ unaltered (likewise rows).
- For $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{n}$, $\operatorname{det} \mathbf{A B}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$.
- For nonsingular $\mathbf{A} \in \mathcal{M}_{n}$,
$\operatorname{det}\left(\mathbf{A}+\mathbf{x} \mathbf{y}^{H}\right)=\operatorname{det}(\mathbf{A})\left(1+\mathbf{y}^{H} \mathbf{A}^{-1} \mathbf{x}\right)$.
- If $\mathbf{A} \in \mathcal{M}_{n}$ and $\mathbf{D} \in \mathcal{M}_{k}$,

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\operatorname{det} \mathbf{Q} \\
& \quad=\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right) \\
&=\operatorname{det}(\mathbf{D}) \operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)
\end{aligned}
$$

The quantity $\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}$ is called the Schur complement of \mathbf{A} in \mathbf{Q}.
For $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} \in \mathcal{M}_{n}$
$\mathbf{A C}=\mathbf{C A}: \operatorname{det} \mathbf{Q}=\operatorname{det}(\mathbf{A D}-\mathbf{C B})$
$\mathbf{A B}=\mathbf{B A}: \operatorname{det} \mathbf{Q}=\operatorname{det}(\mathbf{D A}-\mathbf{C B})$
$\mathbf{D B}=\mathbf{B D}: \operatorname{det} \mathbf{Q}=\operatorname{det}(\mathbf{D A}-\mathbf{B C})$
$\mathbf{D C}=\mathbf{C D}: \operatorname{det} \mathbf{Q}=\operatorname{det}(\mathbf{A D}-\mathbf{B C})$

- (7.8.1, Hadamard's inequality) If \mathbf{A} is positive semidefinite, then
$\operatorname{det} \mathbf{A} \leq \prod_{i=1}^{n} a_{i i}$.
- (p111) The direct sum $\mathbf{A}_{1} \oplus \ldots \oplus \mathbf{A}_{k}$ is normal iff each \mathbf{A}_{j} is normal.
Projection Matrices. A matrix $\mathbf{P} \in \mathcal{M}_{n}$ is a projection matrix if it is Hermitian and idempotent, i.e., $\mathbf{P}^{H}=\mathbf{P}^{2}=\mathbf{P}$.
- \mathbf{P} is positive semidefinite.
$-\mathbf{I}-\mathbf{P}$ is a projection matrix.
- With any subspace $\mathcal{S} \subseteq \mathbb{C}^{n}$, any vector $\mathbf{x} \in \mathbb{C}^{n}$ can be decomposed as
$\mathbf{x}=\mathbf{P}_{\mathcal{S}} \mathbf{x}+\mathbf{P}_{\mathcal{S}}^{\perp} \mathbf{x}$ with $\mathbf{P}_{\mathcal{S}}^{\perp}=\mathbf{I}_{n}-\mathbf{P}_{\mathcal{S}}$
where $\mathbf{P}_{\mathcal{S}}$ is the unique projection matrix on \mathcal{S}. Also, $\mathcal{R}\left(\mathbf{P}_{\mathcal{S}}\right)=\mathcal{S}$.
- Be $\mathcal{S}=\mathcal{R}(\mathbf{A})$. Then the projection matrix on \mathcal{S} is $\mathbf{P}_{\mathcal{S}}=\mathbf{A} \mathbf{A}^{\dagger}$.
If $\mathbf{B} \in \mathcal{M}_{n, k}$ is a basis for the subspace \mathcal{S}, then $\mathbf{P}_{\mathcal{S}}=\mathbf{B}\left(\mathbf{B}^{H} \mathbf{B}\right)^{-1} \mathbf{B}^{H}$.
If \mathbf{U} is a unitary basis for the subspace \mathcal{S}, then $\mathbf{P}_{\mathcal{S}}=\mathbf{U} \mathbf{U}^{H}$.
- If \mathbf{P} and \mathbf{Q} are projection matrices, then the following are equivalent:
- $\mathbf{P}-\mathbf{Q}$ is a projection matrix
$-\mathbf{P}-\mathbf{Q}$ is positive semidefinite
- $\mathbf{P Q}=\mathbf{Q}$
- $\mathbf{Q P}=\mathbf{Q}$

Nonderogatory Matrices (1.4.4). A ma$\operatorname{trix} \mathbf{A} \in \mathcal{M}_{n}$ is nonderogatory if every eigenvalue has geometric multiplicity 1.
raising to an integer power, and (if nonsingular) inversion.

- $\lambda_{i}=t_{i i}, i=1, \ldots, n$.
- $\operatorname{det} \mathbf{T}=\prod_{i=1}^{n} t_{i i}$.
- $\operatorname{rnk} \mathbf{T} \geq \#$ of nonzero $t_{i i}$.
- (0.9.4, p62) For a block-triangular

$$
T=\left[\begin{array}{cc}
A & B \\
0 & \mathbf{C}
\end{array}\right]
$$

the eigenvalues are those of $\mathbf{A} \in \mathcal{M}_{n}$ together with those of $\mathbf{C} \in \mathcal{M}_{m}$, c.m. Thus, $\operatorname{det} \mathbf{T}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{C}$. Further,

$$
\mathbf{T}^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B C}^{-1} \\
\mathbf{0} & \mathbf{C}^{-1}
\end{array}\right]
$$

Unitary Matrices (2.1). A complex ma$\operatorname{trix} \mathbf{U} \in \mathcal{M}_{n}$ is unitary if $\mathbf{U}^{H} \mathbf{U}=\mathbf{I}$.

- Unitary matrices are closed under multiplication, raising to an integer power, and inversion.
- \mathbf{U} is unitary iff \mathbf{U}^{H} is unitary.
$\bullet \mathbf{U}$ is unitary iff $\|\mathbf{U x}\|=\|\mathbf{x}\|$ for all \mathbf{x}.
- $\left|\lambda_{i}\right|=1, i=1, \ldots, n$.
$-|\operatorname{det} \mathbf{U}|=1$.
- A square matrix is unitary iff its columns form an orthonormal basis.
- The space of unitary matrices in \mathcal{M}_{n} is parametrized by n^{2} free real variables and called unitary group.
- \mathbf{U} is unitary iff $\mathbf{U}=e^{j \mathbf{K}}$ or $j \mathbf{K}=\ln (\mathbf{U})$ for some Hermitian \mathbf{K} (no 1:1 mapping).
- (Cayley transform) \mathbf{U} is unitary iff $\mathbf{U}=(\mathbf{I}+j \mathbf{K})^{-1}(\mathbf{I}-j \mathbf{K})$ for some Hermitian \mathbf{K}.

Permutation Matrices (0.9.5). $\mathbf{A} \in \mathcal{M}_{n}$ is a permutation matrix if its columns are a permutation of the columns of \mathbf{I}.

Matrix Relations

Similarity (1.3). A matrix $\mathbf{A} \in \mathcal{M}_{n}$ is similar to a matrix $\mathbf{B} \in \mathcal{M}_{n}$ if there exists a nonsingular matrix $\mathbf{S} \in \mathcal{M}_{n}$ s.t. $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$.

- (p43) Similarity invariants are: trace, determinant, rank, characteristic polynomial, eigenvalues.

Unitary Equivalence (2.2). A matrix $\mathbf{A} \in \mathcal{M}_{n}$ is unitarily equivalent (or unitarily similar) to a matrix $\mathbf{B} \in \mathcal{M}_{n}$ if there exists a unitary matrix $\mathbf{U} \in \mathcal{M}_{n}$ s.t. $\mathbf{B}=\mathbf{U}^{H} \mathbf{A} \mathbf{U}$.

- (2.2.2) Additional unitary similarity invariants are: Frobenius norm (and thus $\operatorname{tr} \mathbf{A}^{H} \mathbf{A}$).

$$
\mathbf{A}(\mathbf{1}+\mathbf{A})^{-}=\mathbf{1}-(\mathbf{1}+\mathbf{A})^{-}
$$

Decompositions

Minimum-Rank Factorization (0.4.6e). Every rank- $k \mathbf{A} \in \mathcal{M}_{m, n}$ may be written as $\mathbf{A}=\mathbf{X B Y}$ with $\mathbf{X} \in \mathcal{M}_{m, k}, \mathbf{Y} \in \mathcal{M}_{k, n}$, and $\mathbf{B} \in \mathcal{M}_{k}$. In particular, a rank-1 matrix may be written as $\mathbf{A}=\mathbf{x} \mathbf{y}^{H}$.
Singular Value Decomposition (7.3.5). Every rank- k matrix $\mathbf{A} \in \mathcal{M}_{m, n}$ may be written as

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}
$$

where $\mathbf{U} \in \mathcal{M}_{m}$ and $\mathbf{V} \in \mathcal{M}_{n}$ are unitary. The matrix $\boldsymbol{\Sigma} \in \mathcal{M}_{m, n}$ contains the k nonzero entries $\sigma_{11}, \ldots, \sigma_{k k}$ in nonincreasing order and zeros elsewhere.

- The real singular values $\sigma_{i}=\sigma_{i i}$ are the nonnegative square roots of the eigenvalues of $\mathbf{A} \mathbf{A}^{H}$ and therefore unique.
- The columns of \mathbf{U} are eigenvectors of $\mathbf{A} \mathbf{A}^{H}$, the columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{H} \mathbf{A}$.
- (p422) The first k columns of \mathbf{U} form an orthonormal basis for the range of \mathbf{A}, the last $n-k$ columns of \mathbf{V} form an orthonormal basis for the null space of \mathbf{A}.
- (p418) The singular values are invariant under conjugation, transposition, and left or right multiplication with a unitary matrix.
- $\operatorname{rnk} \mathbf{A}=\#$ nonzero singular values.

Schur Triangularization (2.3). Every $\mathbf{A} \in \mathcal{M}_{n}$ is unitarily similar to an upper triangular matrix, i.e., $\mathbf{U}^{H} \mathbf{A} \mathbf{U}=\mathbf{T}$, with $t_{i i}=\lambda_{i}, i=1, \ldots, n$. Neither \mathbf{U} nor \mathbf{T} are unique.
QR Factorization (2.6). Every $\mathbf{A} \in$ $\mathcal{M}_{n, m}$ with $n \geq m$ can be written as $\mathbf{A}=$ $\mathbf{Q R}$, where $\mathbf{Q} \in \mathcal{M}_{n, m}$ has orthonormal columns and $\mathbf{R} \in \mathcal{M}_{m}$ is upper triangular.

- If \mathbf{A} is nonsingular, then \mathbf{R} may be chosen s.t. all $r_{i i}$ are positive, in which event both \mathbf{Q} and \mathbf{R} are unique.
Cholesky Decomposition (7.2.9). A ma$\operatorname{trix} \mathbf{A} \in \mathcal{M}_{n}$ is positive definite iff there is a nonsingular lower triangular $\mathbf{L} \in \mathcal{M}_{n}$ with positive diagonal entries s.t. $\mathbf{A}=\mathbf{L} \mathbf{L}^{H}$ (or an upper triangular \mathbf{R} with $\mathbf{A}=\mathbf{R}^{H} \mathbf{R}$).
k th Root (7.2.6). For any positive (semi)definite matrix $\mathbf{A} \in \mathcal{M}_{n}$, there is a unique positive (semi)definite Hermitian k th $(k>0) \operatorname{root} \mathbf{B} \in \mathcal{M}_{n}$ s.t. $\mathbf{B}^{k}=\mathbf{A}$. This k th root is denoted by $\mathbf{B}=\mathbf{A}^{1 / k}$.
- $\mathbf{A B}=\mathbf{B A}$.
- $\operatorname{rnk} \mathbf{B}=\operatorname{rnk} \mathbf{A}$.
- \mathbf{B} is positive definite iff \mathbf{A} is.
- $\mathbf{B}=p(\mathbf{A})$ for some polynomial $p(\cdot)$.
- (p54) Every diagonalizable matrix has a square root.

Matrix Operators

Kronecker Product (II 4). For $\mathbf{A} \in \bullet(I I 4.3) \operatorname{vec}(\mathbf{A B C})=\left(\mathbf{C}^{T} \otimes \mathbf{A}\right) \operatorname{vec} \mathbf{B}$ $\mathcal{M}_{m, n}$ and $\mathbf{B} \in \mathcal{M}_{p, q}$,

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
\vdots & \cdots & \vdots \\
a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B}
\end{array}\right]
$$

- (II 4.2) $(\mathbf{A} \otimes \mathbf{B})^{H}=\mathbf{A}^{H} \otimes \mathbf{B}^{H}$
$(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}=\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C})$

$$
(\mathbf{A}+\mathbf{B}) \otimes \mathbf{C}=\mathbf{A} \otimes \mathbf{C}+\mathbf{B} \otimes \mathbf{C}
$$

- (II 4.2.10) Mixed products:

$$
(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=\mathbf{A C} \otimes \mathbf{B D}
$$

- Inversion: If \mathbf{A} and \mathbf{B} nonsingular, then
- (II p. 252)
$\operatorname{vec}^{T}(\mathbf{Y})(\mathbf{A} \otimes \mathbf{B}) \operatorname{vec}(\mathbf{X})=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{Y}^{T} \mathbf{B X}\right)$
Hadamard Product (II 5). For $\mathbf{A}, \mathbf{B} \in$ $\mathcal{M}_{m, n}$

$$
\mathbf{A} \circ \mathbf{B}=\left[a_{i j} b_{i j}\right] \in \mathcal{M}_{m, n}
$$

- (II 5.1.7)
$\operatorname{rnk} \mathbf{A} \circ \mathbf{B} \leq \operatorname{rnk} \mathbf{A} \operatorname{rnk} \mathbf{B}$.
- (II p311) $\operatorname{det} \mathbf{A} \circ \mathbf{B} \geq \operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$. $(\mathbf{A} \otimes \mathbf{B})^{-1}=\mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$.

