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Matrix Taxonomy

Normal

Diagonal

Skew-

Hermitian Unitary

Permu-

tation

Positive

definite

Pos. 

semi-

definite

Indefinite

All complex matrices

Square Nonsquare

Defective
Nondefective 

(diagonalizable)

Hermitian

Idempotent

Projection

QR decomposition
SVD decomposition

Cholesky dcp. k-th root

Schur triang.

Non-

normal

Identity
Negative 

definite

Nonsingular Matrices (0.5).

Square

Singular
Nonsingular

(invertible)

Nilpotent Unitary
Positive 

definite

A matrix A ∈ Mn is nonsingular iff
• A−1 exists
• rnkA = n
• rows (cols) are lin-

early independent

• detA 6= 0
• dimR(A) = n
• 0 /∈ σ(A)

Nilpotent Matrices (p39). A matrix A ∈
Mn is nilpotent to index k if Ak = 0 but

Hermitian Matrices (4.1.1). A matrix
A ∈ Mn is Hermitian if A = AH .
• A Hermitian matrix is parametrized by

n2 free real variables.
• (4.1.1.1) For any B ∈ Mn, B + BH ,
BHB, and BBH are Hermitian.

• (4.1.1.2,3) Hermitian matrices are closed
under addition, multiplication by a
scalar, raising to an integer power, and
(if nonsingular) inversion.

• (4.1.2) Any matrix A has a unique de-
composition A = B + jC where B and
C are Hermitian: B = (A + AH)/2 and
C = (A − AH)/(2j)

• (4.1.3c) The eigenvalues of a Hermitian
matrix are all real.

• (4.1.4a) A is Hermitian iff xHAx is real
for all x ∈ Cn.

• (4.1.4c) A is Hermitian iff SHAS is Her-
mitian for all S ∈ Mn (or: iff xHAy =

H H ∈ n

Matrix Properties

Eigenvalues and -vectors (1.1.2). If λ ∈
C and x 6= 0 satifsy the equation Ax = λx,
they are considered eigenvalue and eigenvec-
tor, respectively, of the matrix A ∈ Mn.
The eigenvalue spectrum σ(A) of A is the
set of all eigenvalues.
• (1.2.4) The eigenvalue spectrum σ(A)

coincides with the roots of the charac-
teristic polynomial pA(t) = det(tI − A).

• (1.2.6) Every A ∈ Mn has exactly
n eigenvalues, counting multiplicities
(c.m.).

• (2.4.2, Cayley-Hamilton) pA(A) = 0. If
A is nonsingular, then there is a polyno-
mial q(t) of degree at most n − 1, such
that A−1 = q(A).

• (1.4.1) The eigenvalues of AT are the
same as those of A, c.m. The eigenval-
ues of AH are the complex conjugates of
the eigenvalues of A, c.m.

• (1.4.2) The set of eigenvectors associated
with a particular λ ∈ σ(A) is a subspace
of Cn, called eigenspace of A correspond-
ing to λ.

• (1.4.3) The dimension of the eigenspace
of A ∈ Mn corresponding to the eigen-
value λ is its geometric multiplicity.

• (1.4.3) The multiplicity of λ as a zero
of pA(t) is the algebraic multiplicity of
λ. The algebraic multiplicity is greater
or equal than the geometric multiplicity.

• (1.3.8) Eigenvectors corresponding to
different eigenvalues are linearly indepen-
dent.

• (1.3.20) Be A ∈ Mm,n and B ∈ Mn,m.
Then BA has the same eigenvalues as
AB, c.m., together with an additional
n − m eigenvalues equal to 0.

• (p37) For nonsingular A ∈ Mn, if λ ∈
σ(A), then λ−1 ∈ σ(A−1), correspond-
ing to the same eigenvector.

• (p43) If λ ∈ σ(A), then λk ∈ σ(Ak).
• If λ ∈ σ(A), then (1 + λ) ∈ σ(I + A).
• (4.3.1, Weyl) For Hermitian A,B ∈ Mn,

with their eigenvalues arranged in in-
creasing order, for k = 1, . . . , n:

λk(A) + λ1(B) ≤ λk(A + B)

≤ λk(A) + λn(B).

• (4.5.9, Ostrowski) For A ∈ Mn Hermi-
tian and S ∈ M nonsingular, with all

Submatrices (0.7). With index sets α ⊆
{1, . . . , m}, β ⊆ {1, . . . , n} and A ∈ Mm,n,
A(α, β) denotes the submatrix that is in-
dexed by rows α and columns β.
• For A ∈ Mn, if α = β, A(α, β) = A(α)

is a principal submatrix of A.
• The determinant of a square submatrix

of A ∈ Mm,n is called a minor.
• The determinant of a principal subma-

trix of A ∈ Mn is a principal minor.

Adjoint Matrix (0.8.2). The adjoint of
A ∈ Mn is the matrix B ∈ Mn of cofac-
tors defined by

bij = (−1)i+j detAji.

• (adjA)A = A(adjA) = (detA)I.

• If A invertible, A−1 = (det−1 A) adjA.

Range and Null Space (0.2.3). The
range of a matrix A ∈ Mm,n is
R(A) = {y ∈ Cm : y = Ax, x ∈ Cn}.
The null space of a matrix A ∈ Mm,n is
N (A) = {x ∈ Cn : Ax = 0}.
• (0.2.3) dimR(A) + dimN (A) = n.
• (0.4.4g) dimR(A) = rnkA.

• (0.6.6) R(A) = N⊥(AH).

Rank (0.4). The rank of a matrix
A ∈ Mm,n is the largest number of rows
(columns) of A that constitute a linearly
independent set.
• (0.4.4) rnkA = dimR(A) = n −

dimN (A).
• (0.4.6a) A,AH ,AT ,A∗ have the same

rank.
• (0.4.6b) rank is unchanged by left/right

multiplication with a nonsingular ma-
trix.

• (0.4.6c) If A,B ∈ Mm,n, then rnkA =
rnkB iff there are nonsingular X ∈ Mn

and Y ∈ Mm s.t. B = XAY.
• (0.4.6d) rnkAHA = rnkA.
• (0.4.5a) rnkA ≤ min(m, n).
• (0.4.5c) If A ∈ Mm,k and B ∈ Mk,n

rnkA + rnkB− k ≤ rnkAB

rnkAB ≤ min(rnkA, rnkB).

• (0.4.5d) If A,B ∈ Mm,n,
rnk(A + B) ≤ rnkA + rnkB.

• (p95) For A ∈ Mn,
rnkA ≥ # nonzero eigenvalues.
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Adjoint Matrix (0.8.2). The adjoint of
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Mn is nilpotent to index k if A = 0 but
Ak−1 6= 0.
• (p37) λi = 0, i = 1, . . . , n..

Idempotent Matrices (p37). A matrix
P ∈ Mn is idempotent if P2 = P.
• rnkP = trP.
• (p37) λi ∈ {0, 1}, i = 1, . . . , n. The geo-

metric multiplicity of the eigenvalue 1 is
rnkP.

• PH , I−P, and I−PH are all idempotent.
• P(I − P) = (I − P)P = 0.
• Px = x iff x lies in the range of P.
• N (P) = R(I − P).
• (TODO) P is its own generalized inverse,
P†.

Nondefective (Diagonalizable) Matri-
ces (1.3.6). A matrix A ∈ Mn is diagonal-
izable if it is similar to a diagonal matrix,
i.e., A = SΛS−1.
• (1.3.7) The columns of S are eigenvec-

tors of A, the diagonal entries of Λ cor-
responding eigenvalues.

• (1.4.4) A is diagonalizable iff it is non-
defective, i.e., the geometric multiplicity
is equal to the algebraic multiplicity for
each eigenvalue.

• (1.3.9) If A has n distinct eigenvalues, it
is diagonalizable.

• (p46) rnkA = # nonzero eigenvalues.

Normal Matrices (2.5). A matrix A ∈
Mn is normal if AHA = AAH .

• (2.5.4) A is normal iff it is unitarily sim-
ilar to a diagonal matrix.

• (2.5.4) A is normal iff it has an orthonor-
mal set of n eigenvectors.

• Normal matrices are closed under uni-
tary equivalence, raising to an integer
power, and (if nonsingular) inversion.

• The singular values of a normal matrix
are the absolute values of the eigenval-
ues.

• The eigenvalues of AH are the conju-
gates of the eigenvalues of A and have
the same eigenvectors.

• A normal matrix is Hermitian iff its
eigenvalues are all real.

• A normal matrix is skew-Hermitian iff its
eigenvalues all have zero real parts.

• A normal matrix is unitary iff its eigen-
values all have an absolute value of 1.

• If A and B are normal and AB = BA
then AB is normal.

• (2.5.4) ‖A‖2
F =

∑n
i=1

|λi|2.

xHAHy for all x,y ∈ Cn).
• (4.1.5, Spectral Theorem) A is Hermitian

iff there is a unitary matrix U ∈ Mn

and a real diagonal matrix Λ ∈ Mn s.t.
A = UΛUH .

• If A and B are Hermitian then so are
AB + BA and j(AB − BA).

• (4.2.2, Rayleigh-Ritz)
min(λ) ≤ xHAx ≤ max(λ), xHx = 1.

Positive Definite Matrices (4.1.1). A
Hermitian matrix A ∈ Mn is positive def-
inite (pd) if xHAx > 0 for all nonzero
x ∈ C

n. If xHAx ≥ 0, A is said to be
positive semidefinite (psd).
• (7.1.2) Any principal submatrix of a pd

matrix is pd.
• (7.1.3) Any nonnegative linear combina-

tion of psd matrices is psd.
• (7.1.4,5) For p(s)d A ∈ Mn, λi (for

i = 1, . . . , n), detA, trA, and all prin-
cipal minors are positive (nonnegative).

• (7.2.1) A ∈ Mn is p(s)d iff all eigenval-
ues are positive (nonnegative).

• (7.2.8) A ∈ Mn is pd iff there is a non-
singular C ∈ Mn s.t. A = CHC. Any
solution C can be written as C = VA1/2

with V ∈ Mn unitary.
• (p409) Any psd rank-m matrix A ∈ Mn

may be written as A = CHC with some
C ∈ Mm,n.

• (7.1.6) For pd A ∈ Mn and C ∈ Mn,m,
CHAC is psd, and rnkCHAC = rnkC.

Skew-Hermitian Matrices. A matrix
K ∈ Mn is skew-Hermitian if K = −KH .
• (p175) S is Hermitian iff jS is skew-

Hermitian.
• K is skew-Hermitian iff xHKy =
−xHKHy for all x and y.

• Skew-Hermitian matrices are closed un-
der addition, multiplication by a scalar,
raising to an odd power, and (if nonsin-
gular) inversion.

• (p175) K2 is Hermitian.
• (p175) The eigenvalues of a skew-

Hermitian matrix are either 0 or pure
imaginary.

Triangular Matrices (0.9.3). A matrix
T ∈ Mn is upper (lower) triangular if
tij = 0 for j < i (j > i). Strictness if true
for j ≤ i (j ≥ i).
• Upper/lower triangular matrices are

closed under addition, multiplication,

tian and S ∈ Mn nonsingular, with all
eigenvalues arranged in increasing order,
for all k = 1, . . . , n there is a positive real
number θk in the range

λ1(SSH) ≤ θk ≤ λn(SSH) s.t.

λk(SASH) = θkλk(A).

Inverse Matrix. For any A ∈ Mm,n,
having a SVD A = UΣVH , there is a
Moore-Penrose generalized inverse or pseu-
doinverse A† = VΣ†UH , where Σ† is the
transpose of Σ in which the positive singu-
lar values are replaced by their reciprocals.
• (p421) A†A and AA† are Hermitian.
• (p421) AA†A = A and A†AA† = A†.
• (0.5) For any nonsingular A ∈ Mn,

there is a unique A† = A−1 s.t. A−1A =
AA−1 = I.

• Any full-rank skinny A ∈ Mm,n, m ≥ n,
has a left inverse B ∈ Mn,m s.t. BA =
In. The left inverse with the smallest
norm is the pseudoinverse B = A† =
(AHA)−1AH .

• Any full-rank fat A ∈ Mm,n, m ≤ n,
has a right inverse B ∈ Mn,m s.t. AB =
Im. The right inverse with the smallest
norm is the pseudoinverse B = A† =
AH(AAH)−1

• (AH)† = (A†)H , and (AH)−1 =
(A−1)H (if A nonsingular).

• (0.7.4, Matrix Inversion Lemma) Be
A ∈ Mm and R ∈ Mn nonsingular, and
X ∈ Mm,n and Y ∈ Mn,m. Then

(A + XRY)−1 = A−1

− A−1X
(

R−1 + YA−1X
)−1

YA−1

(cIm + XY)−1

= 1

c

(

Im − X (cIn + YX)
−1

Y
)

(cIm + XXH)−1

= 1

c

(

Im − X
(

cIn + XHX
)−1

XH
)

.

• For X ∈ Mm,n and Y ∈ Mn,m,

Y(cI + XY)−1 = (cI + YX)−1Y.

• For nonsingular A,B ∈ Mm

A−1 = B−1 + B−1(B− A)A−1.

• If A ∈ Mm and the inverses exist, any
pair of A, (cI − A)−1, and (cI + A)−1

commutes. Further,

A(I − A)−1 = (I − A)−1 − I

A(I + A)−1 = I − (I + A)−1.

rnkA ≥ # nonzero eigenvalues.
(p46) Equality for diagonalizable A.

Trace (0.4). For A ∈ Mn, trA =
∑n

i=1
aii.

• (1.2.12) trA =
∑n

i=1
λi(A).

• tr(αA) = α tr(A).
• tr(AT ) = tr(A).
• tr(A + B) = tr(A) + tr(B).
• tr(AB) = tr(BA).
• tr(abT ) = aTb.

• tr(abH) = aHb.
• tr(ABCD) = tr(BCDA)

= tr(CDAB) = tr(DABC).
• tr(A ⊗ B) = tr(A) tr(B).

Determinant (0.3). For A ∈ Mn,

detA =
∑n

j=1
(−1)i+jaij detAij

=
∑n

i=1
(−1)i+jaij detAij ,

where Aij ∈ Mn−1 is the submatrix ob-
tained by deleting row i and column j.
• (1.2.12) detA = Πn

i=1λi(A).
• (0.3.1) detAT = detA.
• (0.3.1) detAH = detA.
• det cA = cn detA.
• Interchanging any pair of columns of A

multiplies detA by −1 (likewise rows).
• Multiplying any column of A by c multi-

plies detA by c (likewise rows).
• Adding any multiple of one column onto

another column leaves detA unaltered
(likewise rows).

• For A,B ∈ Mn, detAB = detA detB.
• For nonsingular A ∈ Mn,

det(A + xyH) = det(A)
(

1 + yHA−1x
)

.
• If A ∈ Mn and D ∈ Mk,

det

[

A B
C D

]

= detQ

= det(A) det(D − CA−1B)

= det(D) det(A − BD−1C).

The quantity D − CA−1B is called the
Schur complement of A in Q.
For A,B,C,D ∈ Mn

AC = CA : detQ = det(AD − CB)

AB = BA : detQ = det(DA − CB)

DB = BD : detQ = det(DA − BC)

DC = CD : detQ = det(AD − BC)

• (7.8.1, Hadamard’s inequality) If A is
positive semidefinite, then
detA ≤

∏n
i=1

aii.
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Mn is nilpotent to index k if A = 0 but
Ak−1 6= 0.
• (p37) λi = 0, i = 1, . . . , n..

Idempotent Matrices (p37). A matrix
P ∈ Mn is idempotent if P2 = P.
• rnkP = trP.
• (p37) λi ∈ {0, 1}, i = 1, . . . , n. The geo-

metric multiplicity of the eigenvalue 1 is
rnkP.

• PH , I−P, and I−PH are all idempotent.
• P(I − P) = (I − P)P = 0.
• Px = x iff x lies in the range of P.
• N (P) = R(I − P).
• (TODO) P is its own generalized inverse,
P†.

Nondefective (Diagonalizable) Matri-
ces (1.3.6). A matrix A ∈ Mn is diagonal-
izable if it is similar to a diagonal matrix,
i.e., A = SΛS−1.
• (1.3.7) The columns of S are eigenvec-

tors of A, the diagonal entries of Λ cor-
responding eigenvalues.

• (1.4.4) A is diagonalizable iff it is non-
defective, i.e., the geometric multiplicity
is equal to the algebraic multiplicity for
each eigenvalue.

• (1.3.9) If A has n distinct eigenvalues, it
is diagonalizable.

• (p46) rnkA = # nonzero eigenvalues.

Normal Matrices (2.5). A matrix A ∈
Mn is normal if AHA = AAH .

• (2.5.4) A is normal iff it is unitarily sim-
ilar to a diagonal matrix.

• (2.5.4) A is normal iff it has an orthonor-
mal set of n eigenvectors.

• Normal matrices are closed under uni-
tary equivalence, raising to an integer
power, and (if nonsingular) inversion.

• The singular values of a normal matrix
are the absolute values of the eigenval-
ues.

• The eigenvalues of AH are the conju-
gates of the eigenvalues of A and have
the same eigenvectors.

• A normal matrix is Hermitian iff its
eigenvalues are all real.

• A normal matrix is skew-Hermitian iff its
eigenvalues all have zero real parts.

• A normal matrix is unitary iff its eigen-
values all have an absolute value of 1.

• If A and B are normal and AB = BA
then AB is normal.

• (2.5.4) ‖A‖2
F =

∑n
i=1

|λi|2.

xHAHy for all x,y ∈ Cn).
• (4.1.5, Spectral Theorem) A is Hermitian

iff there is a unitary matrix U ∈ Mn

and a real diagonal matrix Λ ∈ Mn s.t.
A = UΛUH .

• If A and B are Hermitian then so are
AB + BA and j(AB − BA).

• (4.2.2, Rayleigh-Ritz)
min(λ) ≤ xHAx ≤ max(λ), xHx = 1.

Positive Definite Matrices (4.1.1). A
Hermitian matrix A ∈ Mn is positive def-
inite (pd) if xHAx > 0 for all nonzero
x ∈ C

n. If xHAx ≥ 0, A is said to be
positive semidefinite (psd).
• (7.1.2) Any principal submatrix of a pd

matrix is pd.
• (7.1.3) Any nonnegative linear combina-

tion of psd matrices is psd.
• (7.1.4,5) For p(s)d A ∈ Mn, λi (for

i = 1, . . . , n), detA, trA, and all prin-
cipal minors are positive (nonnegative).

• (7.2.1) A ∈ Mn is p(s)d iff all eigenval-
ues are positive (nonnegative).

• (7.2.8) A ∈ Mn is pd iff there is a non-
singular C ∈ Mn s.t. A = CHC. Any
solution C can be written as C = VA1/2

with V ∈ Mn unitary.
• (p409) Any psd rank-m matrix A ∈ Mn

may be written as A = CHC with some
C ∈ Mm,n.

• (7.1.6) For pd A ∈ Mn and C ∈ Mn,m,
CHAC is psd, and rnkCHAC = rnkC.

Skew-Hermitian Matrices. A matrix
K ∈ Mn is skew-Hermitian if K = −KH .
• (p175) S is Hermitian iff jS is skew-

Hermitian.
• K is skew-Hermitian iff xHKy =
−xHKHy for all x and y.

• Skew-Hermitian matrices are closed un-
der addition, multiplication by a scalar,
raising to an odd power, and (if nonsin-
gular) inversion.

• (p175) K2 is Hermitian.
• (p175) The eigenvalues of a skew-

Hermitian matrix are either 0 or pure
imaginary.

Triangular Matrices (0.9.3). A matrix
T ∈ Mn is upper (lower) triangular if
tij = 0 for j < i (j > i). Strictness if true
for j ≤ i (j ≥ i).
• Upper/lower triangular matrices are

closed under addition, multiplication,

tian and S ∈ Mn nonsingular, with all
eigenvalues arranged in increasing order,
for all k = 1, . . . , n there is a positive real
number θk in the range

λ1(SSH) ≤ θk ≤ λn(SSH) s.t.

λk(SASH) = θkλk(A).

Inverse Matrix. For any A ∈ Mm,n,
having a SVD A = UΣVH , there is a
Moore-Penrose generalized inverse or pseu-
doinverse A† = VΣ†UH , where Σ† is the
transpose of Σ in which the positive singu-
lar values are replaced by their reciprocals.
• (p421) A†A and AA† are Hermitian.
• (p421) AA†A = A and A†AA† = A†.
• (0.5) For any nonsingular A ∈ Mn,

there is a unique A† = A−1 s.t. A−1A =
AA−1 = I.

• Any full-rank skinny A ∈ Mm,n, m ≥ n,
has a left inverse B ∈ Mn,m s.t. BA =
In. The left inverse with the smallest
norm is the pseudoinverse B = A† =
(AHA)−1AH .

• Any full-rank fat A ∈ Mm,n, m ≤ n,
has a right inverse B ∈ Mn,m s.t. AB =
Im. The right inverse with the smallest
norm is the pseudoinverse B = A† =
AH(AAH)−1

• (AH)† = (A†)H , and (AH)−1 =
(A−1)H (if A nonsingular).

• (0.7.4, Matrix Inversion Lemma) Be
A ∈ Mm and R ∈ Mn nonsingular, and
X ∈ Mm,n and Y ∈ Mn,m. Then

(A + XRY)−1 = A−1

− A−1X
(

R−1 + YA−1X
)−1

YA−1

(cIm + XY)−1

= 1

c

(

Im − X (cIn + YX)
−1

Y
)

(cIm + XXH)−1

= 1

c

(

Im − X
(

cIn + XHX
)−1

XH
)

.

• For X ∈ Mm,n and Y ∈ Mn,m,

Y(cI + XY)−1 = (cI + YX)−1Y.

• For nonsingular A,B ∈ Mm

A−1 = B−1 + B−1(B− A)A−1.

• If A ∈ Mm and the inverses exist, any
pair of A, (cI − A)−1, and (cI + A)−1

commutes. Further,

A(I − A)−1 = (I − A)−1 − I

A(I + A)−1 = I − (I + A)−1.

rnkA ≥ # nonzero eigenvalues.
(p46) Equality for diagonalizable A.

Trace (0.4). For A ∈ Mn, trA =
∑n

i=1
aii.

• (1.2.12) trA =
∑n

i=1
λi(A).

• tr(αA) = α tr(A).
• tr(AT ) = tr(A).
• tr(A + B) = tr(A) + tr(B).
• tr(AB) = tr(BA).
• tr(abT ) = aTb.

• tr(abH) = aHb.
• tr(ABCD) = tr(BCDA)

= tr(CDAB) = tr(DABC).
• tr(A ⊗ B) = tr(A) tr(B).

Determinant (0.3). For A ∈ Mn,

detA =
∑n

j=1
(−1)i+jaij detAij

=
∑n

i=1
(−1)i+jaij detAij ,

where Aij ∈ Mn−1 is the submatrix ob-
tained by deleting row i and column j.
• (1.2.12) detA = Πn

i=1λi(A).
• (0.3.1) detAT = detA.
• (0.3.1) detAH = detA.
• det cA = cn detA.
• Interchanging any pair of columns of A

multiplies detA by −1 (likewise rows).
• Multiplying any column of A by c multi-

plies detA by c (likewise rows).
• Adding any multiple of one column onto

another column leaves detA unaltered
(likewise rows).

• For A,B ∈ Mn, detAB = detA detB.
• For nonsingular A ∈ Mn,

det(A + xyH) = det(A)
(

1 + yHA−1x
)

.
• If A ∈ Mn and D ∈ Mk,

det

[

A B
C D

]

= detQ

= det(A) det(D − CA−1B)

= det(D) det(A − BD−1C).

The quantity D − CA−1B is called the
Schur complement of A in Q.
For A,B,C,D ∈ Mn

AC = CA : detQ = det(AD − CB)

AB = BA : detQ = det(DA − CB)

DB = BD : detQ = det(DA − BC)

DC = CD : detQ = det(AD − BC)

• (7.8.1, Hadamard’s inequality) If A is
positive semidefinite, then
detA ≤

∏n
i=1

aii.
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∑

i=1 i

• (p111) The direct sum A1 ⊕ . . . ⊕ Ak is
normal iff each Aj is normal.

Projection Matrices. A matrix P ∈ Mn

is a projection matrix if it is Hermitian and
idempotent, i.e., PH = P2 = P.

• P is positive semidefinite.
• I − P is a projection matrix.
• With any subspace S ⊆ Cn, any vector
x ∈ C

n can be decomposed as
x = PS x + P⊥

S x with P⊥
S = In − PS

where PS is the unique projection matrix
on S. Also, R(PS ) = S.

• Be S = R(A). Then the projection ma-
trix on S is PS = AA†.
If B ∈ Mn,k is a basis for the subspace
S, then PS = B(BHB)−1BH .
If U is a unitary basis for the subspace
S, then PS = UUH .

• If P and Q are projection matrices, then
the following are equivalent:
◦ P − Q is a projection matrix
◦ P − Q is positive semidefinite
◦ PQ = Q
◦ QP = Q

Nonderogatory Matrices (1.4.4). A ma-
trix A ∈ Mn is nonderogatory if every
eigenvalue has geometric multiplicity 1.

closed under addition, multiplication,
raising to an integer power, and (if non-
singular) inversion.

• λi = tii, i = 1, . . . , n.
• detT = Πn

i=1
tii.

• rnkT ≥ # of nonzero tii.
• (0.9.4, p62) For a block-triangular

T =

[

A B
0 C

]

the eigenvalues are those of A ∈ Mn

together with those of C ∈ Mm, c.m.
Thus, detT = detA detC. Further,

T−1 =

[

A−1 −A−1BC−1

0 C−1

]

.

Unitary Matrices (2.1). A complex ma-
trix U ∈ Mn is unitary if UHU = I.
• Unitary matrices are closed under mul-

tiplication, raising to an integer power,
and inversion.

• U is unitary iff UH is unitary.
• U is unitary iff ‖Ux‖ = ‖x‖ for all x.
• |λi| = 1, i = 1, . . . , n.
• |detU| = 1.
• A square matrix is unitary iff its columns

form an orthonormal basis.
• The space of unitary matrices in Mn

is parametrized by n2 free real variables
and called unitary group.

• U is unitary iff U = ejK or jK = ln(U)
for some Hermitian K (no 1:1 mapping).

• (Cayley transform) U is unitary iff
U = (I + jK)−1(I − jK) for some Her-
mitian K.

Permutation Matrices (0.9.5). A ∈ Mn

is a permutation matrix if its columns are
a permutation of the columns of I.

Matrix Relations

Similarity (1.3). A matrix A ∈ Mn

is similar to a matrix B ∈ Mn if there
exists a nonsingular matrix S ∈ Mn s.t.
B = S−1AS.

• (p43) Similarity invariants are: trace, de-
terminant, rank, characteristic polyno-
mial, eigenvalues.

Unitary Equivalence (2.2). A matrix
A ∈ Mn is unitarily equivalent (or unitarily
similar) to a matrix B ∈ Mn if there exists
a unitary matrix U ∈ Mn s.t. B = UHAU.
• (2.2.2) Additional unitary similarity in-

variants are: Frobenius norm (and thus
trAHA).

A(I + A)−1 = I − (I + A)−1.

∏

Decompositions

Minimum-Rank Factorization (0.4.6e).
Every rank-k A ∈ Mm,n may be written
as A = XBY with X ∈ Mm,k, Y ∈ Mk,n,
and B ∈ Mk. In particular, a rank-1 ma-
trix may be written as A = xyH .

Singular Value Decomposition (7.3.5).
Every rank-k matrix A ∈ Mm,n may be
written as

A = UΣVH ,

where U ∈ Mm and V ∈ Mn are uni-
tary. The matrix Σ ∈ Mm,n contains the k
nonzero entries σ11, . . . , σkk in nonincreas-
ing order and zeros elsewhere.
• The real singular values σi = σii are the

nonnegative square roots of the eigenval-
ues of AAH and therefore unique.

• The columns of U are eigenvectors of
AAH , the columns of V are eigenvectors
of AHA.

• (p422) The first k columns of U form an
orthonormal basis for the range of A, the
last n−k columns of V form an orthonor-
mal basis for the null space of A.

• (p418) The singular values are invariant
under conjugation, transposition, and
left or right multiplication with a unitary
matrix.

• rnkA = # nonzero singular values.

Schur Triangularization (2.3). Every
A ∈ Mn is unitarily similar to an upper
triangular matrix, i.e., UHAU = T, with
tii = λi, i = 1, . . . , n. Neither U nor T are
unique.

QR Factorization (2.6). Every A ∈
Mn,m with n ≥ m can be written as A =
QR, where Q ∈ Mn,m has orthonormal
columns and R ∈ Mm is upper triangular.
• If A is nonsingular, then R may be cho-

sen s.t. all rii are positive, in which event
both Q and R are unique.

Cholesky Decomposition (7.2.9). A ma-
trix A ∈ Mn is positive definite iff there is a
nonsingular lower triangular L ∈ Mn with
positive diagonal entries s.t. A = LLH (or
an upper triangular R with A = RHR).

kth Root (7.2.6). For any positive
(semi)definite matrix A ∈ Mn, there is
a unique positive (semi)definite Hermitian
kth (k > 0) root B ∈ Mn s.t. Bk = A.
This kth root is denoted by B = A1/k.
• AB = BA.
• rnkB = rnkA.
• B is positive definite iff A is.
• B = p(A) for some polynomial p(·).
• (p54) Every diagonalizable matrix has a

square root.

Matrix Operators

Kronecker Product (II 4). For A ∈
Mm,n and B ∈ Mp,q,

A ⊗ B =





a11B · · · a1nB
... · · ·

...
am1B · · · amnB





• (II 4.2) (A ⊗ B)H = AH ⊗ BH

(A ⊗ B) ⊗ C = A⊗ (B⊗ C)

(A + B) ⊗ C = A⊗ C + B⊗ C.

• (II 4.2.10) Mixed products:

(A ⊗ B)(C ⊗ D) = AC⊗ BD.

• Inversion: If A and B nonsingular, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

• (II 4.3) vec(ABC) = (CT ⊗ A) vecB

vec(AB) = (BT ⊗ I) vecA

= (I ⊗ A) vecB.

• (II p. 252)
vecT (Y)(A⊗B) vec(X) = tr

(

AT YTBX
)

Hadamard Product (II 5). For A,B ∈
Mm,n

A ◦ B = [aijbij ] ∈ Mm,n.

• (II 5.1.7)
rnkA ◦ B ≤ rnkA rnkB.

• (II p311) detA ◦ B ≥ detA detB.
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• (p111) The direct sum A1 ⊕ . . . ⊕ Ak is
normal iff each Aj is normal.

Projection Matrices. A matrix P ∈ Mn

is a projection matrix if it is Hermitian and
idempotent, i.e., PH = P2 = P.

• P is positive semidefinite.
• I − P is a projection matrix.
• With any subspace S ⊆ Cn, any vector
x ∈ C

n can be decomposed as
x = PS x + P⊥

S x with P⊥
S = In − PS

where PS is the unique projection matrix
on S. Also, R(PS ) = S.

• Be S = R(A). Then the projection ma-
trix on S is PS = AA†.
If B ∈ Mn,k is a basis for the subspace
S, then PS = B(BHB)−1BH .
If U is a unitary basis for the subspace
S, then PS = UUH .

• If P and Q are projection matrices, then
the following are equivalent:
◦ P − Q is a projection matrix
◦ P − Q is positive semidefinite
◦ PQ = Q
◦ QP = Q

Nonderogatory Matrices (1.4.4). A ma-
trix A ∈ Mn is nonderogatory if every
eigenvalue has geometric multiplicity 1.

closed under addition, multiplication,
raising to an integer power, and (if non-
singular) inversion.

• λi = tii, i = 1, . . . , n.
• detT = Πn

i=1
tii.

• rnkT ≥ # of nonzero tii.
• (0.9.4, p62) For a block-triangular

T =

[

A B
0 C

]

the eigenvalues are those of A ∈ Mn

together with those of C ∈ Mm, c.m.
Thus, detT = detA detC. Further,

T−1 =

[

A−1 −A−1BC−1

0 C−1

]

.

Unitary Matrices (2.1). A complex ma-
trix U ∈ Mn is unitary if UHU = I.
• Unitary matrices are closed under mul-

tiplication, raising to an integer power,
and inversion.

• U is unitary iff UH is unitary.
• U is unitary iff ‖Ux‖ = ‖x‖ for all x.
• |λi| = 1, i = 1, . . . , n.
• |detU| = 1.
• A square matrix is unitary iff its columns

form an orthonormal basis.
• The space of unitary matrices in Mn

is parametrized by n2 free real variables
and called unitary group.

• U is unitary iff U = ejK or jK = ln(U)
for some Hermitian K (no 1:1 mapping).

• (Cayley transform) U is unitary iff
U = (I + jK)−1(I − jK) for some Her-
mitian K.

Permutation Matrices (0.9.5). A ∈ Mn

is a permutation matrix if its columns are
a permutation of the columns of I.

Matrix Relations

Similarity (1.3). A matrix A ∈ Mn

is similar to a matrix B ∈ Mn if there
exists a nonsingular matrix S ∈ Mn s.t.
B = S−1AS.

• (p43) Similarity invariants are: trace, de-
terminant, rank, characteristic polyno-
mial, eigenvalues.

Unitary Equivalence (2.2). A matrix
A ∈ Mn is unitarily equivalent (or unitarily
similar) to a matrix B ∈ Mn if there exists
a unitary matrix U ∈ Mn s.t. B = UHAU.
• (2.2.2) Additional unitary similarity in-

variants are: Frobenius norm (and thus
trAHA).

A(I + A)−1 = I − (I + A)−1.

∏

Decompositions

Minimum-Rank Factorization (0.4.6e).
Every rank-k A ∈ Mm,n may be written
as A = XBY with X ∈ Mm,k, Y ∈ Mk,n,
and B ∈ Mk. In particular, a rank-1 ma-
trix may be written as A = xyH .

Singular Value Decomposition (7.3.5).
Every rank-k matrix A ∈ Mm,n may be
written as

A = UΣVH ,

where U ∈ Mm and V ∈ Mn are uni-
tary. The matrix Σ ∈ Mm,n contains the k
nonzero entries σ11, . . . , σkk in nonincreas-
ing order and zeros elsewhere.
• The real singular values σi = σii are the

nonnegative square roots of the eigenval-
ues of AAH and therefore unique.

• The columns of U are eigenvectors of
AAH , the columns of V are eigenvectors
of AHA.

• (p422) The first k columns of U form an
orthonormal basis for the range of A, the
last n−k columns of V form an orthonor-
mal basis for the null space of A.

• (p418) The singular values are invariant
under conjugation, transposition, and
left or right multiplication with a unitary
matrix.

• rnkA = # nonzero singular values.

Schur Triangularization (2.3). Every
A ∈ Mn is unitarily similar to an upper
triangular matrix, i.e., UHAU = T, with
tii = λi, i = 1, . . . , n. Neither U nor T are
unique.

QR Factorization (2.6). Every A ∈
Mn,m with n ≥ m can be written as A =
QR, where Q ∈ Mn,m has orthonormal
columns and R ∈ Mm is upper triangular.
• If A is nonsingular, then R may be cho-

sen s.t. all rii are positive, in which event
both Q and R are unique.

Cholesky Decomposition (7.2.9). A ma-
trix A ∈ Mn is positive definite iff there is a
nonsingular lower triangular L ∈ Mn with
positive diagonal entries s.t. A = LLH (or
an upper triangular R with A = RHR).

kth Root (7.2.6). For any positive
(semi)definite matrix A ∈ Mn, there is
a unique positive (semi)definite Hermitian
kth (k > 0) root B ∈ Mn s.t. Bk = A.
This kth root is denoted by B = A1/k.
• AB = BA.
• rnkB = rnkA.
• B is positive definite iff A is.
• B = p(A) for some polynomial p(·).
• (p54) Every diagonalizable matrix has a

square root.

Matrix Operators

Kronecker Product (II 4). For A ∈
Mm,n and B ∈ Mp,q,

A ⊗ B =





a11B · · · a1nB
... · · ·

...
am1B · · · amnB





• (II 4.2) (A ⊗ B)H = AH ⊗ BH

(A ⊗ B) ⊗ C = A⊗ (B⊗ C)

(A + B) ⊗ C = A⊗ C + B⊗ C.

• (II 4.2.10) Mixed products:

(A ⊗ B)(C ⊗ D) = AC⊗ BD.

• Inversion: If A and B nonsingular, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

• (II 4.3) vec(ABC) = (CT ⊗ A) vecB

vec(AB) = (BT ⊗ I) vecA

= (I ⊗ A) vecB.

• (II p. 252)
vecT (Y)(A⊗B) vec(X) = tr

(

AT YTBX
)

Hadamard Product (II 5). For A,B ∈
Mm,n

A ◦ B = [aijbij ] ∈ Mm,n.

• (II 5.1.7)
rnkA ◦ B ≤ rnkA rnkB.

• (II p311) detA ◦ B ≥ detA detB.


