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Abstract—The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is 

utilized by the hippocampal place cells for calculation of position of an animal during spatial navigation. The place cells are thought to function 

as an internal GPS for the brain and provide a spatiotemporal stamp on episodic memories. Several computational neuroscience models have 

been proposed to explain the place specific firing patterns of the cells of the hippocampal formation – including the GRIDSmap model for 

grid cells and Bayesian integration for place cells. In this work, we present design and measurement results from a first ever system of silicon 

circuits which successfully realize the function of the hippocampal formation of brain based on these models.  

Keywords— Silicon hippocampal formation, Grid cells, Stripe cells, GRIDSmap model,  Place cells, Bayesian integration synapse  

1 INTRODUCTION 

Spatial navigation is quintessential to the survival of a species. For successful spatial navigation, information about the direction and 

distance of the target w.r.t. current position of the animal is needed. In conventional navigation, e.g., that with a global positioning 

system (GPS), a fixed map of the environment is used to achieve this. In contrast, the autonomous robotic spatial navigation requires 

exploration of a new or a changing environment, which needs dynamic spatial maps of the environment which update constantly based 

on new information from the environment. The hippocampal formation is a part of the nervous system which is thought to be involved 

in spatial navigation [1], [2] by storing spatial maps of the environment in memory and constantly updating them by integrating new 

spatial information. Thus, silicon implementation of the hippocampal formation could provide a mechanism for autonomous robotic 

spatial navigation. There have been prior attempts [3], [4] at building parts of the system in silicon but none of them have been able to 

achieve the functionality fully. Therefore, in this paper we propose a system in silicon which successfully realizes the function of the 

hippocampal formation. 

2 CELLS OF THE HIPPOCAMPAL FORMATION 

Anatomically, the human hippocampal formation is a C-shaped structure, located on the medial aspect of the cerebral hemispheres. It 

consists of the subiculum, the medial and lateral entorhinal cortices and the hippocampus proper, among other regions. In [5], [6], [7], 

existence of head direction cells in the subiculum, which fired when the head of the animal was pointing in a particular direction (w.r.t. 

orienting cues) or within 45 degrees thereof, was presented. Functionally, these cells can provide an estimate of the heading direction 

of the animal. In [8], grid cells in the medial entorhinal cortex were demonstrated as firing when the animal is located at the corners of 

equilateral triangles in space. The firing pattern of a grid cell repeats over the entire surface as the animal moves around, thus, providing 

a matrix which spans the environment. The neighbouring grid cells show similar spacing, field size and orientation but differ in their 

vertex locations. The spatial frequency of the grid firing pattern increases along the dorso-ventral axis of the medial entorhinal cortex, 

i.e., the cells located more ventrally have more widely distributed fields. This scaling varies from 30-45 cm in the most dorsal to about 

1 to several metres in the most ventral region. Place cells are the pyramidal cells in the hippocampus which fire whenever the animal is 

at a particular location in space [9]-[14]. As such ensembles of place cells provide a spatial map of the environment. They are also 

involved in encoding a ‘space and time stamp’ on newly created episodic memories. Thus, the hippocampal formation of the brain 

functions as a self-learning internal GPS with ability to dynamically update memory. Several mathematical models have been proposed 

to explain these place specific firing patterns of the hippocampal cells, some of which we used in our silicon implementation of the 

hippocampal formation. These are presented in the next section.  

3 MODELS OF THE HIPPOCAMPAL FORMATION 

To design our system in silicon, we used the GRIDSmap model for grid cells and Bayesian integration for place cells which are described 

in this section.   
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 Grid cell Models 

The GRIDSmap (Grid Regularity from Integrated Distance through Self-organizing map) model [21] was used to implement our silicon 

realization of the grid cell system because it describes the grid cell spatial firing pattern based on trigonometric principles which maps 

the entire space on to 3 rings of stripe cells. According to this model, the rings of stripe cells are present in layer III of the entorhinal 

cortex and provide input to the grid cells located in layer II of the entorhinal cortex. Each grid cell receives inputs from a stripe cell on 

three different rings whose preferred firing directions are oriented at 120 degrees to each other. These stripe cells perform velocity 

integration along their preferred direction. As the animal moves around in the environment, the distance covered by it is projected onto 

these stripe cells using the trigonometric principles (Fig. 1). For instance, if the animal is at point A in space, which corresponds to (1, 

1) in the x-y plane, then the distance, r from the origin is 1.414 m. And that along each of the three axis is r*cos θ, where θ is the angle 

subtended by the axis to the vector pointing in the direction of A. This distance wraps around as the number of stripe cells is limited. 

The distance after which this wrapping around occurs, determines the spatial firing frequency of the grid cells because the grid cell fires 

only when inputs to it from all the three rings are coincident (Fig. 1 (d)). Since the rings are aligned at 120 degrees to each other, the 

grid spatial firing pattern is hexagonal with additional firing at the center of the hexagon (or firing at the corners of an equilateral 

triangle). To demonstrate spatial firing patterns with different frequencies in our silicon system, one way could be to connect different 

number of neurons in the rings to the grid cell. For instance, if the motion integration along the ring wraps around every 1m, then 

connecting the same neuron number on each ring to a grid cell will produce a grid cell with spatial firing frequency of 1m. To implement 

this model in silicon, we need circuits representing three rings of stripe cells, grid cell neurons and synapses and interconnections 

between the two. As part of this work, we designed and tested such circuits which are presented in later sections. 

 
 

 

 

 

In addition to the GRIDSmap model, there are two other widely accepted models explaining the grid cell firing patterns – the attractor 

dynamic [2], [15], and the oscillatory interference [18], [19]. The attractor dynamic model was not used for silicon implementation 

because a variation of this was attempted for implementation in silicon [4] in which authors reported their inability to move the grid 

pattern around during motion integration. Moreover, the silicon implementation of this model requires a huge overhead of software 

interfaces. Therefore, we did not use this model for our system implementation. The oscillatory interference (OI) model or its extension 

[20] were not used for our system implementation as these use velocity and not distance integration. Moreover, they explain motion 

only along the three axis of preference of the three head direction cells and not for the spaces in between these axis. 

Fig. 1(a) Position of the animal is projected onto the Stripe cells ring’s orientation according to the trigonometric principles. (b) Integration of 
distance travelled in space on to the three rings of stripe cells, one of the stripe cells from each ring is connected to a (c) grid cell (d) Firing of a grid 
cell at coincidence of inputs from the 3 stripe cells (with preferred orientations at 120 degrees to each other). This pattern repeats as the distance 
travelled along each direction wraps around the ring. 
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 Place cell Models  

Several models have been proposed to explain the place specific firing patterns of the hippocampal pyramidal cells both in the pre grid 

and the post grid cell era. In the pre grid cell era, place cell firing was thought to depend upon sensory inputs alone. These manifested 

as the relative distance of the animal from a landmark, or as fixed distance from the boundary vector cells (BVCs) which fire when the 

animal is either along the boundaries of the enclosure or along a partition in the enclosure [22], [23]. However, this model holds little 

appeal in explaining place cell firing in the post grid cell era because it does not take motion integration by grid cells into account while 

primary source of inputs to the hippocampus (seat of place cells) is the medial entorhinal cortex (seat of grid cells). After the 

demonstration of regular spatial firing patterns of the grid cells, models proposed (including the attractor dynamic, the oscillatory 

interference and the GRIDSmap) assign integration of inputs of grid cells (integrated motor inputs) of varying spatial frequencies to be 

the cause of place cell firing. Another category of models is based on networks of synapses with different weights connecting grid to 

place cells and generating place cell firing patterns based on learning rules like Hebbian learning, independent component analysis or 

other competitive learning mechanisms [15], [24]-[33]. In [34], it has been postulated that grid cells by performing path integration, 

influence the place cell firing primarily in dark while environmental cues influence the firing in light. In [35], the authors contended 

that the place and the grid cells cooperate to provide accurate spatial mapping of the environment. Though different in their approach, 

all the current models assign integration of grid cell inputs of varying spatial firing frequencies as the cause for place cell firing. In a 

recent study [44], it has been contended that this integration could possibly occur in a Bayes’ optimal manner. This is explained in detail 

in the next section.   

 Bayesian integration of inputs at the place cell 

Bayesian integration means that the information from different sources is combined by weighing it according to its accuracy, i.e. more 

precise information receives a higher weight. Mathematically, it can be represented as   

 

( | ) ( )* ( | )p x O p x p O x   (1) 

 

Where x is the animal’s location in space and O= {o1, …. oN} represents a set of firings of the place cell. Thus, this needs multiplication 

of different probability distributions. The probabilities on the left and the right hand sides of equation (1) are equal if the p(O) is the 

same everywhere. Though evidence of information integration in brain based on Bayesian mechanism has been postulated for neuronal 

ensembles [36]-[43], it has not been shown to exist at a single cell level except for in [44]. Here, it is contended that as seen in neuronal 

ensembles elsewhere in the brain, Bayesian integration could also be the mechanism for integration of inputs from many sources inside 

single place cell neurons. They have contended that though the results do not fit the data exactly, the model is simple and fits the data 

reasonably well1. Hence, this concept of Bayesian integration is entirely different from that performed by networks of multiple neurons. 

They have used simulations to explain integration of external and internal cues as per the BVC model. In this work, we extend this 

concept to the GRIDSmap model.  

 
Fig. 2 Matlab simulation of the GRIDSmap model producing grid cell spatial firing patterns with different frequencies.  These are similar to the spatial 
firing frequencies which have been observed during recordings from live lab animals.  

                                                           
1 According to the Madl’s model, the place cells perform Bayesian integration at the single cell level which if implemented in hardware 

shall be represented as coincidence detection rather than as stochastic response (seen traditionally) where groups of neurons (and not a 

single neuron) perform Bayesian integration. 
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For testing it, we did MATLAB [45] simulations of the animal motion in free space based on this model. Simulating the motion of 

animal in free space, we obtained the grid cell firing pattern in space as predicted by the GRIDSmap model. As seen in Fig. 2, the firing 

patterns had a Gaussian shape of a probability distribution, i.e., the firing rates were higher in the center and lower at the periphery.  

Thereafter, we performed Bayesian integration on these probability distributions (by multiplying them in MATLAB). Results ( 

Fig. 3(b)) show that the Bayesian integration of grid cell inputs can produce a localized field - as observed empirically. This is in contrast 

to place cell firing due to summation and thresholding of inputs from grid cells ( 

Fig. 3(a)) which produces multiple foci of firing for a place cell within an environment which is not what is observed empirically. 

Hence, we also agree with the proposal of [44] that Bayesian integration of inputs to place cells is more plausible than summation and 

thresholding as proposed in the GRIDSmap and other models and would like to extend it to the GRIDSmap model. Thus, to implement 

the function of place cells in silicon based on the GRIDSmap model and Bayesian integration of grid cell inputs, we designed a place 

chip with Bayesian integration synapse and conductance neuron circuits. This is described in subsequent sections. 

 

 
 
Fig. 3 MATLAB simulation results of place cell firing produced (a) by summation and thresholding of inputs from grid cells with different spatial 
firing frequencies, as shown in figure above, and (b) by Bayesian integration of the same grid cell inputs. The latter corresponds more closely to 
empirical observations.  

4 SYSTEM DESCRIPTION 

The entire silicon hippocampal formation was built using three silicon chips – the stripe cell ring chip, the grid chip and the place chip, 

connected through software interfaces designed in Verilog and implemented on a Nexys2 Spartan 3E FPGA board ( 

 

Fig. 4). Each stripe cell chip had 12 ring circuits, each grid chip had 24 conductance neuron and second order synapse circuits and each 

place chip had 8 Bayesian integration synapses and conductance neurons integrated on them.  

 

 
 
 
Fig. 4 Schematic of the system of chips used to achieve the function of the electronic hippocampal formation.  
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To build the hippocampal formation from these chips, 3 ring circuits (1 from each of the stripe cell ring chips) with 24 nodes and 24 

neurons, 3 grid synapse-neuron (1 from each of the grid chips) and 1 place synapse-neuron circuits were used and connected through 

software interfaces built in FPGA. Animal motion in space was simulated and mapped on to the 3 ring circuits based on the GRIDSmap 

model described above. Position of the active node on the rings was moved around by providing right shift (RS) and left shift (LS) 

signals to the ring circuits. Projection of animal motion along the rings was wrapped around after every 1 m. Thus, to get a particular 

grid cell spatial firing frequency, we connected 1 stripe cell (say 24) on all the three rings to a grid cell and set the grid cell’s firing 

threshold such that it fired only when it received inputs from all the rings simultaneously. To obtain half of that spatial firing frequency, 

we connected it to 2 of the equidistant nodes (say 12, 24) of the three rings. Similarly, to obtain a fourth of the spatial firing frequency 

for a grid cell, we connected 4 equidistant nodes (say 6, 12, 18 and 24) on all the rings to the grid cell. From this, we could realize the 

function of three grid cells with different spatial firing frequencies. We integrated the outputs of these three cells using the Bayesian 

integration synapse onto a conductance neuron circuit which functioned as a place cell. The software interfaces were designed to make 

the system flexible (for instance, testing different combinations of inputs to grid and place cells) and were deliberately introduced and 

not as a substitute to hardware circuits. 

5 CIRCUITS 

As mentioned above, the system was designed using the stripe cell ring chip, the grid chip and the place chip. To reduce the area and 

power consumption by the circuits, the system was implemented using only a few circuits on each chip such that in future 

implementations of the system, the entire system can be integrated on a single tiny chip unit2. Circuits on these chips (even though for 

different applications) have been published in [46], [49], [51].  

 The stripe cell ring chip 

Each stripe cell ring chip ( 

 

Fig. 5) had 12 ring circuits integrated on it along with the 5 to 24 line decoder (to route inputs), the address event representation (AER3) 

[48], and 24 to 5 bit encoder for reading neuron/node addresses from the ring. The decoder circuit was used to route RS/LS (right 

shift/left shift) signals to this ring to move the node of activity around. Encoder circuit was also used to read the neuron number which 

was firing. Of the 12 rings on each chip, only 1 was used. The others could not be used because the AER circuit could not read the ring 

addresses sequentially as required to implement the GRIDSmap model. This did not get caught at the simulation stage as the PSPICE 

simulations did not have enough bandwidth. So, to use 3 ring circuits for the system, 1 circuit from a chip was used. This did not affect 

the functionality of the system in any manner. 

 

                                                           
2 Tiny chip unit is a standard size of chip fabricated by MOSIS. The dimensions of the chip are 1.275mmX1.275 mm. 
3 Address event representation circuit is an asynchronous digital circuit used to process spiking inputs. It is required because in silicon 

implementation of neuronal ensembles, we need to read spiking outputs from several neurons which fire simultaneously without losing 

information from any of them. The circuit can receive several inputs and randomly (and not sequentially) select between the one that it 

processes. Processing involves reading the neuron number which is firing. For all its functions, the circuit has 3 sub-circuits in it – the 

arblogic, the arbiter and the encoder. The arblogic and the arbiter, randomly select the spiking input which is processed at a time and 

then send it to the encoder which converts the neuron number into a digital address.   
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Fig. 5 Schematic showing arrangement of circuits on the stripe cell ring chip 

 

Each ring circuit had two parts: a winner take all (WTA) [47] circuit with 24 nodes and 24 integrate and fire neurons ( 

Fig. 6). The WTA circuit was used to make the ring circuit compact and power efficient, the neurons were used to communicate the 

winning node position as neuronal firing to the encoder and AER circuits which could read its address. As per the WTA circuit, only 

one node wins at a time. The first node was designed differently with provision for reset which helps it to be the winning node whenever 

the ring is reset. The reset signal chooses between V1 and V2 and here, V1 was kept at a lower value than V2. Once this node wins, it 

stays as the winner as long as the parameters RS and LS are held at 0V. During this time, the M5-M6 current mirror copies the current 

from the winning node to the connected capacitor which charges up to Vdd. The current is controlled by cCon applied to the gate of 

M13. The capacitors of the non-winning nodes cannot charge up due to the leak nfet (M9). Since the WTA circuits are prone to mismatch, 

M4-M5 current mirror was used to copy the current back to the winning node (positive feedback) and help it stay winning. When RS is 

changed to Vdd, the charge stored in the capacitor is transferred to N2, which starts winning. Thus, the winning node of the ring can be 

reset to 0, held at a particular value for a duration of choice and moved around as is required to implement the GRIDSmap model. In 

this circuit, the W/L of M4 was kept at 1/5 so that the positive feedback is not too strong to hinder movement to the next node but is 

strong enough to overcome potential mismatch. Another aspect of circuit design was that when the RS or LS is pulled high, a lot of 

charge is transferred in a very short time (1 µs). This could cause charging of all the capacitors and uncontrolled movement of the 

winning node if M6 is wide enough. To avoid this, W/L of M6 was kept at 1/5 so that the capacitor charges up slowly. The capacitor 

value was chosen to be 75fF so that it could store enough charge to overcome capacitance at the drain of M3, M4, M7 and the gate of 

M8, which had to be raised above 2V to make the node winning. The capacitor value could not be too high as this would have fabrication 

constraints (1 ring with 24 nodes and 24 neurons each had to be integrated along the length (1.275 mm) of 1 tiny chip unit).   
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Fig. 6 Circuit schematic showing two of the 24 nodes on the stripe cell ring chip, the rest of the nodes were similar to node N2. Node 1, N1 has provision 
for reset. W/L for M4=2.4 µm/12 µm and for the rest, it was 2.4 µm/2.4 µm. C1=75 fF. 

 
 
 
Fig. 7 Circuit schematic of the integrate and fire neuron, used to read the output current from each of the 24 nodes on the stripe cell ring circuit. 
C1=60fF, C2=30fF, W/L of M1=6µm/1.2µm, M11=2.4µm/2.4µm, and for the rest =1.5 µm/1.5 µm. 

 

Each of the 24 IFN ( 

 

Fig. 7) multiplies the current, copied to it from the winning node, by 5 (W/L ratio of M1). To control neuronal firing, the current 

integrating on to C1 was controlled by cCon parameter applied to the gate of M2. When the capacitor voltage reaches the threshold 

defined by the size of the nfet (M5) and pfet (M4), the neuron fires a spike, which is amplified by the gain of the two inverters. The 

feedback capacitor maintains the membrane potential for a while for persistent spiking. The spikes so generated from all 24 neurons on 

a ring were processed using a chain of pfets (M17-M41) whose drains were connected to the AER circuit. The AER circuit reads the 

ring number using a 16 to 4 encoder. Once the ring to be read is chosen, the ackRing/ signal is sent back and the neuron number is read 

using the orthogonally placed 24 to 5 encoder. Once the ring and neuron numbers have been read, the neuron is reset after a refractory 

period determined by Vrefr. 
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 The grid chip 

Based on the GRIDSmap model, the grid pattern of a particular spatial firing frequency can be demonstrated with a single grid neuron-

synapse circuit where the synapse can sum the 3 inputs (from 3 stripe cell ring circuits) and present it to the grid neuron whose threshold 

can be set such that it fires only when it receives all the 3 inputs simultaneously. However, to demonstrate the place cell firing according 

to the Bayesian integration model, we need at least 2 grid cells with different spatial firing frequencies. Thus, in this project we used 3 

grid synapse-neuron circuits to demonstrate the grid and the place cell firing. Moreover, to enable neuronal firing only when a grid cell 

gets input from all three neurons on the 3 rings simultaneously but not otherwise, we used the second order synapse circuit ( 

Fig. 9) which can produce output current proportional to the number of inputs. This synapse circuit was connected to the conductance 

neuron circuit ( 

Fig. 9) whose threshold can be controlled such that it fires only when the synapse circuit has produced output current proportional to 3 

inputs and not just one. The grid chip had 24 of these synapse-neuron circuits on it. The inputs to the synapse circuit were routed through 

the 5 to 24 decoder and neuron outputs were read through the AER circuit. However, the AER processing of outputs from different 

synapse-neuron circuits was not sequential as required for this project. Thus, we did not use all the 24 circuits on a single chip. Instead, 

we used the test circuit (which was similar to other synapse-neuron circuits but had separate read in and read out which was not routed 

through the AER) and one other synapse-neuron circuit on one chip and a test circuit on a second chip. If we had the provision for 

reading the neuron outputs separately, we could have used all the 3 synapse-neuron circuits from the same chip. This can be done in 

future implementations of the system to save chip area. 

 
 
Fig. 8 Schematic showing arrangement of circuits on the grid chip 

 

The neuron circuit ([46],  

Fig. 9(a)) used for this chip has one excitatory input which pulls the membrane potential down, allowing the neuron to fire. The neuronal 

firing in the quiescent state is inhibited by leak current through a transistor on to the node representing the membrane potential. With 

constant Vexc, output current in steady state, Im_ss will be 

 

( )

_

V Vdd we
VT e

m ss o

lk

I
I I e

I

   
  

 
  (2) 

 

i.e., it depends directly upon the excitatory input, scaled by bias voltage (Vwe). As the membrane potential, Vx for the neuron reaches a 

value which matches the Vthr, it fires a digital spike (Rout) which is amplified by the gain of the two invertors and maintained for a while 

by the feedback through the capacitor, Cfb. This Rout is read by the AER circuit. After firing for a while, the neuron is reset by the ack 

signal coming back from the AER circuit. The refractory period after which the neuron is ready to fire again is determined by the 

parameter Vrefr, applied to the gate of M10.  
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Fig. 9 Circuit of the (a) neuron (based on the Hodgkin-Huxley model of the neuron) and (b) second order synapse used in the grid chip. With no 
critical constraints on sizing, all transistors were 2.4µm/2.4µm and all capacitors=0.1pF.  

 

The synapse circuit ( 

Fig. 9(b)) used was the second order synapse [49] which can convert a sub microsecond input pulse applied to the gate of M3 into a 

second order function shaped output current, whose time constant can be varied from 0.5 to 50 ms. M1, M2 and C1 act as a first pass 

filter while M4, M5 and C2 work as the second pass filter. Operating in the subthreshold region, the current outputs of transistors are 

exponential to the gate voltages. So, using the small signal approximation of the same, the transfer function of this circuit is  
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  (3) 

 

In the final implementation of the system, the coincidence detection was done using the FPGA which sent a single input pulse to the 

grid cell synapse only if outputs from the required nodes on the three rings were coincident while time constants in the biological range 

were created using the second order synapse circuit which in turn were read by the neuron circuit.  

 Place Chip 

Since we wanted to implement place cell firing using Bayesian integration of outputs from grid cells with different spatial firing 

frequencies, a Bayesian integration synapse (Fig. 11) was designed and fabricated on the place chip ( 

Fig. 10). This synapse circuit receives inputs from the 3 grid neurons and if inputs to it are simultaneous, the synapse produces a current 

output which was processed using the conductance neuron ( 

Fig. 9(a)) which was fabricated on the same chip. In total, this chip had 9 such synapse-neuron circuits including a test circuit. Each 

synapse circuit received 3 spiking inputs routed through the on chip 5 to 24 decoder circuit. The spiking outputs from the neuron circuit 

were read using the AER circuit.  

The circuit of the Bayesian integration synapse was a current mode, sub threshold circuit, based on bump and correlator circuits (Fig. 

11), [50]. The equations for the synapse circuit are 

        4
I

1

b
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             (4) 
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Fig. 10 Schematic showing circuit arrangements on the place chip 

 

 
 

 

 

Here, the circuit performs multiplication of the spiking inputs to it from the 3 grid neurons as is required to implement Bayesian 

integration of inputs at the place cell. This is because in hardware, we don’t have probabilities (as used for calculations in software) but 

actual spikes. The circuit also scales output with respect to the other inputs. Thus, with these synapse and neuron circuits, we performed 

Bayesian integration of inputs to implement place cell firing.  

6 TESTING & RESULTS  

To demonstrate the function of the hippocampal formation in silicon based on the GRIDSmap model of grid cells and the Bayesian 

integration, we used the chips described above. Each chip was 1.275X1.275 mm, fabricated using the commercially available ON 

semiconductor process from MOSIS. 3 stripe cell rings, 3 grid cells and 1 place cell were used to realize the function of the system. 

Custom test PCBs were designed to test these chips, and software interfaces for communication between the chips were designed using 

Verilog, implemented on Spartan 3E Nexys2 Digilent FPGA board. The output was recorded using Agilent MSO 6014A mixed signal 

oscilloscope and then processed in MATLAB [45].  

Fig. 11 Circuit schematic of the Bayesian integration synapse designed using bump and correlator circuits.  
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To demonstrate the function of the silicon system as hippocampal formation, we provided spiking inputs (RS and LS) to the system 

which correspond to animal motion in the environment4. Firstly, the animal’s motion in straight line along the preferred direction of a 

ring of stripe cells, secondly that along a circle and finally that in open space was coded in Verilog to provide inputs to the 3 stripe cell 

rings. Neuron numbers from the stripe cell ring chips were read using the FPGA and according to the GRIDSmap model, inputs were 

sent to 3 grid synapse-neuron circuits to demonstrate 3 different spatial firing frequencies. Outputs from these 3 grid cells were directly 

provided as inputs to the Bayesian synapse circuit on the place chip. Test results from the individual circuits have been reported in [46], 

[49], [51]. Thus, this paper specifically presents their use as a part of the hippocampal formation which is the first time as far as our 

knowledge of literature goes. Parameters used for these tests are shown in Table 1 in Appendix.  

 Motion in straight line 

 
 

 

 

 

 

 

 

When an animal moves around in space, according to the GRIDSmap model (section 3.1), location of the animal in space shall be 

mapped on to neurons in the stripe cell rings. For simplicity, here we consider the case of only the 3 stripe cell rings which are connected 

to the 3 grid cell neurons that we are using in our system design. Since we are first considering the case where animal motion along a 

straight line is simulated, the position of the winning node will change on one of the rings (say ring1) at a particular rate and that along 

the other two at half of that rate because the rings are aligned at 60 degrees to each other and cos (60) is 0.5. We also assume here that 

the movement along the 24 nodes of a ring wraps around after 1m. To implement this on our silicon system, we applied a right shift 

(RS) signal to one of the rings at 1kHz, and at 500 Hz to the second and the third rings. The corresponding neurons which fired on all 

the rings were read using the FPGA board. Through this software interface, node 24 of all the rings was attached to a grid cell neuron 

through a second order synapse circuit. Thus, this grid cell neuron was expected to fire after every 2m of distance travelled by the animal 

in space. Another grid cell neuron was connected to nodes 12 and 24 of all the three rings. Thus, this should fire after every 1m. 

Similarly, the grid cell neuron connected to nodes 6, 12, 18 and 24 shall fire every 0.5m of distance covered by the animal along the 

straight line. Since these three grid cell neurons are connected to a single place cell neuron through a Bayesian integration synapse, the 

place cell neuron is expected to fire every 2m, i.e., when it receives inputs from all the grid cell neurons at the same time.  

                                                           
4 Since the hippocampal formation cells fire when the animal moves around and is at particular locations in space, this simulation of 

animal motion using this silicon system of chips was essential. Even though we tested the network here, the inputs to it were provided 

as a real neural network would receive when the animal is moving around in the environment.  

Fig. 12 Measurement results from the system as the animal moves along the preferred firing direction of one of the ring of stripe cells. (a) Ring 
numbers of the ring along which the direction of motion is aligned. The neurons numbers move from 12….. 24 1 and so on at 1kHz, (b) and 
(c) show movement of winning node position along the other 2 rings which are aligned at 60 and -60 degrees to the first one. The rate of movement 
along these is half of that along the first one because cos (60) is 0.5. (d)-(f) Show the grid cell firing pattern of different frequencies which is obtained 
when (d) the neuron numbers  24 on all the three rings fire simultaneously and provide input to the grid cell or when (e) either 12 or 24 neuron 
numbers on all the rings fire simultaneously and provide input to the grid cell or when (f) either 6, 12, 18 or 24 neuron numbers fire simultaneously 
and provide inputs to the grid cell. (g) The place cell fires when all the grid cell inputs to it are coincident. (h)-(k) Showing extrapolation of place cell 
firing (*) in the x-y plane as the animal motion along the preferred firing direction of a ring is simulated.  
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Thus, the system was provided inputs as RS and LS signals to the stripe cell ring circuits. The output from the 3 stripe cell ring circuits 

was read (using the FPGA board) as neuron number which fires at a given time. The neuron numbers recorded from the ring 1 chip and 

plotted in MATLAB are shown in Fig. 12 (i) (a). The neuron numbers on ring1 are moving from 12….. 23241 and so on 

at 1kHz while that on (b) and (c) are moving around at 500 Hz. The FPGA board was programmed to provide inputs to grid cell1 

whenever the neuron numbers on all 3 rings were detected to be 24 at the same time, to grid cell2 whenever the neuron number on the 

rings were either 24 or 12 and grid cell3 when the neuron numbers were either 6, 12, 18 or 24. The subsequent grid cell firing pattern 

was recorded using the mixed signal oscilloscope (Fig. 12(i) (d-f)) and routed to the place cell neuron circuit through the Bayesian 

integration synapse circuit. Firing of the place cell neuron was also recorded using the mixed signal oscilloscope (Fig. 12 (i) (g)). The 

results show firing of grid cell 1 at regular intervals of 2m, of grid cells 2 and 3 at intervals of 1 and 0.5 m respectively, and that of the 

place cell when all three of them are coincident, as expected by the model. Based on the chip results, projections were made to x-y plane 

(using MATLAB - Fig. 12 (ii)). The results show that the system can correctly replicate the expected regular spatial firing patterns of 

the grid cells and place cells when animal motion along a straight line is simulated. 

 Motion in a circle 

 
 

 

 

Next, we measured the grid and the place cell firing patterns from our silicon hippocampal formation as the animal motion along a circle 

of radius 2m was simulated. If the animal moves in a circle of radius 2m, then there will be at least 6 points on that circle which shall 

fall on the edges of a regular hexagon with each edge 2m long (Fig. 13(h)). To extrapolate the animal motion in space on to the 3 rings 

of stripe cells which are connected to a single grid cell, we took these 6 points. At each of these points, according to the GRIDSmap 

model, the distance travelled along the direction of the ring on which the point falls shall be 2m while along the other two it shall be 

1m. This is because these are aligned at 60 and -60 degrees to the first ring. Thus, the distance covered along these two axis shall be 

half (cos (60) is 0.5) of 2m or it will be 1m. This corresponds to node position of 24 on all the rings in hardware circuits (assuming the 

motion wraps around the ring after every 1m). To illustrate motion along the ring, we also picked another 6 points on the ring which 

were midway between these 6 points. Whenever the animal is at one of these points, say the 90 degree point, the projection of distance 

to one of the axis shall be 0 (2*cos (90)) and along the other two will be about 1.8 m (2*cos (30)). This shall correspond to node numbers 

24 on the former ring and node numbers 22 on the other two. For the other 5 points also the mapping will be similar with alternation in 

the ring number whose node 24 is active at that point, i.e., [22, 22, 24], [24, 22, 22] or [22, 24, 22] for these 6 positions on the circle 

which are exactly half way between the former 6 points.  

To implement it in our silicon chip system, the position of winning nodes on the three rings was shifted by providing LS or RS signals 

to the ring from the FPGA. As described in the section on circuits, these signals were routed through the decoder such that the address 

of the LS or RS signals was set and then the req/ bit of the decoder was pulled active low. As the rings were moved, the neuron numbers 

were recorded. If the neuron numbers of all the rings were 24, then the synapse of grid cell1 was sent a spike as a result of which it 

fired. Similarly, spike inputs were sent to grid cell2 if either of the neuron numbers 12 or 24 and to grid cell3 if either of the neuron 

numbers 6, 12, 18 or 24 from all the rings fired simultaneously. Since, the neuron numbers 6, 12 or 18 on the rings did not fire in this 

case, all the three grid cells as well as the place cell firing had similar spatial scaling (Fig. 13). Measurement results in Fig. 13 show the 

Fig. 13 (a)-(c) Movement of winning node along the 3 stripe cell rings as the animal motion along a circle is simulated (neuron numbers of the 3 rings 
are shown). Also seen are (d)-(f) the corresponding firing patterns of 3 grid cells (shown in detail in (i)) and that of a (g) place cell.  (h) Showing the 
measured place cell and grid cell firing (*) when animal motion along a circle is simulated. This is a plot in Matlab based on the data obtained from 
the chips. 
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firing pattern when these grid cell outputs were integrated onto the place cell. Hence, this system can correctly track the motion of the 

animal using the place and the grid cell spatial firing patterns. 

 Motion in open space 

To cover the entire space with animal motion, we simulated motion of the animal (Fig. 14) along one axis for 4 m, then along an axis 

at 60 degree to this one for 1 m, then in opposite direction for another 4 m and repeated this pattern over and over. So the animal’s 

position at representative points for all places in space was mapped on to the 3 stripe cell rings. According to the GRIDSmap model, 

during the initial 4 m, node positions along one of the rings (in line with axis of movement) will move around at (say) 1kHz while that 

along the other 2 will move at half of that rate i.e., at 500 Hz (because cos(60)=0.5). And the nodes were moved around such that the 

motion wrapped around after every 1m. For the next 1 m when animal motion in the direction of the second ring was simulated, the 

position of the winning node will move on this ring by 1m and by 0.5 m along the other two rings (as these will be now at 60 degrees 

to the direction of motion and cos(60) is 0.5). To implement this in our silicon system of chips, firstly ring 1 was moved 96 positions to 

the right (by providing 96 RS signals), rings 2 and 3 by 48 positions to the right. Then node positions on rings 1 and 3 were shifted 12 

positions to the right and the left respectively and that on ring 2 by 24 positions to the right. Then the animal motion along the direction 

of the first ring for 4 m but in opposite direction was simulated. This corresponds to movement in opposite direction for 96 positions 

along ring 1 (using LS signals), by 48 positions to the left for both rings 2 and 3. This pattern of movement along the rings was repeated 

over and over so as to cover the entire space with animal motion.  

 
Fig. 14 Schematic showing the animal trajectory simulated on the chip to obtain the results shown in Fig. 15. 

 
Fig. 15 Measurement results from (a)-(c) 3 stripe cell rings, (d)-(f) 3 grid cells and one (g) place cell when animal motion in open space is simulated. 
(a)-(c) Neuron numbers of the 3 stripe cell rings as the animal moves around in space. (d)-(f) The results show firing of grid cells at regular intervals 
with different scaling. (g) The place cell fires when it gets inputs from all the grid cells simultaneously. (h)-k) Grid and place cell firing (*) 
extrapolated from that recorded from the chips as the animal motion in open space is simulated. 
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Thereafter, using the software interface in FPGA, the first grid cell was connected to neuron number 24 of each ring, second grid cell 

to neuron numbers 12 and 24 and the third grid cell to neuron numbers 6, 12, 18 and 24 of each of the rings. The place cell fired only 

when it received inputs from all the three grid cells. Detailed grid firing pattern of different spatial frequencies and that of place cell 

was projected to entire space and plotted in MATLAB (Fig. 15 (h)-(k)). One snippet of the recordings from the 3 chips, as seen on the 

oscilloscope and later processed in MATLAB, is shown in Fig. 15 (a-g). As the environment is scaled to bigger size, the grid cell and 

the place cell firing shall just extend in a similar pattern, i.e., the hexagonal pattern shall be preserved even though it will spread out to 

the entire space. These results demonstrate that we could successfully achieve the function of the hippocampal formation based on the 

models with these 3 chips/circuits in silicon. In all these tests, we demonstrated place cell firing based on grid cell firing as per the 

GRIDSmap model extended to explain place cell firing based on Bayesian integration. Even though the grid cell spatial frequencies 

chosen here are multiples of each other, in reality, they may not be so. Therefore, even though here it seems that the place cell firing is 

a function of grid cell firing of the highest spatial frequency alone, it might not be the case. For instance, if the spatial firing frequencies 

of the 3 grid cells were 1m, 3m and 8m, then the place cell shall fire after every 24 m which is not equivalent to the spatial firing 

frequency of either one alone. 

7 CONCLUSION 

In this paper, we integrated 3 silicon chips fabricated using 0.5 µm ON semiconductor technology into a system which mimics the 

spatial navigation function of the hippocampal formation based on the GRIDSmap model and Bayesian integration. With the circuits 

on the chips, we could realize the function of the stripe cells ring which could perform motion integration. Three stripe cells from these 

rings were connected to a grid neuron through a second order synapse circuit to demonstrate firing patterns with a spatial frequency of 

1m. Multiples of this frequency were obtained by connecting more stripe cells with 2 other grid cells. Thus, we could demonstrate the 

hexagonal firing patterns of the entorhinal cortex grid cells with different spatial frequencies as per the GRIDSmap model. As far as 

our knowledge of literature, this is the first such demonstration of grid cell firing in silicon. Further, we extended the idea of Bayesian 

integration as a possible mechanism for input integration in place cells formed based on the GRIDSmap model. To implement it in 

silicon, we designed and fabricated a circuit which can perform Bayesian integration and demonstrated results from chip measurements. 

Hence, in this work, we could demonstrate the working of the hippocampal formation from the perspective of the GRIDSmap model in 

silicon. This system is capable of learning new paths (by changing connections between stripe cells and grid cells) and encoding for the 

animal’s position in space. As seen above, our system is based on mathematical models of the hippocampal formation. Thus, it correctly 

implements in silicon what the models describe to be the computational basis of the spatial firing patterns of the cells of the hippocampal 

formation. Grid cell mathematical models are capable of describing the empirically observed patterns quite successfully but the place 

cell computational models need more refinement. Results obtained here in silicon can also help refine the current place cell models by 

providing better insights into them. Future work in this field involves developing a more empirically plausible mathematical model 

explaining the hippocampal place cell firing. Towards this goal, we have come up with a sensorimotor model of the place cells [52], 

[53] which is closer to the empirical observations than the current models of place cells. The sensorimotor model can also be 

implemented using the above hardware system. Another noteworthy fact  is that like any other prior implementation of a biological 

system in silicon [3] or like the actual biological systems, our system also suffered from drift due to noise, mismatch, etc., when we 

tried to integrate motion for a longer duration, i.e., over an hour. To correct this, we repeatedly reset the rings to node 1 using inputs 

from the FPGA to the ring circuits. This corrected the error and enabled the system to perform path integration and spatial mapping 

accurately over extended periods of time and space. 
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APPENDIX 

Table1 Parameters used for testing the system 
Chip Parameter Voltage (V) 

Stripe cells’  

ring chip 

V2 4.15 

V1 3.9 

Vleak (ring) 0.40 

Vbias 1.46 

cCon 4.17 

Vlk(neuron) 0.52 

Vrefr 0.5 

Grid cell  Vsyn 2.6 
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chip Vτ1 3.5 

Vτ2 4.5 

Vf 2.88 

Vs 3.79 

Vwe 4.1 

Vlk 4.29 

Vrefr 4.38 

Vthr 0.75 

Place cell  

chip 

Vbias 1.5 

Vthr 0.6 

Vlk 4.41 

Vwe 4.05 

Vrefr 4.26 
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