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Preface
Science has evolved over thousands of years. It began out of curiosity about how the world around us works
as well as a need to know how to make things work better. From water management to space travel, science is
essential for success.

The evolution of science is layered: Early science depended mostly on critical observation, thus the early sci-
entist was considered a philosopher who created a theory. Soon experiments were designed to test these theories.
This process is successful when a new principle is established, leading to a deeper and reproducible experimen-
tal observation. This typically takes years. A key component of science is making and testing models, that are
designed to evaluate the results of experiments quantitatively in a mathematical framework. Good science is ob-
servation and experimentation. Great science is the art of making models that explain experimental results. This
always results in a deeper question, suggesting new experiments. Each generation has its geniuses. One of these
was Galileo, who was a philosopher, experimentalist, and mathematician.

An understanding of physics requires a knowledge of mathematics. The converse is not true. By definition,
pure mathematics contains no physics. Yet historically, mathematics has a rich history filled with physical appli-
cations. Mathematics was developed by individuals who intend to make things work. As an engineer, I see these
creators of early mathematics as budding engineers. This book is an attempt to tell the story of the development
of mathematical physics as viewed by an engineer.

There are two distinct ways to learn mathematics: by learning definitions and relationships, or by associ-
ating each mathematical concept with its physical counterpart. Students of physics and engineering best learn
mathematics based on the underlying physical concepts. Students of pure mathematics are taught via definitions
of abstract structures, not from the history of mathematical physics. These two teaching methods result in very
different understandings of the material.

There is a deep common thread between physics and mathematics: the chronological development, or the
history of mathematics. This is because much of mathematics was developed to solve physical problems. Most
early mathematics evolved from attempts to understand the world, with the goal of navigating it. Pure mathematics
followed as generalizations of these physical concepts.

Around 1638 Galileo stated that, based on his experiments with balls rolling down inclined planes and pendu-
lums, the height of a falling object is given by

h(t) = 1
2Gt

2, (0.0.1)

where t is time and G is a constant. This formula leads to a constant acceleration a(t) of the object since

a(t) = d2

dt2
h(t) = G

is independent of time. It follows that the force on a body is proportional to its acceleration a, defined as G –
namely, F = a ≡ G. Thus G must be the object’s mass, which must be a constant. If the object has a constant
forward velocity, then the object will have a parabolic trajectory. The relative mass may be measured using a
balance scale. I believe Galileo understood all this.

Years later, following up on the observations from Galileo’s study of pendulums and falling objects, Newton
showed that differential equations were necessary to explain gravity and that the force of gravity is proportional
to the masses of the two objects divided by the square of the reciprocal of the distance between them:

d2

dt2
r(t) = G

mM

r2(t) .

To find r(t) we must integrate this equation. For an object at height h(t) above the surface of the earth, r(t) =
Re + h(t) ≈ Re, where Re is the radius of earth. In this case, the force is effectively constant, since h � Re.
Newton’s equation says the acceleration is constant,

d2h(t)
dt2

= G
mM

R2
e

,
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but different from Galileo’s G (a simple mass). Yet it seems clear that the physics behind Newton’s formula for
the acceleration a(t) of two large masses (sun and earth, or earth and moon) and Galileo’s physics for balls rolling
down inclined planes are the same.1 The difference is that Newton’s proportionality constant is a significant
generalization of Galileo’s. But, other than the constant, which defines the acceleration, the two formulas are the
same.

This is not a typical mathematics book; rather, it is about the relationship of math and physics, presented
roughly in chronological order via their history. To teach mathematical physics in an orderly way, our treatment
requires a step backward in terms of the mathematics, but a step forward in terms of the physics. Historically
speaking, mathematics was created by individuals such as Galileo who, by modern standards, may be viewed as
engineers. This book contains the basic information that well-informed engineers need to know, as best I can
provide.

Let the reader beware that engineering and physics texts do not intend to be rigorous, in the mathematical sense.
In some ways, mathematics cleans up the mess by proving theorems, which frequently start with speculations in
physics and even engineering. The cleanup is a slow, tedious process. Just because something seems obvious
based on the known physical facts does not make it a fundamental theorem of mathematics.

Although there are similarities between this book and that of Graham et al. (1994), the differences are notable.
First, Graham’s Concrete Mathematics presents an impossible standard to be measured against. Second, is is
clearly a math book, brilliantly written and targeted at computer science students. This book is not just a math
book – it is a mathematical physics text, which depends much on underlying math. I would like to believe there
are similarities in (1) the broad range of topics, (2) the in-depth discussion, and (3) the use of historical context.

Organization: As discussed in Sec. 1.2.2 and Fig. 1.6 (p. 11), the book is divided into three mathematical
themes, called streams, presented as five chapters: Introduction, Number Systems, Algebraic Equations, Scalar
Calculus, and Vector Calculus. Appendices are used to isolate complex self-contained topics and large tables,
such a those for Laplace transforms.

Chapter 2, Number Systems, introduces two key concepts, the greatest common divisor (GCD) and the con-
tinued fraction algorithm (CFA). When we deal with simple electrical networks composed of inductors, resistors,
and capacitors (Fig. 3.8, page 107), or mechanical networks consisting of masses, dashpots, and springs, or their
equivalent, pendulums, as used by Galileo in his studies of gravity (Figs. 1.3, page 6 and 3.11, page 119), the
system may be modeled as a Brune impedance, defined as the ratio of polynomials of the Laplace frequency
s = σ + ω (see Sec. 3.2.5, page 73 and Sec. 4.4.2, page 143). Of special importance is the development of
ordinary differential equations (Sec. 3.4.2, and Eq. 3.4.4) which under generalized symmetry conditions, called
postulates (Sec. 3.10.2, page 121), characterize Brune impedances (Brune, 1931a).

Using the CFA (Sec. 2.4.4), we can generalize the Brune impedance. This generalization results in a trans-
mission line, that describes wave propagation in horns, dealt with in Chapters 4 and 5 (Cauer et al., 1958; Cauer,
1958). This topic is both physically and mathematically important (Cauer, 1932).

The material is delivered in numbered sections (e.g., Sec. 1.1) spread out over a semester of 15 weeks, three
lectures per week, with a three-lecture time-out for administrative duties. Eleven problem sets are provided for
weekly assignments.

Many students have rated these assignments as the most important part of the course. There is a built-in
interplay between these assignments and the lectures. When a student returns an assignment or exam the full
solution is provided while it is still fresh in their mind (ateaching moment).

Author’s personal statement

An expert is someone who has made all possible mistakes in a small field. I don’t know if I would be called an
expert, but I certainly have made my share of mistakes. I openly state that I love making mistakes because I learn
so much from them. One might call that the “expert’s corollary.”

This book has been written out of my love for the topic of mathematical physics, a topic that provides many
insights, that lead to a deep understanding of important physical concepts. Over the years I have developed a
physical sense of math along with a related mathematical sense of physics. While doing my research,2 I believe
that math can be physics, and physics math. I have come across what I feel are certain conceptual holes that need
filling, and I sense many deep relationships between math and physics that remain unidentified. What we presently
teach is not wrong, but it is missing these relationships. What is lacking is an intuition for how math “works.”

1https://physicstoday.scitation.org/do/10.1063/PT.6.3.20191002a/full/
2https://auditorymodels.org/index.php/Main/Publications
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Figure 1: There is a natural symbiotic relationship among
mathematics, engineering, and physics (MEP), depicted in the
Venn diagram. Mathematics provides the method and rigor. En-
gineering transforms the method into technology. Physics ex-
plores the boundaries. While these three disciplines work well
together, there is poor communication, in part due to the vastly
different vocabularies. But style may be more at issue. For
example, mathematics rarely uses a system of units, whereas
physics and engineering depend critically on them. Mathemat-
ics strives to abstract the ideas into proofs. Physics rarely uses
a proof. When they attempt rigor, physicists and engineers typi-
cally get into difficulty. An important observation by Felix Klein
about pure mathematicians, regarding the unavoidable inaccura-
cies in physics: “It may be said that the idea [of inaccuracy]
is usually so repulsive to [mathematicians] that its recognition
sooner or later spoils their interest in natural science” (Condon
and Morse, 1929, p. 19).

MATHEMATICSENGINEERING

PHYSICS

Good scientists “listen” to their data. In the same way, we need to start listening to the language of mathematics.
We need to let mathematics guide us toward our engineering goals.

As summarized in Fig. 1, this marriage of math, engineering, and physics (MEP)3 helps us make progress
in understanding the physical world. We must turn to mathematics and physics when trying to understand the
universe. My views follow from a lifelong attempt to understand human communication – that is, the perception
and decoding of human speech sounds. This research arose from my 32 years at Bell Labs in the Acoustics
Research Department. There such lifelong pursuits not only were possible but were openly encouraged. The idea
was that if you are successful at something, take it as far as you can, but, on the other hand, you should not do
something well that’s not worth doing. People got fired for the latter. I should have left for a university after a
mere 20 years at Bell Labs,4 but the job was just too cushy.

In this text it is my goal to clarify conceptual errors while telling the story of physics and mathematics.
My views have been inspired by classic works, as documented in the Bibliography. This book was inspired by
my reading of Stillwell (2002) through his Chapter 21. Somewhere in Chapter 22 I switched to the third edition
(Stillwell, 2010), at which point I realized I had much more to master. It became clear that by teaching this material
to first-year engineers, I could absorb the advanced material at a reasonable pace. This book soon followed.

Summary
This is foremost a math book, but not the typical math book. First, this book is for the engineering minded, for
those who need to understand math to do engineering, to learn how things work. In that sense the book is more
about physics and engineering than mathematics. Math skills are essential for making progress in building things,
be it pyramids or computers, as clearly shown by the great civilizations of the Chinese, Egyptians, Mesopotamians,
Greeks, and Romans.

Second, this is a book about the math that developed to explain physics, to enable people to engineer complex
things. To sail around the world, one needs to know how to navigate. This requires a model of the planets and
stars. You can know where you are on earth once you understand where earth is relative to the sun, planets, Milky
Way, and distant stars. The answer to such a cosmic question depends on whom you ask. Who is qualified to
answer such a question? It is best answered by those who study mathematics applied to the physical world. The
utility and accuracy of that answer depend critically on the depth of understanding of the physics of the cosmic
clock.

The English astronomer Edmond Halley (1656–1742) asked Isaac Newton (1643–1727) for the equation that
describes the orbit of the planets. Halley was obviously interested in comets. Newton immediately answered, “an
ellipse.” It is said that Halley was stunned by the response (Stillwell, 2010, p. 176), as this was what had been
experimentally observed by Kepler (ca. 1619) and he knew that Newton must have some deeper insight. Both
were eventually knighted.

When Halley asked Newton to explain how he knew, Newton responded, “I calculated it.” But when challenged
to show the calculation, Newton was unable to reproduce it. This open challenge eventually led to Newton’s grand

3MEP is a focused alternative to STEM.
4I started around December 1970, fresh out of graduate school, and retired on December 5, 2002.
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treatise, Philosophiae Naturalis Principia Mathematica (July 5, 1687). It had a humble beginning, as a letter to
Halley explaining how to calculate the orbits of the planets. To do this Newton needed mathematics, a tool he had
mastered. It is widely accepted that Newton and Gottfried Leibniz invented calculus. But the early record shows
that perhaps Bhaskara II (1114–1185 CE) had mastered the art well before Newton.5

Third, the main goal of this book is to teach mathematics to motivated engineers, in a way that it can be
understood, mastered, and remembered. How can this impossible goal be achieved? The answer is to fill in the
gaps with Who did what, and when? Compared with the math, the historical record is easily mastered.

To be an expert in a field, one must know its history. This includes who the people were, what they did, and the
credibility of their story. Do you believe the Pope or Galileo on the roles of the sun and the earth? The observables
provided by science are clearly on Galileo’s side. Who were those first engineers? They are names we all know:
Archimedes, Pythagoras, Leonardo da Vinci, Galileo, Newton, and so on. All of these individuals had mastered
mathematics. This book presents the tools taught to every engineer. Rather than memorizing complex formulas,
make the relationships “obvious” by mastering each simple underlying concept.

Fourth, when most educators look at this book, their immediate reactions are: Each lecture is a topic we spend
a week on (in our math/physics/engineering class) and You have too much material crammed into one semester.
The first sentence is correct, the second is not. Tracking the students who have taken the course, looking at
their grades, and interviewing them personally demonstrate that the material presented here is appropriate for one
semester.

To write this book I had to master the language of mathematics. I had already mastered the language of
engineering and a good part of physics. One of my secondary goals was to build this scientific Tower of Babel by
unifying the terminology and removing the jargon.
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Chapter 1

Introduction

Much of early mathematics, say before 1600 BCE, involved the love of art and music, the sensations of light and
sound. Our psychological senses of color and pitch are determined by the frequencies (i.e., wavelengths) of light
and sound. The Chinese and later the Pythagoreans are well known for their early contributions to music theory.

We are largely ignorant of exactly what Chinese scholars knew. The best record of early mathematics comes
from Euclid, who lived in the forth century BCE, after Pythagoras. Thus we can trace early mathematics back to
the Pythagoreans in the sixth century (580–500 BCE), who focused on the Pythagorean theorem and early music
theory.

Pythagoras strongly believed that “all is number,” meaning that every number, and every mathematical and
physical concept, could be explained by integral (integer) relationships, mostly based on either ratios or the
Pythagorean theorem. It is likely that his belief was based on Chinese mathematics from thousands of years
earlier. It is also believed that his ideas about the importance of integers followed from music theory. The musical
notes (pitches) obey natural integral ratio relationships based on the octave (a factor of two in frequency). The
western 12-tone scale breaks the octave into 12 ratios called semitones. Today this has been rationalized to be the
12th root of 2, which is approximately equal to 18/17 ≈ 1.06 or 0.0833 [octave]. Our innate sense of frequency
ratios comes from the physiology of the auditory organ (the cochlea), with a fixed distance along the organ of
Corti, the sensory organ of the inner ear.

As acknowledged by Stillwell (2010, p. 16), the Pythagorean view is still relevant today:

With the digital computer, digital audio, and digital video coding everything, at least approximately,
into sequences of whole numbers, we are closer than ever to a world in which “all is number.”

1.1 Early science and mathematics

Although early Asian mathematics has been lost, it clearly defined its course for at least several millennia. The
first recorded mathematics was from the Chinese (5000–1200 BCE) and the Egyptians (3300 BCE). Some of the
best early records were left by the people of Mesopotamia (Iraq, 1800 BCE).1 While the first 5000 years of math
are not well documented, the basic timeline is clear, as shown in Fig. 1.1.

Thanks to Euclid, and later Diophantus (ca. 250 CE), we have some basic (but vague) understanding of Chinese
mathematics. For example, Euclid’s formula (Eq. 2.5.6, p. 41) provides a method for computing Pythagorean
triplets, a formula believed to be due to the Chinese.2

Chinese bells and stringed musical instruments were exquisitely developed with tonal quality, as documented
by ancient physical artifacts (Fletcher and Rossing, 2008). In fact this development was so rich that one must ask
why the Chinese failed to initiate the Industrial Revolution. Specifically, why did European innovation eventually
dominate when it was the Chinese who were responsible for such extensive early invention?

Our best insight into the scientific history of China came from Joseph Needham, an American chemist and
scholar from Cambridge, England. Needham learned Chinese from a colleague3 and ended up researching early
Chinese science and technology for the U.S. government (Winchester, 2009).

According to Lin (1995), the Needham question is:

1See Fig. 2.8, p. 42.
2One might reasonably view Euclid’s role as that of a mathematical messenger.
3Whom he later fell in love with (Winchester, 2009).
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2 CHAPTER 1. INTRODUCTION

Why did modern science, the mathematization of hypotheses about Nature, with all its implications
for advanced technology, take its meteoric rise only in the West at the time of Galileo[, but] had not
developed in Chinese civilization or Indian civilization?

As discussed by Lin (1995) and Apte (2009), Needham cites the many developments in China:

Gunpowder, the magnetic compass, and paper and printing, which Francis Bacon considered as the
three most important inventions facilitating the West’s transformation from the Dark Ages to the
modern world, were invented in China.

Needham’s works attribute significant weight to the impact of Confucianism and Taoism on the pace
of Chinese scientific discovery, and emphasize what it describes as the “diffusionist” approach of
Chinese science as opposed to a perceived independent inventiveness in the western world. Needham
held that the notion that the Chinese script had inhibited scientific thought was “grossly overrated.”
(Grosswiler, 2004)

Lin (1995) focused on military applications, missing the importance of nonmilitary contributions. A large
fraction of mathematics was developed to better understand the solar system, acoustics, musical instruments, and
the theory of sound and light. Eventually the universe became a popular topic, as it still is today.

Regarding the Needham question, I suspect the answer is now clear. In the end, China withdrew from its
several earlier expansions because of internal politics (Menzies, 2004, 2008).

History of Mathematics to the 16th Century CE
20th Chinese (primes; quadratic equation; Euclidean algorithm (GCD))

18th Babylonians (Mesopotamia/Iraq) (quadratic solution)

6th Thales of Miletus (first Greek geometry) (624)

5th Pythagoras and the Pythagorean “tribe”(570)

4th Euclid; Archimedes
3rd Eratosthenes (276–194) BCE

3rd Diophantus (ca. 250) CE

4th Library of Alexandria destroyed by fire (391)

7th Brahmagupta (negative numbers; quadratic equation) (598–670)

10th al–Khwarizmi (algebra) (830); Hasan Ibn al–Haytham (Alhazen) (965–1040)

14th Bhaskara (calculus) (1114–1183)
15th Leonardo da Vinci (452–1519); Michelangelo (1475–1564); Copernicus (1473–1543)

16th Tartaglia (cubic solution); Bombelli (1526–1572); Galileo Galilei (1564–1642)

1.1.1 The Pythagorean theorem
Thanks to Euclid’s Elements (written ca. 323 BCE) we have a historical record tracing the progress in geometry as
established by the Pythagorean theorem, which states that for any right triangle having sides of lengths (a, b, c) ∈
R that are either positive real numbers or, more interesting, integers c > [a, b] ∈ N such that a+ b > c,

c2 = a2 + b2. (1.1.1)

Early integer solutions were likely found by trial and error rather than by an algorithm.
If a, b, c are lengths, then a2, b2, c2 are each the area of a square. Equation 1.1.1 says that the area a2 plus the

area b2 equals the area c2. Today a simple way to prove this is to compute the magnitude of the complex number
c = a+ b, which forces the right angle

|c|2 = (a+ b)(a− b) = a2 + b2. (1.1.2)

However, complex arithmetic was not an option for the Greek mathematicians, since complex numbers and algebra
had yet to be discovered.

Almost 700 years after Euclid’s Elements, the Library of Alexandria was destroyed by fire (391 CE), taking
with it much of the accumulated Greek knowledge. As a result, one of the best technical records remaining is
Euclid’s Elements, along with some sparse mathematics due to Archimedes (ca. 300 BCE) on geometrical series,
the volume of a sphere, the area of a parabola, and elementary hydrostatics. In about 1572 a copy Diophantus’s
Arithmetic was discovered by Bombelli in the Vatican library (Burton, 1985; Stillwell, 2010, p. 51). This book
became an inspiration for Galileo, Descartes, Fermat, and Newton.
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Figure 1.1: Timeline between 1500 BCE and 1650 CE. The European renaissance is considered to have occurred between the 15th and
17th centuries CE.

Early number theory: Well before Pythagoras, the Babylonians (ca. 1,800 BCE) had tables of triplets of
integers [a, b, c] that obey Eq. 1.1.1, such as [3, 4, 5]. However, the triplets from the Babylonians were larger
numbers, the largest being a = 12, 709 and c = 18, 541. A clay tablet (Plimpton-322) dating back to 1800 BCE
was found with integers for [a, c]. Given such sets of two numbers, which determined a third positive integer
b = 13, 500 such that b =

√
c2 − a2, this table is more than convincing that the Babylonians were well aware

of Pythagorean triplets (PTs), but less convincing that they had access to Euclid’s formula, a formula for PTs
(Eq. 2.5.6, p. 41).

It seems likely that Euclid’s Elements was largely the source of the fruitful era of the Greek mathematician
Diophantus (215–285) (see Fig. 1.1), who developed the field of discrete mathematics, now known as Diophantine
analysis. The term means that the solution, not the equation, is integer. The work of Diophantus was followed by
fundamental changes in mathematics, possibly leading to the development of algebra but at least including these
discoveries:

1. Negative numbers

2. Quadratic equations (Brahmagupta, 7th century)

3. Algebra (al-Khwarizmi, 9th century)

4. Complex arithmetic (Bombelli, 15th century)

These discoveries overlapped with the European Middle Ages (also known as the Dark Ages). Although Europe
went “dark,” presumably European intellectuals did not stop working during these many centuries.4

1.1.2 What is science?
Science is a process that quantifies hypotheses to build truths.5 It has evolved from early Greek philosophers,
Plato and Aristotle, into a method that uses statistical tests to either validate or prove wrong the null hypothesis.
Scientists use the term null hypothesis to describe the supposition that there is no difference between two inter-
vention groups, or no effect of a treatment on some measured outcome. The measure of the likelihood that an
outcome occurred by chance is called the p-value. From the p-value we can have some confidence that the null
hypothesis is either true (the treatment causes no difference between two groups) or false (the probability p of a
difference is greater than chance). The p-value is the present standard of scientific truth, but it is not ironclad and
must be used with care. For example, not all experimental questions may be reduced to a single binary test. Does
the sun revolve around the moon or around the earth? There is no test of this question, as it is nonsense. To even
say that the earth revolves around the sun is, in some sense, nonsense because all the planets are involved in the
orbital motion.

Yet science works quite well. Thanks to mathematics, we have learned many deep secrets regarding the
universe over the last 5000 years.

1.1.3 What is mathematics?
It seems strange when people complain that they “can’t learn math”6 but then claim to be good at languages.
Before high school, students tend to confuse arithmetic with math. One does not need to be good at arithmetic to
be good at math (but it doesn’t hurt).

4It would be interesting to search the archives of the monasteries, where the records were kept, to determine exactly what happened during
this religious blackout.

5https://physicstoday.scitation.org/do/10.1063/PT.6.3.20191018a/full/
6“It looks like Greek to me.”
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Math is a language with symbols taken from various languages–not so different from other languages. Today’s
mathematics is a written language with an emphasis on symbols and glyphs, primarily Greek letters, obviously due
to the popularity of Euclid’s Elements. The specific evolution of these symbols is interesting (Mazur, 2014). Each
symbol is assigned a meaning appropriate for the problem being described. These symbols are then assembled to
make sentences. In the Chinese language, the spoken and written versions are different across dialects. Similarly,
mathematical sentences may be read out loud in any language (dialect), but the symbols (like Chinese characters)
are universal.

Learning languages is an advanced social skill. However, the social outcomes of learning a language and
learning math are very different. Learning a new language is fun because it opens doors to other cultures. Math
is different due to the rigor of the grammar (rules of the language) as well as the way it is taught (i.e., not as a
language). A third difference between math and language is that math evolved from physics and has important
technical applications.

As with any language, the more mathematics you learn, the easier it is to understand, because mathematics
is built from the bottom up. It’s a continuous set of concepts, much like the construction of a house. If you try
to learn calculus and differential equations but skip simple number theory, the lessons will be more difficult to
understand. You will end up memorizing instead of understanding, and as a result you will likely soon forget it.
When you truly understand something, it can never be forgotten. A nice example is the solution to a quadratic
equation: If you learn how to complete the square (see p. 54), you will never forget the quadratic formula.

Mathematical topics need to be learned in order, just as in the case of building the house. You can’t build a
house if you don’t know about screws or cement (plaster). Likewise in mathematics, you can’t learn to integrate
if you have failed to understand the difference between integers, complex numbers, polynomials, and their roots.

A short list of topics in mathematics includes numbers (N,Z,Q, I,C), algebra, derivatives, antiderivatives (i.e.,
integration), differential equations, vectors and the spaces they define, matrices, matrix algebra, eigenvalues and
-vectors, solutions of systems of equations, and matrix differential equations and their eigensolutions. Learning is
about understanding, not memorizing.

The rules of mathematics are formally defined by algebra. For example, the sentence a = b means that the
number a has the same value as the number b. The sentence is read as “a equals b.” The numbers are nouns and
the equal sign says they are equivalent; it plays the role of a verb, or action symbol. Following the rules of algebra,
this sentence may be rewritten as a− b = 0. Here the symbols for minus and equal indicate two types of actions
(verbs).

Sentences can become arbitrarily complex, such as the definition of the integral of a function or a differential
equation. But in each case, the mathematical sentence is written down, may be read out loud, has a well-defined
meaning, and may be manipulated into equivalent forms following the rules of algebra and calculus. This language
of mathematics is powerful, with deep consequences, first known as algorithms but eventually as theorems.

The writer of an equation should always translate (explicitly summarize the meaning of the expression), so the
reader will not miss the main point. This is a simple matter of clear writing.

Just as math is a language, so language may be thought of as mathematics. To properly write correct English
it is necessary to understand the construction of the sentence. It is important to identify the subject, verb, object,
and various types of modifying phrases. For example, look up the interesting distinction between that and which.7

Thus, like math, language has rules. Most individuals use language that “sounds right,” but if you’re learning
English as a second language, you must understand the rules, which are arguably easier to master than its foreign
speech sounds.

Context can be critical, and the most important context for mathematics is physics. Without a physical problem
to solve, there can be no engineering mathematics. People needed to navigate the earth and weigh things, which
required an understanding of gravity. Many questions about gravity were deep, such as Where is the center of the
universe?8 But church dogma goes only so far. Mathematics along with a heavy dose of physics finally answered
this huge question. Someone needed to perfect the telescope, put satellites into space, and view the cosmos.
Without mathematics none of this would have happened.

1.1.4 Early physics as mathematics: Back to Pythagoras
We have established that math is the language of science. There is an additional answer to the question What is
mathematics? The answer, the creation of algorithms and theorems, comes from studying its history, beginning
with the earliest records. This chronological view starts, of course, with the study of numbers. First there is the
taxonomy of numbers. It took thousands of years to realize that numbers are more than the counting numbers
N, to create a symbol for nothing (i.e., zero), and to invent negative numbers. With the invention of the abacus,

7https://en.oxforddictionaries.com/usage/that-or-which
8Actually this answer is simple: Ask the Pope and he will tell you. (I apologize for this inappropriate joke.)
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Figure 1.2: Timeline covering the two centuries from 1596CE to 1855CE, including the development of modern theories of analytic
geometry, calculus, differential equations, and linear algebra. Newton was born about one year after Galileo died and thus was heavily
influenced by his many discoveries. The vertical red lines indicate mentor-student relationships. Note the significant overlap among Newton,
the Bernoullis, and Euler, a nucleation point for modern mathematics. Lagrange had a key role in the development of linear algebra. Gauss
had the advantage of input from Newton, Euler, d’Alembert, and Lagrange. Likely Cauchy had a significant contemporary influence on Gauss
as well. Finally, note that Fig. 1.1 ends with Bombelli while this figure begins with him. He famously discovered a copy of Diophantus’s book
in the Vatican library. This was the same book where Fermat noted that the margin was too small to hold the “proof” of his “last theorem.”

a memory aid for manipulating complex sets of real integers, one could do very detailed calculations. But this
required the discovery of algorithms (procedures) to add, subtract, multiply (many additions of the same number),
and divide (many subtractions of the same number), such as the Euclidean algorithm for the greatest common
divisor (GCD). Eventually it became clear to the experts (early mathematicians) that there were natural rules to be
discovered; thus books (e.g., Euclid’s Elements) were written to summarize this knowledge.

The role of mathematics is to summarize algorithms (i.e., sets of rules) and formalize an idea as a theorem.
Pythagoras and his followers, the Pythagoreans, believed that there was a fundamental relationship between math-
ematics and the physical world. The Asian civilizations were the first to capitalize on the relationship between
science and mathematics, to use mathematics to design things for profit.This may have been the beginning of
capitalizing technology (i.e., engineering), based on the relationship between physics and math. This influenced
commerce in many ways–map making, tools, implements of war (the wheel, gunpowder), art (music), water trans-
port, sanitation, secure communication, food, namely all aspects of human existence. Of course it was the Asian
cultures to first to master many of these early technologies.

The Pythagorean theorem (Eq. 1.1.1) did not begin with Euclid or Pythagoras; rather they appreciated its
importance and documented its proof. Why is Eq. 1.1.1 called a theorem? Theorems require a proof. What
exactly needs to be proved? We do not need to prove that (a, b, c) obeys this relationship, since this condition is
observed. We do not need to prove that a2 is the area of a square, as this is the definition of an area. What needs
to be proved is that the relationship c2 = a2 + b2 holds if, and only if, the angle between the two shorter sides is
90◦.

In the end, because they instilled fear in the neighbor, the Pythagoreans were burned out and murdered, likely
the result of mixing technology with politics:

[It was] said that when the Pythagoreans tried to extend their influence into politics they met with pop-
ular resistance. Pythagoras fled, but he was murdered in nearby Mesopotamia in 497 BCE. (Stillwell,
2010, p. 16)

1.2 Modern mathematics
Modern mathematics (what we practice today) was born in the 15th and 16th centuries in the minds of Leonardo da
Vinci, Bombelli, Galileo, Descartes, Fermat, and many others (Burton, 1985). Many of these early masters were,
like the Pythagoreans, extremely secretive about how they solved problems. This soon changed with Galileo,
Mersenne, Descartes, and Newton, which caused mathematics to blossom. Developments during this time may
seem hectic and disconnected, but this is a wrong impression. The developments were dependent on new tech-
nologies, such as the telescope (optics) and more accurate time and frequency measurements, due to Galileo’s
studies of the pendulum, and a better understanding of the relationship fλ = co among frequency f , wavelength
λ, and wave speed co.

1.2.1 Science meets mathematics
Early studies of vision and hearing: Since light and sound (music) played such a key role in the development
of the early science, it was important to understand fully the mechanism of our perception of light and sound.
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There are many outstanding examples where physiology impacted mathematics. Leonardo da Vinci (1452–1519)
is well known for his early studies of human anatomy, the knowledge of which was key when it came to drawing
and painting the human form.

Galileo: In 1589 Galileo Galilei (1564–1642) famously conceptualized an experiment in which he suggested
dropping two different masses from the Leaning Tower of Pisa. He suggested that both must take the same time
to hit the ground.

Mass

Mass

Spring

Mass

Mass

t = 0

t = 1

Figure 1.3: Depiction of Galileo’s argument (from his unpublished book of 1638) as to why objects of different masses (i.e., weights) must
fall with the same velocity, contrary to what Archimedes had proposed in about 250 BCE.

Conceptually this is a mathematically sophisticated experiment, driven by a mathematical argument in which
Galileo considered the two masses to be connected by an elastic cord (a spring) or rolling down a frictionless
inclined plane (see Fig. 1.3). His studies resulted in the concept of conservation of energy, one of the cornerstones
of physical theory since that time.

Being joined with an elastic cord, the masses become one. If the velocity were proportional to the mass, as
Archimedes believed, the sum of the two masses would necessarily fall even faster. This results in a logical fallacy:
How can two masses fall faster than either mass alone? This also violates the concept of conservation of energy,
as the total energy of the two masses would be greater than that of the parts. In fact, Galileo’s argument may have
been the first time that the principle of conservation of energy was clearly stated.

It seems likely that Galileo was attracted to this model of two masses connected by a spring because he was
also interested in planetary motion, which consists of masses (sun, earth, moon) also mutually attracted by gravity
(i.e., the spring).

Galileo performed related experiments on pendulums, where he varied the length l, mass m, and angle θ of
the swing. By measuring the period9 he was able to formulate precise relationships between the variables. This
experiment also measured the force exerted by gravity, so the experiments were related, but in very different ways.
The pendulum served as the ideal clock, as it needed very little energy to keep it going, due to its very low friction
(energy loss).

In a related experiment, Galileo measured the length of a day by counting the number of swings of the pen-
dulum in 24 hours, measured precisely by the daily period of a star as it crossed the tip of a church steeple. The
number of seconds in a day is 24·60·60 = 86, 400 = 273352 [s/day]. Since 86,400 is the product of the first three
primes, it is highly composite and thus may be expressed in many equivalent ways. For example, the day can be
divided evenly into 2, 3, 4, or 5 parts and remain the same in terms of the number of seconds that transpire. It
would be interesting to know who was responsible for this highly composite number of seconds per day.

Factoring the number of days in a year (365 = 5 · 73) is a poor choice, since it may not be decomposed into
many small primes. For example, if the year were taken as 364 = 22 · 7 · 13 days, it would make for shorter years
(by 1 day), 13 months per year, perfect quarters, 28 = 4 · 13 day months, and 52 = 4 · 13 weeks. Every holiday
would always fall on the same day, every year. It would be a calendar that humans could better understand. As
with second per day, it would be fascinating to know why the number of days per year was so poorly chosen.

Galileo also studied on the relationship between the wavelength and frequency of a sound wave in musical
instruments. Galileo also greatly improved the telescope, which he needed for his observations of the planets and
their moons.

9The term period refers to the duration in units of time of a periodic function. For example, the periods of the moon and the sun are 28
days and one year, respectively.
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Many of Galileo’s contributions resulted in new mathematics, leading to Newton’s discovery of the wave
equation (1687), followed 60 years later by its one-dimensional general solution by d’Alembert (1747).

Mersenne: Marin Mersenne (1588–1648) contributed to our understanding of the relationship between the
wavelength and the dimensions of musical instruments and is said to be the first to measure the speed of sound.
At first Mersenne strongly rejected Galileo’s views, partially due to errors in Galileo’s reports of his results. But
once Mersenne saw the significance of Galileo’s conclusion, he became Galileo’s strongest advocate, helping to
spread the word (Palmerino, 1999).

Consider the development of an important theorem of nature. Are data more like bread or wine? The answer
depends on the data. Galileo’s original experiments on pendulums and rolling masses down slopes were flawed by
inaccurate data. This is likely because he didn’t have good clocks. But he soon solved that problem and the data
became more accurate. We don’t know whether Mersenne repeated Galileo’s experiments and then appreciated
his theory, or whether he communicated with Galileo. But the final resolution was that the early data were like
bread (it rots), but when the experimental method was improved with a better clock, the corrected data were like
wine (it improves with age). Galileo claimed that the distance to reach the ground is proportional to the square of
the time. This expression is equivalent to F = moa assuming constant mass mo.

Mersenne was also a decent mathematician, inventing in 1644 the Mersenne prime (MP) πm of the form

πm = 2πk − 1,

where πk (k < m) denotes the kth prime (see p. 14). As of December 2018, 51 MPs are known.10 The first MP is
3 = π2 = 2π1 − 1, and the largest known MP prime is π12251 = 2π7 − 1.11

Newton: With the closure of Cambridge University due to the plague of 1665, Isaac Newton (1642–1726)
returned home to Woolsthorpe-by-Colsterworth (95 miles north of London) to work by himself for over a year.12

It was during this solitary time that he did his most creative work.
Exploring our physiological senses requires a scientific understanding of the physical processes of vision and

hearing, first considered by Newton, but researched later in much greater detail by Helmholtz (Stillwell, 2010,
p. 261). While Newton may be best known for his studies on light and gravity, he was the first to predict the speed
of sound. However, his theory was in error by

√
cp/cv =

√
1.4 = 1.183.13 This famous issue would not be

corrected for 129 years, awaiting the formulation of thermodynamics and the equipartition theorem by Laplace in
1816 (Britannica, 2004).

Just 11 years prior to Newton’s 1687 Principia, there was a basic understanding that sound and light traveled at
very different speeds, due to the experiments of Ole Rømer (Feynman, 1968, 2019, Google for Feynman videos).

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (as opposed to instantaneously)
by studying the apparent motion of Jupiter’s moon Io. In 1865, James Clerk Maxwell proposed that
light was an electromagnetic wave, and therefore traveled at the speed co appearing in his theory of
electromagnetism. (Wikipedia: Speed of Light, 2019)

The idea behind Rømer’s discovery was that due to the large distance between Earth and Io, there was a
difference between the period of the moon when Jupiter was closest to Earth and when it was farthest from Earth.
This difference in distance caused a delay or advance in the observed eclipse of Io as it went behind Jupiter,
delayed by the difference in time due to the difference in distance. This is like watching a video of a clock’s
motion. When the video is delayed or slowed down, the time will be inaccurate (it will indicate an earlier time).

The amazing Bernoulli family: The first individual who seems to have openly recognized the importance of
mathematics, enough to actually teach it, was Jacob Bernoulli (Fig. 1.4). Jacob worked on what is now viewed as
the standard package of analytic “circular” (i.e., periodic) functions: sin(x), cos(x), exp(x), log(x).14 Eventually
the full details were developed (for real variables) by Euler (p. 74).

From Fig. 1.5 (p. 9) we may conclude that Jacob (1654–1705), the oldest brother, would have been strongly
influenced by Newton.15 Newton would have been influenced by Fermat, Descartes, and Galileo, who died one
year before Newton was born16 (White, 1999).

10https://mathworld.wolfram.com/MersennePrime.html
11π7 = 17 which gives 131071 = 217− 1.
12Because the calendar was modified during Newton’s lifetime, his birth date is no longer given as Christmas 1642 (Stillwell, 2010, p. 175).
13The square root of the ratio of the specific heat capacity at constant pressure cp to that at constant volume cv .
14The log and tan functions are related by Eq. 4.1.2 (p. 134).
15For a similar timeline see https://www.famousscientists.org/joseph-louis-lagrange/
16https://www-history.mcs.st-andrews.ac.uk/Biographies/Newton.html
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Figure 1.4: Above left: Jacob (1655–1705) and right: Johann (1667–1748) Bernoulli, both painted by their portrait painter brother,
Nicolaus. Below left: Leonhard Euler (1707–1783) and right: Jean le Rond d’Alembert (1717–1783). Euler was blind in his right eye,
hence the left portrait view.



1.2. MODERN MATHEMATICS 9

Jacob Bernoulli, like all successful mathematicians of the day, was largely self-taught. Yet Jacob was in a
new category of mathematicians because he was an effective teacher. Jacob taught his sibling Johann, who then
taught his sibling Daniel. But most important, Johann taught Euler, the most prolific (thus influential) of all
mathematicians, including Gauss. This teaching resulted in an explosion of new ideas and understanding. It is
most significant that all four mathematicians published their methods and findings. Much later, Jacob studied with
students of Descartes17 (Stillwell, 2010, pp. 268–69).

Euler: Leonhard Euler’s mathematical talent went far beyond that of the Bernoulli family (Burton, 1985). An-
other special strength of Euler was his large number of publications. First he would master a topic, and then he
would publish. Once the tools of mathematics were openly published, largely by Euler, mathematics grew expo-
nentially.18 His papers continued to appear long after his death (Calinger, 2015). It is also interesting that Euler
was a contemporary of Mozart (see Fig. 1.5).

d’Alembert: Another individual of that time who also published extensively was Jean la Rond d’Alembert
(Fig. 1.4). Some of the most innovative ideas were first proposed by d’Alembert. Unfortunately, and perhaps
somewhat unfairly, his rigor was criticized by Euler and later by Gauss (Stillwell, 2010).

Gauss: Figures 1.2 and 1.4 show timelines of the most famous mathematicians. This was one of the most
creative times in mathematics. Carl Friedrich Gauss was born at the end of Euler’s long and productive life. I
suspect that Gauss owed a great debt to Euler; surely he must have been a scholar of Euler. One of Gauss’s most
important achievements may have been his contribution to solving the open question about the density of prime
numbers and his use of least-squares.19

Cauchy: Augustin-Louis Cauchy (1789–1857) was the son of a well-to-do family but had the misfortune of
being born during the time of of the French Revolution, which likely had its origins in the Seven Years’ War,
around 1756. Today the French still celebrate Bastille Day (July 14, 1789), which is viewed as a celebration of
the revolution. The French Revolution left Cauchy with a lifelong scorn for French politics that deeply influenced
his life. But Cauchy had an unmatched intellect for mathematics. His most obvious achievement was complex
analysis, for which he proved many key theorems.
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Figure 1.5: Timeline for the 16th through 20th centuries covering Bombelli to Einstein. As noted in the caption for Fig. 1.2, it seems likely
that Bombelli’s discovery of Diophantus’s book Arithmetic in the Vatican library triggered many of the ideas presented by Galileo, Descartes,
and Fermat, followed by others (i.e., Newton). Thus Bombelli’s discovery might be considered a magic moment in mathematics. The vertical
red lines indicate mentor–student relationships. For orientation Mozart is indicated along the bottom and Napoleon at the top. Napoleon hired
Fourier, Lagrange, and Laplace to help with his many bloody military campaigns. See Figs. 1.1, 1.2, and 3.1 for additional timelines.

Helmholtz: Hermann von Helmholtz (1821–1894) was educated and experienced as a military surgeon. He
also mastered classical music, acoustics, physiology, vision, hearing (Helmholtz, 1863b), and, most important of
all, mathematics. He was the first person to measure the speed of a neural spike in a patch of neuron, which he

17It seems clear that Descartes was also a teacher.
18There are at least three useful exponential scales: factors of 2, factors of e ≈ 2.7, and factors of 10. The octave and decibel use factors of

2 (6 [dB]) and 10 (20 [dB]). Information theory uses factors of 2 (1 [bit]), 4 (2 [bits]). Circuit theory uses all three scales.
19https://www-history.mcs.st-andrews.ac.uk/Biographies/Gauss.html
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correctly found to be 27 [m/s]. Gustav Kirchhoff frequently expanded on Helmholtz’s acoustic contributions. It is
reported that Lord Rayleigh learned German so he could read Helmholtz’s great works, which he amplified in his
famous treatise on acoustics (Rayleigh, 1896).

Helmholtz’s studies and theories of music and perception of sound are fundamental scientific contributions
(Helmholtz, 1863a). His best known mathematical contribution is known as the fundamental theorem of vector
calculus, or simply “Helmholtz theorem” (p. 200).

Lord Kelvin: Lord Kelvin (William Thompson, 1824–1907) was one of the first true engineer-scientists, equally
acknowledged as a mathematical physicist, well known for his interdisciplinary research, and knighted by Queen
Victoria in 1866.20 Lord Kelvin coined the term thermodynamics, a science more fully developed by Maxwell
(the same Maxwell of electrodynamics).21

The history during this time is complex. For example, in 1850 Lord Kelvin wrote a letter to George Stokes,
suggesting that Stokes try to prove what is today known as “Stokes’s theorem.” As a result, Stokes posted a reward
(Smith’s Prize), searching for a proof of “Lord Kelvin’s theorem,” which was finally achieved by Hermann Hankel
(1839–1873).22 Many new concepts were being proved and appreciated over this productive period. Maxwell had
published his famous equations and reformatted in modern vector notation by Oliver Heaviside, J. Willard Gibbs,
and Heinrich Hertz. Fig. 1.5 should put to rest the myth that one’s best work is done in the early years. Many of
these scientists were fully productive into old age. Those who were not died early due to poor health or accidents.

James Clerk Maxwell (1831–1879) In 1869 a Cambridge senate committee was formed to create the Cambridge
Physics Laboratory and “the founding of a special Professorship.” The Chancellor of Cambridge was the seventh
Duke of Devonshire and a distant relative of Henry Cavendish, his family name. Thus the new laboratory became
known as the Cavendish.

There was, naturally, much speculation about the choice of the new Professor of Experimental Physics.
[Lord] Kelvin was the most likely candidate, but on being approached in private, refused in order to
stay in Glasgow. Another likely candidate was Lord Rayleigh, a brilliant mathematician and physicist
who had left Cambridge to work in his private laboratory at his country seat in Essex. When the
appointment was eventually announced, the reaction was, if anything, one of disappointment. The
new Professor, James Clerk Maxwell, was relatively unknown.
He was a much respected mathematician, but he had not since made any great name for himself —
his major and astounding books on Electricity and Kinetic Theory had yet to be published. Moreover,
the six years before his appointment had been spent in isolation at his Scottish home.
His appointment was announced on March 8th 1871, and in spite of the initial disappointment, his
inaugural lecture was looked forward to by his likely students as much as by the rest of the Cambridge
scientists.

When, a few days later, Maxwell began his first course with a lecture on Heat, his students had the
delight of seeing the lecture room packed with their tutors, lecturers, professors and all the important
personages of the University. Thinking that this was his first public appearance they sat, in their
formal academic dress, while Maxwell, “with a perceptible twinkle in his eye,” gravely expounded
the difference between Fahrenheit and Centigrade, and the principle of the air thermometer.

It was felt afterwards that Maxwell had done it on purpose, perhaps out of modesty, perhaps out of his
later well-known sense of humor, or perhaps because he knew of the still considerable opposition his
new laboratory had to face. As he had written to his friend Lord Rayleigh, “if we succeed too well,
and corrupt the minds of youth till they observe vibrations and deflections and become Senior Ops.
instead of Wranglers, we may bring the whole University and all the parents about our ears.
However, Maxwell made only a casual announcement of his inaugural lecture which was not to be in
the Senate House, as expected, but in an out-of-the-way lecture room. Consequently only his students
got to hear of it and it was to them, rather than a general gathering, that he delivered an exciting and
interesting lecture, mapping out his plans for the future of Cambridge physics. . . . .” 23

20Lord Kelvin was one of a half dozen interdisciplinary mathematical physicists, all working about the same time, who made a fundamental
change in our scientific understanding. Others include Helmholtz, Stokes, Green, Heaviside, Rayleigh, and Maxwell.

21Thermodynamics is another topic that warrants an analysis along historical lines (Kuhn, 1978).
22https://en.wikipedia.org/wiki/Hermann Hankel
23https://www.phy.cam.ac.uk/history/years/firstten, Moralee (1995)
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Lord Rayleigh (William Strutt): Lord Rayleigh (1842–1919) wrote a classic text (1896) that is widely read
even today by those who study acoustics. In 1904 he received the Nobel Prize in Physics for his investigations of
the densities of the most important gases and for his discovery of argon in connection with these studies.

1.2.2 Three Streams from the Pythagorean theorem
From the outset of his presentation, Stillwell (2010, p. 1) defines “three great streams of mathematical thought:
Numbers, Geometry and Infinity” that flow from the Pythagorean theorem, as summarized in Fig. 1.6. This is a
useful concept, based on reasoning not as obvious as one might think. Many factors are in play here. One of these
is the strongly held opinion of Pythagoras that all mathematics should be based on integers. The rest are tied up
in the long, necessarily complex history of mathematics, as best summarized by the fundamental theorems (see
Sec. 2.3.1, p. 24), each of which is discussed in detail in a later chapter.

1. Numbers
• N counting numbers, Q rationals, P primes (6th century BCE)
• Z common integers, I irrationals (5th century BCE)
• zero ∈ Z (7th century CE)

2. Geometry (e.g., lines, circles, spheres, toroids, other shapes)

• Composition of polynomials (Descartes, Fermat),
• Euclid’s geometry and algebra⇒ analytic geometry (17th century CE)
• Fundamental theorem of algebra (18th century CE)

3. Infinity (∞→ sets)

• Taylor series, functions, calculus (Newton, Leibniz) (17th and 18th century CE)
• R real, C complex (19th century CE)
• Set theory (20th century CE)

Figure 1.6: Three streams that follow from the Pythagorean theorem: numbers, geometry, and infinity.

As shown in Fig. 1.6, Stillwell’s concept of three streams, following from the Pythagorean theorem, is the
organizing principle behind this book.

Ch. 1: The Introduction is a historical survey of pre-college mathematical physics, presented in terms of the
three main Pythagorean streams (stream 1–stream 3), leading to the book’s five chapters. Stream 3 is split into 3A
and 3B.

Ch. 2: Number systems (p. 13) presents some important ideas from number theory, starting with prime num-
bers, complex numbers, vectors, and matrices. Five classic number theory problems are discussed: the Euclidean
algorithm (GCD), continued fractions (CFA), Euclid’s formula, Pell’s equation, and the Fibonacci difference equa-
tion. The general solution of these problems leads to the concept of the eigenfunction analysis, which is introduced
in Sec. 2.5.3 (p. 43).

Ch. 3: Algebraic equations (p. 51) discusses Algebra and its development, as we know it today. The chapter
presents the theory of real and complex equations and functions of real and complex variables. Newton’s method
for finding complex roots of polynomials, poles vs. zeros, and the Gauss-Lucus theorem (bounds on the root
locations of the derivative of a polynomial). Complex impedance Z(s) of complex frequency s = σ + ω is
covered with some care, developing the topic that is needed for engineering mathematics.

While the algebra of real and complex functions is identical, the calculus is fundamentally different. This
leads to the concepts of complex analytic functions, complex Taylor series, the Cauchy-Riemann conditions,
branch points, branch cuts, and Riemann sheets. All of these ideas are fundamental to impedance functions that
describe the linear relationships between force and flow in the complex frequency domain (i.e., impedance ∈ C).

Ch. 4: Scalar calculus (Stream 3A) (p. 133) covers ordinary differential equations and integral theorems of
simple physical systems (mass-springs, inductors-capacitors, heat dynamics), solutions to scalar differential equa-
tions that have constant coefficients, colorized mappings of complex analytic functions, multivalued functions,
Cauchy’s theorems, and inverse Laplace transforms.

Ch. 5: Vector calculus (Stream 3B) (p. 171) introduces vector partial differential equations, as well as gradient,
divergence, and curl differential operators, Stokes’s and Green’s theorems, and Maxwell’s equations.
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Chapter 2

Stream 1: Number Systems

Number theory (the study of numbers) was a starting point for many key ideas. For example, in Euclid’s geomet-
rical constructions the Pythagorean theorem for real [a, b, c] was accepted as true, but the emphasis in the early
analysis was on integer constructions, such as Euclid’s formula for Pythagorean triplets (Eq. 2.5.6, p. 41).

As we shall see, the derivation of the formula for Pythagorean triplets is the first of a rich body of mathe-
matical constructions—such as solutions of Pell’s equation (p. 42),1 and recursive difference equations, such as
solutions of the Fibonacci recursion formula fn+1 = fn+fn−1 (see p. 43)—that goes back at least to the Chinese
(2000 BCE). These are early pre-limit forms of calculus, best analyzed using an eigenfunction (e.g., eigenmatrix)
expansion, a geometrical concept from linear algebra, as an orthogonal set of normalized unit-length vectors (see
Appendix B.3, p. 230).

It is hard to imagine that anyone who uses an abacus would not appreciate the concept of zero and negative
numbers. It does not take much imagination to go from counting numbers N to the set of all integers Z including
zero. On an abacus, subtraction is obviously the inverse of addition. Subtraction to obtain zero abacus beads is no
different from subtraction from zero, which gives negative beads. To assume that the Romans, who first developed
counting sticks, or the Chinese, who then deployed the concept using beads, did not understand negative numbers
is impossible. However, understanding the concept of zero (and negative numbers) is not the same as having a
symbolic notation. The Roman number system has no such symbols. The first recorded use of a symbol for zero
is said to be by Brahmagupta in 628 CE.2

However, this is likely wrong, given the notation developed by the Mayan civilization, which existed from
2000 BCE to 900 CE.3 There is speculation that the Mayans cut down so much of the Amazon jungle that it
eventually resulted in global warming, possibly leading to their demise.

The definition of zero depends on the concept of subtraction, which formally requires the creation of algebra
(ca. 830 CE; see Fig. 1.1, p. 3). But apparently it took more than 600 years from the time Roman numerals were
put into use, without any symbol for zero, to the time the symbol for zero is first documented. Likely this delay
was more about the political situation, such as government rulings, than mathematics.

The concept that caused much more difficulty was∞, or infinity, first proposed by Bernhard Riemann in 1851
with the development of the extended plane, which mapped the plane to a sphere (see Fig. 3.15, p. 127). His
construction made it clear that the point at∞ is simply another point on the open complex plane, since rotating
the sphere (extended plane) moves the point at∞ to a finite point on the plane, thereby closing the complex plane.

2.1 The taxonomy of numbers: P,N,Z,Q,F, I,R,C

Once symbols for zero and negative numbers were accepted, progress could be made. To fully understand num-
bers, a transparent notation is required. First one must identify the different classes (genus) of numbers, providing
a notation that defines each of these classes along with their relationships. It is logical to start with the most basic
counting numbers, which we indicate with the double-bold symbol N (page 218). For easy access, notation is
summarized in Appendix A.

1Heisenberg, an inventor of the matrix algebra form of quantum mechanics, learned mathematics by studying Pell’s equation (p. 42)
by eigenvector and recursive analysis methods. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/
4661-1

2https://news.nationalgeographic.com/2017/09/origin-zero-bakhshali-manuscript-video-spd/; https:
//www.nytimes.com/2017/10/07/opinion/sunday/who-invented-zero.html

3https://www.storyofmathematics.com/mayan.html

13
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Counting numbers N: These are known as the natural numbers N = {1, 2, 3, . . . } and denoted by the double-
bold symbol N. For clarity we shall refer to the natural numbers as counting numbers, since natural, which means
integer, is vague. The mathematical sentence “2 ∈ N” is read as “2 is a member of the set of counting numbers.”
The word set is defined as the collection of any objects that share a specific property. Typically a set may be
defined either by a sentence or by example.

Primes P: A number is prime (πn ∈ P) if its only factors are 1 and itself. The set of primes P is a subset
of the counting numbers (P ⊂ N). A somewhat amazing fact, well known to the earliest mathematicians, is that
every integer may be written as a unique product of primes. A second key idea is that the density of primes
ρπ(N) ∼ 1/ log(N); that is, ρπ(N) is inversely proportional to the log of N , an observation first quantified by
Gauss (Goldstein, 1973). A third is that there is a prime between every integer N ≥ 2 and 2N .

We shall use the convenient notation πn for the prime numbers, indexed by n ∈ N. The first 12 primes are
{n|1 ≤ n ≤ 12} = {πn|2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}. Since 4 = 22 and 6 = 2 · 3 may be factored,
4, 6 6∈ P (read as “4 and 6 are not in the set of primes”). Given this definition, multiples of a prime–that is,
[2, 3, 4, 5, . . .] × πk of any prime πk–cannot be prime. It follows that all primes except 2 must be odd and every
integer N is unique in its prime factorization.

The ratio of primes πm/πn is an interesting set with no special notation, such as O.

Exercise #1
Write the first 20 integers in prime-factored form.

Sol: 1, 2, 3, 22, 5, 2 · 3, 7, 23, 32, 2 · 5, 11, 3 · 22, 13, 2 · 7, 3 · 5, 24, 17, 2 · 32, 19, 22 · 5 �

Exercise #2
Write the integers 2 to 20 in terms of πn. Here is a table to assist you:

n 1 2 3 4 5 6 7 8 9 10 11 · · ·
πn 2 3 5 7 11 13 17 19 23 29 31 · · ·

Sol:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·
Ππn π1 π2 π2

1 π3 π1π2 π4 π3
1 π2

2 π1π3 π5 π2
1π2 π6 π1π4 · · ·

�

Coprimes are two relatively prime numbers that have no common (i.e., prime) factors. For example, 21 = 3 ·7
and 10 = 2 · 5 are coprime, whereas 4 = 2 · 2 and 6 = 2 · 3, which have 2 as a common factor, are not. By
definition all unique pairs of primes are coprime. We shall use the notation m ⊥ n to indicate that m and n are
coprime. The ratio of two coprimes is reduced, as it has no factors to cancel. The ratio of two numbers that are
not coprime may always be reduced by canceling the common factors. This is called the reduced form, or an
irreducible fraction. When we do numerical work, for computational accuracy it is always beneficial to work with
coprimes. Generalizing this idea, we could define triprimes as three numbers with no common factor, such as
{π3, π9, π2}.

The fundamental theorem of arithmetic states that each integer may be uniquely expressed as a unique product
of primes. The prime number theorem estimates the mean density of primes over N.

Integers Z: The integers include positive and negative counting numbers and zero. Notionally we might
indicate this using set notation as Z = −N ∪ {0} ∪ N. We read this as: “The integers are in the set composed of
the negative natural numbers −N, zero, and N.”

Rational numbers Q: These are defined as numbers formed from the ratio of two integers. Given two numbers
n, d ∈ N, we have n/d ∈ Q. Since d may be 1, it follows that the rationals include the counting numbers as a
subset. For example, the rational number 3/1 ∈ N.

The main utility of rational numbers is that that they can efficiently approximate any number on the real line,
to any precision. For example, the rational approximation π ≈ 22/7 has a relative error of ≈ 0.04% (see p. 32).
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Fractional number F : A fractional number F is defined as the ratio of signed coprimes. If n, d ∈ ±P, then
n/d ∈ F. Given this definition, F ⊂ Q = Z ∪ F. Because of the powerful approximating power of rational
numbers, the fractional set F has special utility. For example, π ≈ 22/7, 1/π ≈ 7/22 (to 0.04%), e ≈ 19/7 to
0.15%, and

√
2 ≈ 7/5 to 1%.

Irrational numbers I: Every real number that is not rational is irrational (Q ⊥ I). Irrational numbers include
π, e, and the square roots of primes. These are decimal numbers that never repeat, thus requiring infinite precision
in their representation. Such numbers cannot be represented on a computer, as they would require an infinite
number of bits (precision).

The rationals Q and irrationals I split the reals (R = Q ∪ I, Q ⊥ I); thus each is a subset of the reals
(Q ⊂ R, I ⊂ R). This relationship is analogous to that of the integers Z and fractionals F, which split the rationals
(Q = Z ∪ F, Z ⊥ F) (thus each is a subset of the rationals (Z ⊂ Q, F ⊂ Q)).

Irrational numbers I were famously problematic for the Pythagoreans, who incorrectly theorized that all num-
bers were rational. Like∞, irrational numbers required mastering a new and difficult concept before they could
even be defined: It was essential to understand the factorization of counting numbers into primes (i.e., the funda-
mental theorem of arithmetic) before the concept of irrationals could be sorted out. Irrational numbers could be
understood only once limits were mastered.

As shown in Fig. 2.6 (p. 33), fractionals can approximate any irrational number with arbitrary accuracy. Inte-
gers are also important, but for a very different reason. All numerical computing today is done with Q = F ∪ Z.
Indexing uses integers Z, while the rest of computing (flow dynamics, differential equations, etc.) is done with
fractionals F (i.e., IEEE-754). Computer scientists are trained on these topics, and computer engineers need to be
at least conversant with them.

Real numbers R: Reals are the union of rational and irrational numbers—namely, R = Q ∪ I = Z ∪ F ∪ I.
Lengths in Euclidean geometry are reals. Many people assume that IEEE-754 floating-point numbers (ca. 1985)
are real (i.e., ∈ R). In fact, they are rational (Q = {F ∪ Z}) approximations to real numbers, designed to have
a very large dynamic range. The hallmark of fractional numbers (F) is their power in making highly accurate
approximations of any real number.

Using Euclid’s compass and ruler methods, one can make the length of a line proportionally shorter or longer
or (approximately) the same. A line may be made be twice as long, or an angle can be bisected. However,
the concept of an integer length in Euclid’s geometry was not defined.4 Nor can one construct an imaginary or
complex line, as all lines are assumed to have real lengths. The development of analytic geometry was an analytic
extension of Euclid’s simple (but important) geometrical methods.

Real numbers were first fully accepted only after set theory was developed by Georg Cantor in 1874 (Stillwell,
2010, p. 461). At first blush, this seems amazing, given how widely accepted real numbers are today. In some
sense they were accepted by the Greeks as lengths of real lines.

Complex numbers C: Complex numbers are best defined as ordered pairs of real numbers.5 For example, if
a, b ∈ R and  = −ı = ±

√
−1, then c = a + b ∈ C. The word complex, as used here, does not mean that the

numbers are complicated or difficult. The b is known as the imaginary part of c. This does not mean the number
disappears.

Complex numbers are quite special in engineering mathematics, for example, as roots of polynomials. The
most obvious example is the quadratic formula for the roots of polynomials of degree 2 that have coefficients ∈ C.
All real numbers have a natural order on the real line. Complex numbers do not have a natural order. For example,
 > 1 makes no sense.

Today the common way to write a complex number is using the notation z = a + b ∈ C, where a, b ∈ R.
Here 1 =

√
−1. We also define 1ı = −1 to account for the two possible signs of the square root. Accordingly

12 = 1ı2 = −1.
Cartesian multiplication of complex numbers follows the basic rules of real algebra—for example, the rules

for multiplying two monomials and polynomials. Multiplication of two first-degree polynomials (i.e., monomials)
gives

(a+ bx)(c+ dx) = ac+ (ad+ bc)x+ bdx2.

If we substitute 1 for x and use the definition 12 = −1, we obtain the Cartesian product of two complex numbers:

(a+ b)(c+ d) = ac− bd+ (ad+ bc).
4As best I know.
5A polynomial a+ bx and a 2-vector [a, b]T =

[
a
b

]
are also examples of ordered pairs.
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Thus multiplication and division of complex numbers obey the usual rules of algebra.
However, there is a critical extension: Cartesian multiplication holds only when the angles sum to less than

±π—namely, the range of the complex plane. When the angles add to more than ±π, one must use polar coordi-
nates, where the angles add for angles beyond ±π (Boas, 1987, p. 8). This is particularly striking for the Laplace
transform of a delay (see Appendix 3.9, p. 120).

Complex numbers can be challenging and may provide unexpected results. For example, it is not obvious that√
3 + 4 = ±(2 + ).

Exercise #3
Verify that

√
3 + 4 = ±(2 + ).

Sol: Squaring the left side gives
√

3 + 42 = 3+4. Squaring the right side gives (2+ )2 = 4− 2 +4 = 3+4.
Thus the two are equal.�

Exercise #4
What is special about the above example (Exercise #3)?

Sol: Note this is a {3, 4, 5} triangle. Can you find another example like this one? Namely, how does one find
integers that obey Eq. 1.1.1 (p. 2)? �

An alternative to Cartesian multiplication of complex numbers is to work in polar coordinates. The polar form
of the complex number z = a + b is written in terms of its magnitude ρ =

√
a2 + b2 and angle θ = ∠z =

tan−1 z = arctan z as
z = ρeθ = ρ(cos θ +  sin θ).

From the definition of the complex natural log function, we have

ln z = ln ρeθ = ln ρ+ θ,

which is important, even critical, in engineering calculations. When the angles of two complex numbers are greater
that±π, one must use polar coordinates. It follows that for computing the phase, the log function is different from
the single- and double-argument ∠θ = arctan(z) function.

The polar representation makes clear the utility of a complex number: Its magnitude scales while its angle θ
rotates. The property of scaling and rotating is what makes complex numbers useful in engineering calculations.
This is especially obvious when dealing with impedances, which have complex roots with very special properties,
as discussed on page 141.

Matrix representation: An alternative way to represent complex numbers is in terms of 2 × 2 matrices. This
relationship is defined by the mapping from a complex number to a 2× 2 matrix:

a+ b↔
[
a −b
b a

]
, 1↔

[
1 0
0 1

]
, 1↔

[
0 −1
1 0

]
, eθ ↔

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2.1.1)

The conjugate of a+ b is then defined as a− b↔
[
a b
−b a

]
. By taking the inverse of the 2× 2 matrix (assuming

|a+ b| 6= 0), we can define the ratio of one complex number by another. Until you try out this representation, it
may not seem obvious or even possible.

This representation proves that 1 is not necessary when defining a complex number. What 1 can do is
to conceptually simplify the algebra. It is worth your time to become familiar with the matrix representation,
to clarify any possible confusions you might have about multiplication and division of complex numbers. This
matrix representation can save you time, heartache, and messy algebra. Once you have learned how to multiply
two matrices, it’s a lot simpler than doing the complex algebra. In many cases we will leave the results of our
analysis in matrix form, to avoid the algebra altogether.6 Thus both representations are important.

Exercise #5
Using Matlab/Octave, verify that

a+ b

c+ d
= ac+ bd+ (bc− ad)

c2 + d2 ←→
[
a −b
b a

] [
c −d
d c

]−1
=
[
a −b
b a

] [
c d
−d c

]
1

c2 + d2 . (2.1.2)

6Sometimes we let the computer do the final algebra, numerically, as 2× 2 matrix multiplications.
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Sol: The typical solution may use numerical examples. A better solution is to use the Matlab/Octave symbolic
code:
syms a b c d A B
A=[a -b;b a];
B=[c -d;d c];
C=A*inv(B)
�

History of complex numbers: It is notable that complex numbers were not accepted until 1851 even though
Bombelli introduced them in the 16th century. One might have thought that the solution of the quadratic, known
to the Chinese, would have settled this question. It seems that complex integers (Gaussian integers) were accepted
before nonintegral complex numbers. Perhaps this was because real numbers (R) were not accepted (i.e., proved
to exist, thus mathematically defined) until the development of real analysis in the late 19th century, thus providing
a proper definition of the real numbers.

2.1.1 Numerical taxonomy
A simplified taxonomy of numbers is given by the mathematical sentence

πk ∈ P ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C.

This sentence says:

1. Every prime number πk is in the set of primes P,

2. which is a subset of the set of counting numbers N,

3. which is a subset of the set of integers Z = −N, {0},N,

4. which is a subset of the set of rationals Q,

5. which is a subset of the set of reals R,

6. which is a subset of the set of complex numbers C.

The rationals Q may be further decomposed into the fractionals F and the integers Z (Q = F∪Z), and the reals R
into the rationals Q and the irrationals I (R = I ∪ Q). This classification nicely defines all the numbers (scalars)
used in engineering and physics.

The taxonomy structure may be summarized with the single compact sentence, starting with the prime
numbers πk and ending with complex numbers C:

πk ∈ P ⊂ N ⊂ Z ⊂ (Z ∪ F = Q) ⊂ (Q ∪ I = R) ⊂ C.

As discussed in Appendix A (p. 217), all numbers may be viewed as complex; that is, every real number is
complex if we take the imaginary part to be zero (Boas, 1987). For example, 2 ∈ P ⊂ C. Likewise, every purely
imaginary number (e.g., 0 + 1) is complex with zero real part.

Finally, note that complex numbers C, much like vectors, do not have rank order, which means that one
complex number cannot be larger or smaller than another. It makes no sense to say that  > 1 or  = 1 (Boas,
1987). The real and imaginary parts, and the magnitude and phase, have order. Order seems restricted to R. If
time t were complex, there could be no yesterday and tomorrow.7

2.1.2 Applications of integers
The most relevant question at this point is Why are integers important? First, we count with them so that we can
keep track of “how many.” But there is much more to numbers than counting: We use integers for any application
where absolute accuracy is essential, such as in banking transactions (making change), the precise computing of
dates (Stillwell, 2010, p. 70) and locations (“I’ll meet you at 34th and Vine at noon on Jan. 1, 2034”), and the
construction of roads and pyramids out of bricks (objects built from a unit size).

7One may meaningfully define ξ = x+  cot to be complex (x, t ∈ R, ξ ∈ C), with x in meters [m], t is in seconds [s], and the speed of
light co [m/s].
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To navigate we need to know how to predict the tides and the location of the moon and sun. Integers are
important precisely because they are precise: Once a month there is a full moon, easily recognizable. The next
day it’s slightly less than full. If we could represent our position as integers in time and space, we would know
exactly where we were. But such an integral representation of our position or time is not possible since time t ∈ I.

The Pythagoreans claimed that everything was integer. From a practical point of view, when precision is
critical, they were right. Today all computers compute floating-point numbers as fractionals. However, in theory
the Pythagoreans were wrong. The error (difference) is a matter of precision.

Numerical Representations of I,R,C: When doing numerical work, one must consider how to compute within
the set of reals (i.e., which contain irrationals). There can be no irrational number representation on a computer.
The international standard of computation, IEEE floating-point numbers,8 is based on rational approximation.
The mantissa and the exponent are both integers, having sign and magnitude. The size of each integer depends
on the precision of the number being represented. An IEEE floating-point number is rational because it has
a binary (integer) mantissa, multiplied by 2 raised to the power of a binary (integer) exponent. For example,
π ≈ ±a2±b with a, b ∈ Z. In summary, IEEE floating-point rational numbers cannot be irrational because
irrational representations would require an infinite number of bits.

True floating-point numbers contain irrational numbers, which must be approximated by fractional numbers.
This leads to the concept of fractional representation, which requires the definition of the mantissa, base, and
exponent, where both the mantissa and the exponent are signed. Numerical results must not depend on the base.
One could dramatically improve the resolution of the numerical representation by the use of the fundamental
theorem of arithmetic (see p. 24). For example, one could factor the exponent into its primes and then represent
the number as 2a3b7c (a, b, c ∈ Z). Such a representation would improve the resolution of the representation. But
even so, the irrational numbers would be approximate. For example, base ten is natural using this representation,
since 10n = 2n5n.9 Thus

π · 105 ≈ 314, 159.27 . . . = 3 · 2555 + 1 · 2454 + 4 · 2353 + · · ·+ 9 · 2050 + �2 ·��2−15−1 · · · .

Exercise #6
If we work in base 2 and use the approximation π ≈ 22/7, then according to the Matlab/Octave DEC2BIN()
routine, show that the binary representation of π̂2 · 217 is

π · 217 ≈ 411, 94010 = 64, 92416 = 1, 100, 100, 100, 100, 100, 1002.

Sol: First we note that this must be an approximation, since π ∈ I, which cannot have an exact representation
∈ F. The fractional (∈ F) approximation to π is:

π̂2 = 22/7 = 3 + 1/7 = [3; 7], (2.1.3)

where int64(fix(2ˆ17*22/7)) = 411,940 and dec2hex(int64(fix(2ˆ17*22/7))) = 64,924, and where
1 and 0 are multipliers of powers of 2, which are then added together:

411, 94010 = 218 + 217 + 214 + 211 + 28 + 25 + 22.

�

Computers keep track of the decimal point using the exponent, which in Exercise #6 is the scale factor 217 =
131,07210. The concept of the decimal point is replaced by an integer that has the desired precision and a scale
factor of any base (radix). This scale factor may be thought of as moving the decimal point to the right (larger
number) or left (smaller number). The mantissa fine-tunes the value about a scale factor (the exponent). In all
cases the number actually is an integer. Negative numbers are represented by an extra sign bit.

Exercise #7
Using Matlab/Octave and base 16 (i.e., hexadecimal) numbers, with π̂2 = 22/7, find (a) π̂2 · 105 and (b) π̂2 · 217.

1. π̂2 · 105

Sol: (a) Using the command dec2hex(fix(22/7*1e5))we get 4cbad16, since 22/7×105 = 314, 285.7 . . .
and hex2dec(’4cbad’)= 314,285. (b) 218 · 1116/716�

8IEEE-754: https://www.h-schmidt.net/FloatConverter/IEEE754.html
9Base 10 is the accepted standard, simply because we have 10 fingers that we count with.
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2. π̂2 · 217 Sol: 218 · 1116/716� .

Exercise #8
Write the first 11 primes, base 16.

Sol: The Octave/Matlab command dec2hex() provides the answer:

n dec 1 2 3 4 5 6 7 8 9 10 11 · · ·
πn dec 2 3 5 7 11 13 17 19 23 29 31 · · ·
πn hex 2 3 5 7 0B 0D 11 13 17 1D 1F · · ·

�

Exercise #9
x = 217 × 22/7, using IEEE-754 double precision:10

x = 411, 940.562510

= 254 × 1, 198, 372
= 0, 10010, 00, 110010, 010010, 010010, 0100102

= 0x48c92, 49216.

The exponent is 218 and the mantissa is 4, 793, 49010. Here the commas in the binary (0,1) string are to help
visualize the quasiperiodic nature of the bitstream. The numbers are stored in a 32-bit format, with 1 bit for the
sign, 8 bits for the exponent, and 23 bits for the mantissa.

Perhaps a more instructive number is

x = 4, 793, 490.0
= 0, 100, 1010, 100, 100, 100, 100, 100, 100, 100, 1002

= 0x4a924, 92416,

which has a repeating binary bit pattern of ((100))3, broken by the scale factor 0x4a. Even more symmetrical is

x = 0x2492492416

= 00, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1002

= 6.344, 131, 191, 146, 900× 10−17.

Here the scale factor is 2x24. In this example the repeating pattern is clear in the hex representation as a repeating
((942))3, as represented by the double brackets, with the subscript indicating the period—in this case, three digits.
As before, the commas are to help with readability and have no other meaning.

The representation of numbers is not unique. For example, irrational complex numbers have approximate
rational representations (i.e., π ≈ 22/7). A better example is complex numbers z ∈ C, which have many
representations, as a pair of reals (i.e., z = (x, y)), or by Euler’s formula, and matrices (θ ∈ R):

eθ = cos θ + j sin θ ↔
[
cos θ − sin θ
sin θ cos θ

]
.

At a higher level, differentiable functions (analytic functions) may be represented by a single-valued Taylor series
expansion (see p. 67), limited by its region of convergence (RoC).

Pythagoreans and Integers: The integer is the cornerstone of the Pythagorean doctrine—so much so that it
caused a fracture within the Pythagoreans when it was discovered that not all numbers are rational. One famous
proof of such irrational numbers comes from the spiral of Theodorus, as shown in Fig. 2.1, where the radius of
each triangle has length bn =

√
n with n ∈ N, and the long radius (the hypotenuse) is cn =

√
1 + b2n =

√
1 + n.

This figure may be constructed using a compass and ruler by maintaining right triangles.

10https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Figure 2.1: The spiral of Theodorus, made from contiguous right triangles having lengths a = 1, bn =
√
n, with n ∈ N, and

cn =
√
n+ 1. In this way, each value of c2

n = b2
n + a2 ∈ N. This sequence of triangles generate the set {

√
n} ∈ I, with n ∈ N, and is

easily generated using a compass and a ruler. (Adapted from https://en.wikipedia.org/wiki/spiral of Theodorus.)

Public-key security: Most people assume encryption is done by a personal login and passwords. But passwords
are fundamentally insecure because it is relatively easy for a computer to search all possible 2 to 10 combinations
of all possible keyboard characters. The metric of security is entropy, a measure of randomness. One bit of entropy
is two possible outcomes. Your first guess would be correct half the time, and your second (the other guess) would
be correct. With 10 bits of entropy there 1024 possible passwords, so an exhaustive search is quite feasible. 20
bits is a million possibilities. In the realm of 100 is 1030. 100 bits is 10301 possibilities, much harder to guess.

An important application of prime numbers is public-key encryption, which is essential for internet security
applications (e.g., online banking). Decryption depends on factoring large integers formed from products of
primes having thousands of bits.11 The security is based on the relative ease of multiplying large primes along
with the virtual impossibility of factoring them.

A trapdoor function is one where a computation is easy in one direction but its inverse is very difficult. As an
example think of a very long list of numbered (indexed) items. If I give you the index, you can look up the item
quickly. But if I give you the item as a randomized set of characters, it would be hard (but not impossible) to find
the index of the item.

Public-key encryption is based on a trapdoor function. If everyone were to switch from passwords to public-
key encryption, the internet would be much more secure.12

Exercise #10
Consider the following method of generating a trap door: The private key is an irrational number PRIV (for
example: π, ππ, logπ(√π101). The public key PUBL is then a sequence of say 10 integers generated from PRIV
using the CFA (see problem #8 of NS-2, page 39).

How would you propose to recover PRIV given PUBL?

Sol: In my view this is impossible because the space of irrational numbers is more than huge. Knowing the first
10 CFA integers tells you nothing about PRIV.

It is likely that NSA would not accepted such a scheme because it is “too good.” It is known that the NSA
requires an encryption method that only the NSA can crack in a fixed amount of time, using the world’s most
powerful computer. The problem with this view is that the bad guys can use their own scheme rather than the RSA
method.�

Puzzles: Another application of integers is imaginative problems that use integers. An example is the classic
Chinese four stone problem: Find the weights of four stones that can be used with a scale to weigh anything (e.g.,
salt, gold) between 0 and 40 grams (Assignment AE-2, Problem #5) The answer is not as interesting as the method,
since the problem may be easily recast into a related one. This type of problem can be found in airline magazines
as amusement on a long flight. This puzzle is best cast as a linear algebra problem with integer solutions. Again,
once you know the trick, it is “easy.”13

11As a simple but concrete example, a public-key encryption could work by starting with two numbers with a common prime, such as 5*3
and 5*11, and then using the Euclidean algorithm, the greatest common divisor (GCD) could be worked out (5 in my example). One of the
integers could be the public-key and the second could be the private key.

12https://fas.org/irp/agency/dod/jason/cyber.pdf
13Whenever someone tells you something is “easy,” you should immediately appreciate that it is very hard, but once you learn a concept,

the difficulty evaporates.
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2.2 Problems NS-1

Topic of this homework:

Introduction to Matlab/Octave (see the Matlab or Octave tutorial for help)
Deliverables: Report with charts and answers to questions.

Plotting complex quantities in Octave/Matlab

Problem # 1: Consider the functions f(s) = s2 + 6s+ 25 and g(s) = s2 + 6s+ 5.

– 1.1: Find the zeros of functions f(s) and g(s) using the command roots().

– 1.2: Show the roots of f(s) as red circles and of g(s) as blue plus signs.
The x-axis should display the real part of each root, and the y-axis should display the imaginary part. Use hold
on and grid on when plotting the roots.

– 1.3 Give your figure the title “Complex Roots of f(s) and g(s).” Label the x- and y-axes
“Real Part” and “Imaginary Part.” Hint: Use xlabel, ylabel, ylim([-10 10]), and
xlim([-10 10]) to expand the axes.

Problem # 2: Consider the function h(t) = e2πft for f = 5 and t=[0:0.01:2].

– 2.1: Use subplot to show the real and imaginary parts of h(t).
Make two graphs in one figure. Label the x-axes “Time (s)” and the y-axes “Real Part” and “Imaginary Part.”

– 2.2: Use subplot to plot the magnitude and phase parts of h(t).
Use the command angle or unwrap(angle()) to plot the phase. Label the x-axes “Time (s)” and the y-axes
’‘Magnitude” and “Phase (radians).”

Prime numbers, infinity, and special functions in Octave/Matlab

Problem # 3: Prime numbers, infinity, and special functions.

– 3.1: Use the Matlab/Octave function factor to find the prime factors of 123, 248, 1767,
and 999,999.

– 3.2: Use the Matlab/Octave function isprime to determine whether 2, 3, and 4 are
prime numbers. What does the function isprime return when a number is prime or not
prime? Why?

– 3.3: Use the Matlab/Octave function primes to generate prime numbers between 1 and
106. Save them in a vector x. Plot this result using the command hist(x).
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– 3.4: Now try [n,bincenters] = hist(x). Use length(n) to find the number
of bins.

– 3.5: Set the number of bins to 100 by using an extra input argument to the function hist.
Show the resulting figure, give it a title, and label the axes. Hint: help hist and doc
hist.

Problem # 4: Inf, NaN, and logarithms in Octave/Matlab.

– 4.1: Try 1/0 and 0/0 in the Octave/Matlab command window.
What are the results? What do these “numbers” mean in Octave/Matlab?

– 4.2: Try log(0), log10(0), and log2(0) in the command window.
In Matlab/Octave, the natural logarithm ln(·) is computed using the function log. Functions log10 and log2 are
computed using log10 and log2.

– 4.3: Try log(1) in the command window. What do you expect for log10(1) and
log2(1)?

– 4.4: Try log(-1) in the command window. What do you expect for log10(-1) and
log2(-1)?

– 4.5: Explain how Matlab/Octave arrives at the answer in problem 4.4. Hint: −1 = eiπ.

– 4.6: Try log(exp(j*sqrt(pi))) (i.e., log e
√
π) in the command window. What do

you expect?

– 4.7: What does inverse mean in this context? What is the inverse of ln f(x)?

– 4.8: What is a decibel? (Look up decibels on the internet.)

Problem # 5: Very large primes on Intel computers. Find the largest prime number that
can be stored on an Intel 64-bit computer, which we call πmax. Hint: As explained in the
Matlab/Octave command help flintmax, the largest positive integer is 253; however, the
largest integer that can be factored is 232 = 254 − 6. Explain the logic of your answer. Hint:
help isprime().

Problem # 6: We are interested in primes that are greater than πmax. How can you find them
on an Intel computer (i.e., one using IEEE floating point)? Hint: Consider a sieve that contains
only odd numbers, starting from 3 (not 2). Since every prime number greater than 2 is odd,
there is no reason to check the even numbers. nodd ∈ N/2 contain all the primes other than 2.

Problem # 7: The following identity is interesting. Can you find a proof?

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42

1 + 3 + 5 + 7 + 9 = 52

...
N−1∑
n=0

2n+ 1 = N2.
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2.3 The role of physics in mathematics

Integers arose naturally in art, music, and science. Examples include the relationships between musical notes,
the natural eigenmodes (tones) of strings and other musical instruments. These relationships were so common
that Pythagoras believed that to explain the physical world (the universe), one needed to understand integers. As
discussed on page 1, “all is number” was a seductive song.

As we will discuss on page 51, it is best to view the relationships among acoustics, music, and mathematics as
historical, since these topics inspired the development of mathematics. Today integers play a key role in quantum
mechanics, again based on eigenmodes, but in this case, eigenmodes follow from solutions of the Schrödinger
equation, with the roots of the characteristic equation being purely imaginary numbers ∈ N. If there were a real
part (i.e., damping), the modes would not be integers.

As discussed by Vincent Salmon (1946, p. 201), Schrödinger’s equation follows directly from the Webster
horn equation. While Philip Morse (1948, p. 281) (a student of Arnold Sommerfeld) fails to make the direct link,
he comes close to the same view when he shows that the real part of the horn resistance goes exactly to zero below
a cutoff frequency. He also discusses the trapped modes inside musical instruments created by the horn flare. One
may assume Morse read Salmon’s paper on horns, since he cites Salmon (Morse, 1948, footnote 1, p. 271).

Engineers are so accustomed to working with real (vs. complex) numbers that they rarely acknowledge the
distinction between real (i.e., irrational) and fractional numbers. Integers arise in many contexts. One cannot
master computer programming without understanding integer, hexadecimal, octal, and binary representations,
since all numbers in a computer are represented in numerical computations in terms of rationals (Q = Z ∪ F).

The primary reason integers are so important is their absolute precision. Every integer n ∈ Z is unique14 and
has the indexing property, which is essential for making lists that are ordered, so that one can quickly look things
up. The alphabet also has this property (e.g., a book’s index).

Because of the integer’s absolute precision, the digital computer quickly overtook the analog computer once
it was practical to make logic circuits that were fast. From 1946 the first digital computer was thought to be the
University of Pennsylvania’s ENIAC. We now know that the code-breaking effort in Bletchley Park, England,
under the guidance of Alan Turing, created the first digital computer (the Colossus), which was used to break the
World War II German Enigma code. Due to the high secrecy of this war effort, the credit was acknowledged only
in the 1970s when the project was finally declassified.

There is zero possibility of analog computing displacing digital computing because of the importance of pre-
cision (and speed). But even with binary representation, there is a nonzero probability of error—for example, on
a hard-drive—due to physical noise. To deal with this, error-correcting codes have been developed, reducing the
error by many orders of magnitude. Today error correction is a science, and billions of dollars are invested to
increase the density of bits per area to increasingly larger factors. A few years ago the terabyte drive was unheard
of; today it is standard. In a few years petabyte drives will certainly become available. It is hard to comprehend
how these will be used by individuals, yet they are essential for online (cloud) computing.

2.3.1 The three streams of mathematics

Modern mathematics is built on a hierarchical construct of fundamental theorems, as summarized in the following
boxed material on page 24. The importance of such theorems cannot be overemphasized.

Gauss’s and Stokes’s laws play a major role in understanding and manipulating Maxwell’s equations. Every
engineering student needs to fully appreciate the significance of these key theorems. If necessary, memorize them.
But memorization will not do over the long run, as each and every theorem must be fully understood. Fortunately
most students already know several of these theorems, but perhaps not by name. In such cases, it is a matter of
mastering the vocabulary.

14Check out the history of 1729 = 13 + 123 = 93 + 103.
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The three streams of mathematics
1. Number systems: Stream 1

• Arithmetic

• Prime numbers

2. Geometry: Stream 2

• Algebra

3. Calculus: Stream 3 (Flanders, 1973)

• Leibniz R1

• Complex C ⊂ R2

• Vectors R3,Rn,R∞

– Gauss’s law (divergence theorem)
– Stokes’s law (curl theorem, or Green’s theorem)
– Vector calculus (Helmholtz’s decomposition theorem)

The fundamental theorems are naturally organized and may be thought of in terms of the three streams of
Stillwell (2010). For Stream 1 we have the fundamental theorem of arithmetic and the prime number theorem.

For Stream 2 there is the fundamental theorem of algebra, and for Stream 3 there are a host of theorems on
calculus, ordered by their dimensionality. Some of these theorems seem trivial (e.g., the fundamental theorem
of arithmetic). Others are more challenging, such as the fundamental theorem of vector calculus and Green’s
theorem.

Complexity should not be confused with importance. Each of these theorems, as stated, is fundamental. Taken
as a whole, they are a powerful way of summarizing mathematics.

2.3.2 Stream 1: Prime number theorems
There are two easily described fundamental theorems about primes:

1. The fundamental theorem of arithmetic: This states that every integer n ∈ Z may be uniquely factored into
prime numbers. This raises the question of the meaning of factor (split into a product). The product of two
integers m,n ∈ Z is mn =

∑
m n =

∑
nm. For example, 2 ∗ 3 = 2 + 2 + 2 = 3 + 3.

2. The prime number theorem: One would like to know how many primes there are. That is easy: |P| = ∞
(the size of the set of primes is infinite). A better way of asking this question is What is the average density
of primes in the limit as n→∞? This question was answered, for all practical purposes, by Gauss, who in
his free time computed the first three million primes by hand. He discovered that, to a good approximation,
the primes are equally likely on a log scale. This is nicely summarized by the couplet:

Chebyshev said, and I say it again: There is always a prime between n and 2n.

This alludes to the mathematician Pafnuty Chebyshev, who proved the prime number theorem in a novel
way (Stillwell, 2010, p. 585).

When the ratio of two frequencies (pitches) is 2, the relationship is called an octave. With a slight stretch of
terminology, we could say there is at least one prime per octave.

Exercise #11
An interesting extension of Chebyshev’s observation is: As n → ∞, what is the limiting density in primes per
fraction of an octave? More specifically let π < πn < πk+1; then what is the limit of log2 πn+1/πn−1?

Sol: The answer is shown in Fig. 2.2? Note that the graph has a well defined dense lower bound with a slope
slightly steeper than 1/k, and a random upper bound.�

In modern western music the octave is further divided into 12 ratios called semitones, equal to 12
√

2. Twelve
semitones is an octave. In the end, it is a question of the density of primes on a log-log (i.e., ratio) scale. One
might wonder about the maximum number of primes per octave in the neighborhood of N , or ask for the fractions
of an octave (factors of 2) for πk as k becomes large. The maximum value of Rk < 0.5; thus Chebyshev’s
bound of 2 is conservative. As k → ∞ the bound is exponentially tightened. The results of this calculation are
shown in Fig. 2.2. For reference, when k = 9, 592, πk = 99, 991, πk−1 = 99, 989, πk+1 = 100, 003, thus
P (k + 1)/P (k − 1)− 1 = 1.4× 10−4.
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Figure 2.2: The prime ratios Rk = πk+1/πk−1 → 1 as k →∞; thus we must plot the difference 1−Rk on a log-log scale. While the
minimum values of 1− Rk are linear on a log-log scale, they decrease slightly faster than 1/k, as indicated by the the red dashed line. Note
that since R is a random variable, one must estimate both the mean and its standard deviation, which is an increasing function of k.

2.3.3 Stream 2: Fundamental theorem of algebra

This theorem states that every polynomial in x of degree N ,

PN (x) =
N∑
k=0

akx
k, (2.3.1)

has at least one root (see p. 82). When a common root is factored out, the degree of the polynomial is reduced
by 1. Applied recursively, a polynomial of degree N has N roots. Note there are N + 1 coefficients (i.e.,
[aN , aN−1, . . . , a0]). If we are interested only in the roots of PN (x), it is best to define aN = 1, which defines
the monic polynomial. If the roots are fractional numbers (∈ F), this might be possible. However, when the roots
are irrational numbers (likely), a perfect factorization is at least unlikely, if not impossible.

2.3.4 Stream 3: Fundamental theorems of calculus

In Sec. 5.6 and Sec. 5.6.6 we will deal with each of the theorems for Stream 3. We consider the several fundamental
theorems of integration, starting with Leibniz’s formula for integration on the real line (R), then progressing to
complex integration in the complex plane (C) (Cauchy’s theorem), which is required for computing the inverse
Laplace transform. Gauss’s and Stokes’s laws for R2 require closed and open surfaces, respectively. One cannot
manipulate Maxwell’s equations, fluid flow, or acoustics without understanding these theorems. Any problem that
deals with the wave equation in more than one dimension requires an understanding of these theorems. They are
the basis of the derivation of the Kirchhoff voltage and current laws, as first proposed by Newton for mechanics
and acoustics.

Finally we define three vector operations based on the gradient operator,

∇ ≡ x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z
, (2.3.2)

pronounced “del” (preferred) or “nabla,” which are the gradient∇(), divergence ∇·(), and curl∇×().
Second-order operators such as the scalar Laplacian ∇·∇() = ∇2(), the divergence of the gradient (DoG),

may be constructed from first-order operators. The most important of these is the vector Laplacian ∇2(), the
gradient of the divergence (gOd) which is required when working with Maxwell’s wave equations.15

The first three operations are defined in terms of integral operations on a surface in one, two, or three dimen-
sions by taking the limit as that surface, or the volume contained within, goes to zero. These three differential
operators are essential to fully understand Maxwell’s equations, the crown jewel of mathematical physics. Hence
mathematics plays a key role in physics, as does physics in math.

15See Sec. 5.6.6 (p. 201) for the definitions of DoG and gOd.
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2.3.5 Other key mathematical theorems
In addition to the widely recognized fundamental theorems, there are a number of equally important theorems that
have not yet been labeled “fundamental.”16

The widely recognized Cauchy integral theorem is an excellent example, since it is a steppingstone to Green’s
theorem and the fundamental theorem of complex calculus. In Sec. 4.5 (see p. 150) we clarify the contributions
of each of these special theorems.

Once these fundamental theorems of integration (Stream 3) have been mastered, the student is ready for the
complex frequency domain, which takes us back to Stream 2 and the complex frequency plane (s = σ + ω ∈
C). While the Fourier and and Laplace transforms are taught in mathematics courses, the concept of complex
frequency is rarely mentioned. The complex frequency domain (see p. 117) and causality are fundamentally
related (see pp. 151–163), and are critical for the analysis of signals and systems, especially when dealing with
the concept of impedance (see p. 141).

Without the concept of time and frequency, we cannot develop an intuition for the Fourier and Laplace trans-
forms, especially within the context of engineering and mathematical physics. The Fourier transform covers
signals, while the Laplace transform LT describes systems. Separating these two concepts, based on their repre-
sentations as Fourier and Laplace transforms, is an important starting place for understanding physics and the role
of mathematics. However, these methods, by themselves, do not provide the insight into physical systems that we
need to be productive or, better, creative with these tools. We need to master the tools of differential equations and
then partial differential equations to fully appreciate the world that they describe. Electrical networks composed
of inductors, capacitors, and resistors are isomorphic to mechanical systems composed of masses, springs, and
dashpots. Newton’s laws are analogous to those of Kirchhoff, which are the rules needed to analyze simple phys-
ical systems composed of linear (and nonlinear) subcomponents. When lumped-element systems are taken to the
limit in several dimensions, we obtain Maxwell’s partial differential equations, the laws of continuum mechanics,
and beyond.

The ultimate goal of this text is to make you aware of and productive in using these tools. This material can
be best absorbed by treating it chronologically through history, so you can see how this body of knowledge came
into existence, through the minds and hands of Galileo, Newton, Maxwell, and Einstein. Perhaps one day you too
can stand on the shoulders of the giants who went before you.

2.4 Applications of prime numbers
If someone asked you for a theory of counting numbers, I suspect you would laugh and start counting. It sounds
like either a stupid question or a bad joke. Yet integers are a rich topic, so the question is not even slightly dumb.
It is somewhat amazing that even birds and bees can count. While I doubt birds and bees can recognize primes,
cicadas and other insects crawl out of the ground only in prime-number cycles (e.g., 13- or 17-year cycles). If
you have ever witnessed such an event (I have), you will never forget it. Somehow they know. Finally, there is
the Euler zeta function, first introduced by Euler based on his analysis of sieve of Eratosthenes, now known as
the Riemann zeta function ζ(s), that is complex analytic, with its poles at the logs of the prime numbers. The
properties of this function are truly amazing, even fun. Many of the questions and answers about primes go back
to at least the early Asian mathematicians (ca. 1500 BCE).

2.4.1 The importance of prime numbers
While each prime perfectly predicts multiples of that prime, but there seems to be no regularity in predicting
primes. It follows that prime numbers are the key to the theory of numbers because of the fundamental theorem
of arithmetic (FTA).

It is likely that the first insight into the counting numbers started with the sieve shown in Fig. 2.3. A sieve
answers the question How can one identify the prime numbers? The answer comes from looking for irregular
patterns in the counting numbers.

Starting from π1 = 2, we strike out all even numbers 2(̇2, 3, 4, 5, 6, . . . ) but not 2. By definition, the multiples
are products of the target prime (2 in our example) and every other integer (n ≥ 2). In this way all the even
numbers are removed in this first iteration. The next remaining integer (3 in our example) is identified as the
second prime π2. Then all the multiples of π2 = 3 are removed. The next remaining number is π3 = 5, so all
multiples of π3 = 5 are removed (i.e.,��10,��15,��25, . . . ). This process is repeated until all the numbers of the list
have been either canceled or identified as prime.

16It is not clear what it takes to reach this more official sounding category.
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The recursive “sieve” method for finding primes was first devised by the Greek Eratosthenes (O’Neill,
2009).

1. Write N − 1 integers n, starting from 2: n ∈ {2, 3, . . . , N} (e.g., N = 4, n ∈ {2, 3, 4}). Note that the first
element π1 = 2 is the first prime. Cross out all multiples of π1; that is, cross out n ·π1 = 4, 6, 8, 10, . . . , 50,
or all n such that mod(n,π1)= 0.

2 3 �4 5 �6 7 �8 9 ��10
11 ��12 13 ��14 15 ��16 17 ��18 19 ��20
21 ��22 23 ��24 25 ��26 27 ��28 29 ��30
31 ��32 33 ��34 35 ��36 37 ��38 39 ��40
41 ��42 43 ��44 45 ��46 47 ��48 49 ��50

2. Let k = 2 and note that π2 = 3. Cross out nπ2 3 · (2, 3, 4, 5, 6, 7, . . . , 45), that is, all n such that
mod(n,π2)= 0.

2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20
��21 ��22 23 ��24 25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 49 ��50

3. Let k = 3, π3 = 5. Cross out nπ3 · (25, 35) (mod(n,5)=0).

2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20
��21 ��22 23 ��24 ��25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 ��35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 ��49 ��50

4. Finally let k = 4, π4 = 7 (mod(n,7)=0). Cross out nπ4: (49). Thus there are 15 primes less than
N = 50: πk = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 (highlighted in red). Above 2, all end in
odd numbers, and above 5, all end with 1, 3, 7, or 9.

Figure 2.3: Sieve of Eratosthenes for N = 50.
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As the word sieve implies, this process takes a heavy toll on the integers, rapidly pruning the non-primes. In
four iterations of the sieve algorithm, all the primes less than N = 50 are identified in red. The final set of primes
is displayed in step 4 of Fig. 2.3.

Once a prime greater than N/2 has been identified (25 in the example), the recursion stops, since twice
that prime is greater than N , the maximum number under consideration. Thus once

√
49 has been reached, all

the primes have been identified (this follows from the fact that the next prime πn is multiplied by an integer
n = 1, . . . , N ).

When we use a computer, memory efficiency and speed are the main considerations. There are various schemes
for making the sieve more efficient. For example, the recursion nπk = (n− 1)πk + πk will speed up the process
by replacing the multiplication with an addition of πk.

2.4.2 Two fundamental theorems of primes
Early theories of numbers revealed two fundamental theorems (see Sec. 2.3.3 and 2.3.4). The first of these is the
fundamental theorem of arithmetic, which says that every integer n ∈ N greater than 1 may be uniquely factored
into a product of primes:

n =
K

Π
k=1

πβkk , (2.4.1)

where k = 1, . . . ,K indexes the integer’s K prime factors πk ∈ P. Typically prime factors appear more than
once—for example, 25 = 52. To make the notation compact we define the multiplicity βk of each prime factor πk.
For example, 2312 = 23 · 172 = π3

1 π
2
7 (i.e., π1 = 2, β1 = 3;π7 = 17, β7 = 2) and 2313 = 32 · 257 = π2

3 π55
(i.e., π2 = 3, β3 = 2;π55 = 257, β55 = 1). Our demonstration of this is empirical, using the Matlab/Octave
factor(N) routine, which factors N .17

What seems amazing is the unique nature of this theorem. Each counting number is uniquely represented as a
product of primes. No two integers can share the same factorization. Once you multiply the factors out, the result
is unique (N ). Note that it’s easy to multiply integers (e.g., primes) but expensive to factor them. And factoring
the product of three primes is significantly more difficult than factoring two.

Factoring is much more expensive than division. This is not due to the higher cost of division over multipli-
cation, which is less than a factor of 2.18 Dividing the product of two primes, given one, is trivial, slightly more
expensive that multiplying. Factoring the product of two primes is nearly impossible, as one needs to know what
to divide by. Factoring means dividing by some integer and obtaining another integer with remainder zero.

This brings us to the prime number theorem (PNT). The security problem is the reason these two theorems are
so important: (1) Every integer has a unique representation as a product of primes, and (2) the density of primes
is large (see the discussions on p. 24). Thus security reduces to the “needle in the haystack problem” due to the
cost of a deep search. One could factor a product of primes N = πkπl by doing M divisions, where M is the
number of primes less than

√
N . This assumes the primes less than

√
N are known. However, most integers are

not a simple product of two primes.
But the utility of using prime factorization has to do with their density. If we were simply looking up a few

numbers from a short list of primes, it would be easy to factor them. But given that their density is logarithmic
(�1 per octave, as shown in Fig. 2.2), factoring comes at a very high computational cost compared to a table
lookup.

2.4.3 Greatest common divisor (Euclidean algorithm)
The Euclidean algorithm is a systematic method known to all educated people, identical to how we perform long
division. The largest common integer factor k between two integers n and m (divisor and dividend) is denoted
k = gcd(n,m), where n,m, k ∈ N (Graham et al., 1994). For example, 15 = gcd(30, 105) since, when factored,
(30, 105) = (2 · 3 · 5, 7 · 3 · 5) = 3 · 5 · (2, 7) = 15 · (2, 7). Thus the GCD is 15. Two integers are said to be
coprime if their GCD is 1 (i.e., they have no common prime factor). The Euclidean algorithm was known to the
Chinese (i.e., not discovered by Euclid) (Stillwell, 2010, p. 41).

The Euclidean algorithm is best explained by a trivial example: Consider the two numbers 6 and 9. At each
step the smaller number (6) is subtracted from the larger (9) and the smaller number and the difference (the
remainder) are saved. This process continues until the two resulting numbers are equal, which is the GCD. For our
example, 9− 6 = 3, leaving the smaller number 6 and the difference 3. Repeating this, we get 6− 3 = 3, leaving
the smaller number 3 and the difference 3. Since these two numbers are the same, we are done; thus 3 = gcd(9, 6).

17If you wish to be a mathematician, you need to learn how to prove theorems. If you’re a physicist, you are happy that someone else has
already proved them, so that you can use the result.

18https://streamcomputing.eu/blog/2012-07-16/how-expensive-is-an-operation-on-a-cpu/
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Examples of the GCD: l = gcd(m,n)
• Examples (m,n, l ∈ Z):

– 5 = gcd(13 · 5, 11 · 5). The GCD is the common factor 5.

– (13 · 10, 11 · 10) = 10 gcd(130, 110) = 10 = 2 · 5 is not prime

– gcd(1234, 1024) = 2, since 1234 = 2 · 617, 1024 = 210

– gcd(πkπm, πkπn) = πk
– l = gcd(m,n) is the part that cancels in the fraction m/n ∈ F
– m/gcd(m,n) ∈ Z

• Coprimes (m ⊥ n) are numbers that have no distinct common factors; that is, gcd(m,n) = 1

– The GCD of two primes is always 1: gcd(13, 11) = 1, gcd(πm, πn) = 1 (m 6= n)

– m = 7 · 13, n = 5 · 19⇒ (7 · 13) ⊥ (5 · 19)
– If m ⊥ n, then gcd(m,n) = 1.

– If gcd(m,n) = 1, then m ⊥ n.

We can verify this result by factoring [e.g., (9, 6) = 3(3, 2)]. The value may also be numerically verified using
the Matlab/Octave GCD command gcd(6,9), which returns 3. Thus the GCD reduces to the definition of long
division.

m

m− n
m− 2n
m− 3n

m− 6n
m− 7n

m
−
k
n

n n

k

Figure 2.4: The Euclidean algorithm recursively subtracts n from m until the remainder m − kn is less than either n or zero. Note that
this recursion is the same as mod(m,n). Thus the GCD recursively computes mod(m,n) until the remainder rem(m,n) is less than n,
which is called the GCD’s turning-point. It then swaps m and n, so that n < m. This repeats until it terminates on the GCD. Due to its
simplicity this is called the direct method for finding the GCD. For the case depicted here, the value of k renders the remainder m− 6n < n.
If one more step were taken beyond the turning-point (k = 7), the remainder would become negative. Thus the turning-point satisfies the
linear relationship m− αn = 0 with α ∈ R.

Direct matrix method: The GCD may be written as a matrix recursion given the starting vector (m0, n0)T .
The recursion is then [

mk+1
nk+1

]
=
[
1 −1
0 1

] [
mk

nk

]
. (2.4.2)

This recursion continues until mk+1 < nk+1, at which point m and n must be swapped. The process is repeated
until mk = nk, which equals the GCD. We call this the direct method (see Fig. 2.4). The direct method is
inefficient because it recursively subtracts nk many times until the resulting mk is less than nk. It also must test
for m ≤ n after each subtraction and then swap them if mk < nk. If they are equal, we are done.

The GCD’s turning-point may be defined using the linear interpolation m − αn = 0, α ∈ R, where
the solid line cross the abscissa in Fig. 2.4. If, for example, l = 6 + 43/97 ≈ 6.443298 . . . , then
6 = bm/nc < n and α ∈ F ∈ R. This is nonlinear (truncation) arithmetic, which is a natural property
of the GCD. The floor() functions finds the turning-point, where we swap the two numbers, since by
definition, m > n. In this example, 6 = blc.
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Exercise #12
Show that [

1 −1
0 1

]n
=
[
1 −n
0 1

]
.

Sol: To prove this let n = 2 and then 3. Each recursive multiplication adds 1 to the upper right corner.�

Why is the GCD important? The utility of the GCD algorithm arises directly from the fundamental difficulty in
factoring large integers. Computing the GCD using the Euclidean algorithm costs less than factoring when finding
the coprime factors, which is extremely expensive. The utility surfaces when the two numbers are composed of
very large primes.

When two integers have no common factors, they are said to be coprime and their GCD is 1. The ratio of two
integers that are coprime is automatically in reduced form (they have no common factors). For example, 4/2 ∈ Q
is not reduced, since 2 = gcd(4, 2) (with a zero remainder). Canceling out the common factor 2 gives the reduced
form 2/1 ∈ F. Thus if we wish to form the ratio of two integers, we first compute the GCD, then remove it from
the two numbers to form the ratio. This ensures that the rational number is in its reduced form (∈ F rather than
∈ Q). If the GCD were 103 digits, it is obvious that any common factor would need to be be removed, thus greatly
simplifying further computation. This can make a huge difference when using IEEE-754.

The floor function and the GCD are related in an important way, as discussed next.

Indirect matrix method: A much more efficient method uses the floor() function, which is called division
with rounding, or simply the indirect method. Specifically the GCD may be written in one step as[

m
n

]
k+1

=
[
0 1
1 −

⌊
m
n

⌋] [m
n

]
k

. (2.4.3)

This matrix is Eq. 2.4.2 to the power bm/nc, followed by swapping the inputs (the smaller number must always
be on the bottom).

The GCD and multiplication: Multiplication is simply recursive addition, and finding the GCD takes advantage
of this fact. For example, 3 ∗ 2 = 3 + 3 = 2 + 2 + 2. Since division is the inverse of multiplication, it must be
recursive subtraction.

The GCD and long division: When we learn how to divide a smaller number into a larger one, we must learn
how to use the GCD. For example, suppose we wish to compute 110 ÷ 6 (110/6). We start by finding out how
many times 6 goes into 11. Since 6× 2 = 12, which is larger than 11, the answer is 1. This is of course the floor
function (e.g., b11/6c = 1). We then subtract 6 from 11 to find the remainder 5.

Example: Start with the two integers [873, 582]. In factored form these are [π25 · 32, π25 · 3 · 2]. Given the factors,
we see that the largest common factor is π25 · 3 = 291 (π25 = 97). When we take the ratio of the two numbers,
this common factor cancels:

873
582 =�

�π25 · �3 · 3
��π25 · �3 · 2

= 3
2 = 1.5.

Of course if we divide 582 into 873, we numerically obtain the answer 1.5 ∈ F.

Exercise #13
What does it mean to reach the turning-point when using the Euclidean algorithm?

Sol: Whenm/n−bm/nc < n, we have reached a turning-point. When the remainder is zero (i.e.,m/n−bm/nc =
0), we have reached the GCD.�

Exercise #14
Show that in Matlab/Octave rat(873/582) = 2 + 1/(−2) gives rats(873/582)=3/2, which is the wrong
answer. Hint: Factor the two numbers and cancel out the GCD.

Sol: Since
factor(873) = 3 · 3 · 97 and factor(582) = 2 · 3 · 97,
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the GCD is 3 ·97. Thus 3/2 = 1 + 1/2 is the correct answer. But due to rounding methods, it is not 3/2. As an
example, in Matlab/Octave rat(3/2)= 2+1/(-2). Matlab’s rat() command uses rounding rather than the
floor function, which explains the difference. When the rat(·) function produces negative numbers, rounding
must have been employed. �

Exercise #15
Divide 10 into 99. The floor function (floor(99/10)) must be used, followed by the remainder function
(rem(99,10)).

Sol: When we divide a smaller number into a larger one, we must first find the floor followed by the remainder.
For example, 99/10 = 9 + 9/10 has a floor of 9 and a remainder of 9/10.�

Graphical description of the GCD: The Euclidean algorithm is best viewed graphically. In Fig. 2.4 we show
what is happening as one approaches the turning-point, at which point the two numbers must be swapped to keep
the difference positive, which is addressed by the upper row of Eq. 2.4.3.

Here is a simple Matlab/Octave code to find l=gcd(m,n) based on the Stillwell (2010) definition:

%˜/M/gcd0.m
function k = \gcd(m,n)
while m ˜=0
A=m; B=n;
m=max(A,B); n=min(A,B); %m>n
m=m-n;
endwhile %m=n
k=A;

This program loops until m = 0.

Coprimes: When the GCD of two integers is 1, the only common factor is 1. This is of key importance when
trying to find common factors between the two integers. When 1=gcd(m,n), the two integers are said to be
coprime or relatively prime, which is may be written as m ⊥ n. By definition, the largest common factor of
coprimes is 1. But since 1 is not a prime (π1 = 2), the two integers have no common primes. It can be shown
(Stillwell, 2010, pp. 41–4) that when a ⊥ b, there exist m,n ∈ Z such that

am+ bn = gcd(a, b) = 1.

This linear equation may by related to the addition of two fractions that have coprime numerators (a ⊥ b). For
example,

a

m
+ b

n
= an+ bm

mn
.

It is not obvious that this is simply 1/mn = 1.

Exercise #16
Show that [

0 1
1 −

⌊
m
n

⌋] =
[
0 1
1 0

] [
1 −1
0 1

]bmn c
.

Sol: This exercise uses the results of the earlier Exercise # 10, times the row-swap matrix. �

2.4.4 Continued fraction algorithm
As shown in Fig. 2.5, the continued fraction algorithm (CFA) starts from a single real decimal number xo ∈ Ro
and recursively expands it as a fraction x ∈ F (Graham et al., 1994). Thus the CFA may be used for forming
rational approximations to any real number. For example, π ≈ 22/7, an excellent approximation well known to
Chinese mathematicians.



32 CHAPTER 2. STREAM 1: NUMBER SYSTEMS

The Euclidean algorithm (i.e., GCD), on the other hand, operates on a pair of integers m,n ∈ N and returns
their greatest common divisor k ∈ N, such thatm/k, n/k ∈ F are coprime, thus reducing the ratio to its irreducible
form (i.e., m/k ⊥ n/k). Note this is done without factoring m and n.

Despite this seemingly irreconcilable difference between the GCD and CFA, the two are closely related—
so close that Gauss called the Euclidean algorithm for finding the GCD the continued fraction algorithm (CFA)
(Stillwell, 2010, p. 48).

At first glance it is not clear why Gauss would be so “confused.” One is forced to assume that Gauss had some
deeper insight into this relationship. If so, it would be valuable to understand that insight.

Since Eq. 2.4.3 may be inverted, the process may be reversed, which is closely related to the CFA as discussed
in Fig. 2.5. This might be the basis behind Gauss’s insight.

Definition of the CFA

1. Start with n = 0 and the positive input target x0 ∈ R+. n = 0, m0 = 0, x0 = π

2. Rounding: Let mn = bxne ∈ N. m0 = bπe = 3

3. The input vector is then [mn, xn]T . [3, π]T

4. Remainder: rn = xn −mn (−0.5 ≤ rn ≤ 0.5) r0 = π − 3 ≈ 0.1416

5. Reciprocate:

xn+1 =
{

1/rn, n← n+ 1; go to step 2 rn 6= 0 x2 = 1/0.14159 = 7.06 . . .
0, terminate rn = 0 Output: [mn, xn+1]T = [3, 7.06]T

Figure 2.5: Definition of the CFA of any positive number, x0 ∈ R+,. Numerical values for n = 0, x0 = π,m0 = 0 are on the right.
For n = 1 the input vector is [m1, x2]T = [3, 7.0626]T . If at any step the remainder is zero, the algorithm terminates (step 5). Convergence
is guaranteed. The recursion may continue to any desired accuracy, and terminates if rn = 0. Alternative rounding schemes are given on
page 219.

Notation: Writing out all the fractions can become tedious. For example, expanding e = 2.7183 . . . using the
Matlab/Octave command rat(exp(1)) gives the approximation

exp(1) = 3 + 1/(−4 + 1/(2 + 1/(5 + 1/(−2 + 1/(−7)))))− o
(
1.75× 10−6)

= [3;−4, 2, 5,−2,−7]− o(1.75× 10−6).

Here we use a compact bracket notation, ê6 ≈ [3;−4, 2, 5,−2,−7], where o() indicates the error of the CFA
expansion.

Since entries are negative, we deduce that Matlab/Octave is using rounding arithmetic (but this is not doc-
umented). Note that the leading integer part m0 may be indicated by an optional semicolon.19 If the steps are
carried further, the values of mn ∈ Z give increasingly more accurate rational approximations. The five rounding
schemes are discussed in Appendix A.1.5.

Exercise #17
Let x0 ≡ π ≈ 3.14159 . . . . As shown in Fig. 2.6, a0 = 3, r0 = 0.14159, x1 = 7.065 ≈ 1/r0, and a1 = 7. If we
were to stop here, we would have

π̂2 = 3 + 1
7 +���0.0625 . . . = 3 + 1

7 = 22
7 . (2.4.4)

This approximation of π̂2 = 22/7 has a relative error of 0.04%:

22/7− π
π

≈ 4× 10−4.

19Unfortunately Matlab/Octave does not support the bracket notation.
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Exercise #18
For a second level of approximation we continue by reciprocating the remainder 1/0.0625 ≈ 15.9966, which
rounds to 16, giving a negative remainder of ≈ −1/300:

π̂3 ≈ 3 + 1/(7 + 1/16) = 3 + 16/(7 · 16 + 1) = 3 + 16/113 = 355/113.

With rounding, the remainder is −0.0034, resulting in a much more rapid convergence. If floor rounding is used
(15.9966 = 15 − 0.9966) the remainder is positive and close to 1, resulting in a much less accurate rational
approximation for the same number of terms. It follows that there can be a dramatic difference depending on the
rounding scheme, which, for clarity, should be specified, not inferred.

Rational approximation examples

π̂2 = 22
7 = [3; 7] ≈ π̂2 + o(1.3× 10−3)

π̂3 = 355
113 = [3; 7, 16] ≈ π̂3 − o(2.7× 10−7)

π̂4 = 104, 348
33, 215 = [3; 7, 16,−249] ≈ π̂4 + o(3.3× 10−10)

Figure 2.6: The expansion of π to various orders, using the CFA, along with the order of the error of each rational approximation, with
rounding. For example, π̂2 =22/7 has an absolute error (|22/7− π|) of about 0.13%.

Exercise #19
Find the CFA using the floor function, to the 12th order.

Sol: π̂12 = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1]. Octave/Matlab will give a different answer due to the use of rounding
rather than floor.�

Exercise #20
Matlab/Octave’s rat(pi,1e-16) gives:
3 + 1/(7 + 1/(16 + 1/(-294 + 1/(3 + 1/(-4 + 1/(5 + 1/(-15 + 1/(-3)))))))).
In bracket notation,

π̂9 = [3; 7, 16,−294, 3,−4, 5,−15,−3].

Because the sign changes, it is clear that Matlab/Octave uses rounding rather than the floor function. It follows
that the error will be smaller with rounding than with truncation, which is 266.764× 10−9.

Exercise #21
Based on the several examples given above, which rounding scheme is the most accurate? Explain why.

Sol: Rounding results in a smaller remainder at each iteration and thus results in a smaller net error and faster
convergence. Using the floor truncation the CFA always gives positive coefficients, which could have useful
applications. �

When the CFA is applied and the expansion terminates (rn = 0), the target is rational. When the expansion
does not terminate (which is not always easy to determine, as the remainder may be ill-conditioned due to small
numerical rounding errors), the number is irrational. Thus the CFA has important theoretical applications with
irrational numbers. You may explore this using Matlab’s rats(pi) command.

In addition to these five basic rounding schemes, there are two other important R → N functions (i.e., map-
pings) that will be needed later: mod(x,y) and rem(x,y) with x, y ∈ R. The base-10 numbers may be generated
from the counting numbers using y=mod(x,10).
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Exercise #22 1. Show how to generate a base-10 real number y ∈ R from the counting numbers N using the
m=mod(n,10)+ k10 with n, k ∈ N.

Sol: Every time n reaches a multiple of 10, m is reset to 0 and the next digit to the left is increased by 1 by
adding 1 to k, generating the digit pair km. Thus the mod() function forms the underlying theory behind
decimal notation.�

2. How would you generate binary numbers (base 2) using the mod(x,b) function? Sol: Use the same

method as in part 1, but with b = 2.�

3. How would you generate hexadecimal numbers (base 16) using the mod(x,b) function? Sol: Use the

same method as in part 1, but with b = 16.�

4. Write the first 19 numbers in hex notation, starting from zero. Sol: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,

F, 10, 11, 12. Recall that 1016 = 1610, thus 1216 = 1810, resulting in a total of 19 numbers if we include
0.�

5. What is FF16 in decimal notation? Sol: hex2dec(’ff’) = 25510�

Symmetry: A continued fraction expansion can have a high degree of recursive symmetry. For example, con-
sider the CFA

R1 ≡
1 +
√

5
2 = 1 + 1

1 + 1
1+...

= 1.618033988749895 . . . . (2.4.5)

Here an in the CFA is always 1 (R1 ≡ [1; 1, 1, . . . ]), thus the sequence cannot terminate, proving that
√

5 ∈ I. A
related example is R2 ≡ rat(1+sqrt(2)), which gives R2 = [2; 2, 2, 2, . . . ].

When we expand a target irrational number (x0 ∈ I) and the CFA is truncated, the resulting rational fraction
approximates the irrational target. For the example above, if we truncate at three coefficients ([1; 1, 1]), we obtain

1 + 1
1 + 1

1+0
= 1 + 1/2 = 3/2 = 1.5 = 1 +

√
5

2 + 0.118 . . . .

Truncation after six steps gives

[1; 1, 1, 1, 1, 1, 1] = 13/8 ≈ 1.6250 = 1 +
√

5
2 + 0.0070 . . . .

Because all the coefficients are 1, this example converges very slowly. When the coefficients are large (i.e., the
remainder is small), the convergence will be faster. The expansion of π is an example of faster convergence.

In summary: Every rational number m/n ∈ F, with m > n > 1, may be uniquely expanded as a continued
fraction, with coefficients ak determined using the CFA. When the target number is irrational (x0 ∈ Q), the CFA
does not terminate; thus each step produces a more accurate rational approximation, converging in the limit as
n→∞.

Thus the CFA expansion is an algorithm that can, in theory, determine when the target is rational, but with an
important caveat: One must determine whether the expansion terminates. This may not be obvious. The fraction
1/3 = 0.33333 . . . is an example of such a target, where the CFA terminates yet the fraction repeats. It must be
that

1/3 = 3× 10−1 + 3× 10−2 + 3× 10−3 + . . . .

Here 3 · 3 = 9. As a second example,20

1/7 = 0.142857, 142857, 142857, 142857 · · · = 14, 2857× 10−6 + 142, 857× 10−12 + . . . .

There are several notations for repeating decimals, such as 1/7 = 0.1142857 and 1/7 = 0.1((142857)). Note that
142, 857 = 999, 999/7. Related identities include 1/11 = 0.090909 . . . and 11 × 0.090909 = 999, 999. When
the sequence of digits repeats, the sequence is predictable and it must be rational. But it is impossible to be sure
that it repeats because the length of the repeat can be arbitrarily long.

20Taking the Fourier transform of the target number, represented as a sequence, could help to identify an underlying periodic component.
The number 1/7 ↔ [[1, 4, 2, 8, 5, 7]]6 has a 50 [dB] notch at 0.8π [rad] due to its six-digit periodicity, carried to 15 digits (Matlab/Octave
maximum precision), Hamming-windowed, and zero padded to 1024 samples.
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Exercise #23
Discuss the relationship between the CFA and the transmission line modeling method on page 107.

Sol: The solution is detailed in Appendix F. �
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2.5 Problems NS-2

Topic of this homework:
Prime numbers, greatest common divisors, the continued fraction algorithm

Prime numbers
Problem # 1: Every integer may be written as a product of primes.

– 1.1: Write the numbers 1, 000, 000, 1, 000, 004, and 999, 999 in the form N = ∏
k
πβkk .

Hint: Use Matlab/Octave to find the prime factors.

– 1.2: Give a generalized formula for the natural logarithm of a number ln(N) in terms of
its primes πk and their multiplicities βk. Express your answer as a sum of terms.

Problem # 2: Using the computer

– 2.1: Explain why the following brief Matlab/Octave program returns the prime numbers
πk between 1 and 100.

n=2:100;
k = isprime(n);
n(k)

– 2.2: How many primes are there between 2 and N = 100?

Problem # 3: Prime numbers may be identified using a sieve (see Fig. 2.3).

– 3.1: By hand, complete the sieve of Eratosthenes for n = 1, . . . , 49. Circle each prime p,
then cross out each number that is a multiple of p.

– 3.2: What is the largest number you need to consider before only primes remain?

– 3.3: Generalize: For n = 1, . . . , N , what is the largest number you need to consider
before only the primes remain?

– 3.4: Write each of these numbers as a product of primes: 22, 30, 34, 43, 44, 48, 49.

– 3.5: Find the largest prime πk ≤ 100. Do not use Matlab/Octave other than to check your
answer. Hint: Write the numbers starting with 100 and count backward: 100, 99, 98, 97, . . . .
Cross off the even numbers, leaving 99, 97, 95, . . . . Pull out a factor (only one is necessary to
show that it is not prime).

– 3.6: Find the largest prime πk ≤ 1000. Do not use Matlab/Octave other than to check
your answer.

– 3.7: Explain why π−sk = e−s lnπk .



2.5. PROBLEMS NS-2 37

Greatest common divisors
Consider using the Euclidean algorithm to find the greatest common divisor (GCD; the largest common prime
factor) of two numbers. Note that this algorithm may be performed using one of two methods:

Method Division Subtraction
On each iteration... ai+1 = bi ai+1 = max(ai, bi)−min(ai, bi)

bi+1 = ai − bi · floor(ai/bi) bi+1 = min(ai, bi)
Terminates when... b = 0 (GCD = a) b = 0 (GCD = a)

The division method (Eq. 2.1, Sec. 2.1.2, Ch. 2) is preferred because the subtraction method is much slower.

Problem # 4: Understanding the Euclidean algorithm (GCD)

– 4.1: Use the Octave/Matlab command factor to find the prime factors of a = 85 and
b = 15.

– 4.2: What is the greatest common prime factor of a = 85 and b = 15?

– 4.3: By hand, perform the Euclidean algorithm for a = 85 and b = 15.

– 4.4: By hand, perform the Euclidean algorithm for a = 75 and b = 25. Is the result a
prime number?

– 4.5: Consider the first step of the GCD division algorithm when a < b (e.g., a = 25 and
b = 75). What happens to a and b in the first step? Does it matter if you begin the algorithm
with a < b rather than b < a?

– 4.6: Describe in your own words how the GCD algorithm works. Try the algorithm using
numbers that have already been divided into factors (e.g., a = 5 · 3 and b = 7 · 3).

– 4.7: Find the GCD of 2 · π25 and 3 · π25.
.

Problem # 5: Coprimes

– 5.1: Define the term coprime.

– 5.2: How can the Euclidean algorithm be used to identify coprimes?

– 5.3: Give at least one application of the Euclidean algorithm.

– 5.4: Write a Matlab function, function x = my gcd(a,b), that uses the Euclidean
algorithm to find the GCD of any two inputs a and b. Test your function on the (a, b) combina-
tions from the previous problem. Include a printout (or hand-write) your algorithm to turn in.
Hints and advice:

• Don’t give your variables the same names as Matlab functions! Since gcd is an existing Matlab/Octave
function, if you use it as a variable or function name, you won’t be able to use gcd to check your gcd()
function. Try clear all to recover from this problem.

• Try using a “while” loop for this exercise (see Matlab documentation for help).

• You may need to use some temporary variables for a and b in order to perform the algorithm.
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Algebraic generalization of the GCD (Euclidean) algorithm

Problem # 6: In this problem we are looking for integer solutions (m,n) ∈ Z to the equations
ma+ nb = gcd(a, b) and ma+ nb = 0 given positive integers (a, b) ∈ Z+.
Note that this requires that eitherm or n be negative. These solutions may be found using the Euclidean algorithm
only if (a, b) are coprime (a ⊥ b). Note that integer (whole number) polynomial relations such as these are known
as Diophantine equations. Such equations (e.g., ma + nb = 0) are linear Diophantine equations, possibly the
simplest form of such relations.

Example: gcd(2,3)= 1: For (a, b) = (2, 3), the result is[
1
0

]
=
[
0 1
1 −2

] [
0 1
1 −1

] [
0 1
1 0

] [
2
3

]
=
[
−1 1
3 −2

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus from the above equation we find the solution (m,n) to the integer equation

2m+ 3n = gcd(2, 3) = 1;

namely, (m,n) = (−1, 1) (i.e., −2 + 3 = 1). There is also a second solution (3,−2) (i.e., 3 · 2− 2 · 3 = 0) that
represents the terminating condition. Thus these two solutions are a pair and the solution exists only if (a, b) are
coprime (a ⊥ b).

Subtraction method: This method is more complicated than the division algorithm because at each stage we
must check whether a < b. Define[

a0
b0

]
=
[
a
b

]
, Q =

[
1 −1
0 1

]
, S =

[
0 1
1 0

]
,

where Q sets ai+1 = ai − bi and bi+1 = bi assuming ai > bi, and S is a swap matrix that swaps ai and bi if
ai < bi. Using these matrices, we implement the algorithm by assigning[

ai+1
bi+1

]
= Q

[
ai
bi

]
for ai > bi,

[
ai+1
bi+1

]
= QS

[
ai
bi

]
for ai < bi.

The result of this method is a cascade of Q and S matrices. For (a, b) = (2, 3), the result is[
1
1

]
=
[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
1 −1
0 1

]
︸ ︷︷ ︸

Q

[
0 1
1 0

]
︸ ︷︷ ︸

S

[
2
3

]
=
[

2 −1
−1 1

]
︸ ︷︷ ︸
m n

[
2
3

]
.

Thus we find two solutions (m,n) to the integer equation 2m+ 3n = gcd(2, 3) = 1.

– 6.1: By inspection, find at least one integer pair (m,n) that satisfies 12m+ 15n = 3.

– 6.2: Using matrix methods for the Euclidean algorithm, find integer pairs (m,n) that
satisfy 12m+ 15n = 3 and 12m+ 15n = 0. Show your work!!!

– 6.3: Does the equation 12m+ 15n = 1 have integer solutions for n and m? Why or why
not?

Problem # 7: Matrix approach:
It can be difficult to keep track of the a’s and b’s when the algorithm has many steps. We need an alternative way
to run the Euclidean algorithm using matrix algebra. Matrix methods provide a more transparent approach to the
operations on (a, b). Thus the Euclidean algorithm can be classified in terms of standard matrix operations. Write
out the indirect matrix approach discussed at the end of Sec. 2.4.3 (Eq. 2.4.3).



2.5. PROBLEMS NS-2 39

Continued fractions
Problem # 8: Here we explore the continued fraction algorithm (CFA), discussed in Sec. 2.4.4.

In its simplest form, the CFA starts with a real number, which we denote as α ∈ R. Let us work with an irrational
real number, π ∈ I, as an example because its CFA representation will be infinitely long. We can represent the
CFA coefficients α as a vector of integers nk, k = 1, 2, . . . ,∞:

α = [n1;n2, n3, n4, . . .]

= n1 + 1
n2 + 1

n3+ 1
n4+···

.

As discussed in Sec. 2.4.3 (p. 28), the CFA is recursive, with three steps per iteration. For α1 = π, n1 = 3,
r1 = π − 3, and α2 ≡ 1/r1.

α2 = 1/0.1416 = 7.0625 . . .

α1 = n1 + 1
α2

= n1 + 1
n2 + 1

α3

= · · · .

In terms of a Matlab/Octave script,

alpha0 = pi;
K=10;
n=zeros(1,K); alpha=zeros(1,K);
alpha(1)=alpha0;

for k=2:K %k=1 to K
n(k)=round(alpha(k-1));
%n(k)=fix(alpha(k-1));
alpha(k)= 1/(alpha(k-1)-n(k));
%disp([fix(k), round(n(k)), alpha(k)]); pause(1)
end
disp([n; alpha]);
%Now compare this to matlab’s rat() function
rat(alpha0,1e-20)

– 8.1: By hand (you may use Matlab/Octave as a calculator), find the first three values of
nk for α = eπ.

– 8.2: For the preceding question, what is the error (remainder) when you truncate the
continued fraction after n1, . . . , n3? Give the absolute value of the error and the percentage
error relative to the original α.

– 8.3: Use the Matlab/Octave program provided to find the first 10 values of nk for α = eπ,
and verify your result using the Matlab/Octave command rat().

– 8.4: Discuss the similarities and differences between the Euclidean algorithm and the
CFA.

– 8.5:Extra Credit: Show that the CFA is the inverse operation of the GCD (i.e., the CFA is
the GCD run in reverse). (Hint: see Sec. 2.4.3.)

Continued fraction algorithm (CFA) (8 pts)
Problem # 9:CFA of ratios of large primes
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– 9.1:Starting from the primes below 106, form the CFA of πj/πk with j = 78498 and k < j.

– 9.2: Look at other ratios of prime numbers and look for a pattern in the CFA of the ratios
of large primes. What is the most obvious conclusion?

– 9.3: (4pts) Expand 23/7 as a continued fraction. Express your answer in bracket notation
(e.g., π = [3., 7, 16, · · · ]). Show your work.

– 9.4: (2pts) Can
√

2 be represented as a finite continued fraction? Why or why not?

– 9.5: (2pts) What is the CFA for
√

2− 1?

Hint:
√

2 + 1 = 1√
2− 1

= [2; 2, 2, 2, · · · ].

– 9.6: Find the CFA for 1 +
√

3

– 9.7: Show that

1
1−
√
a

= a
11
2 + a

9
2 + a

7
2 + a

5
2 + a

3
2 +
√
a+ a5 + a4 + a3 + a2 + a+ 1 = 1− a6

syms a,b
b= taylor(1/( 1-sqrt(a) ))
simplify((1-sqrt(a))*b) = 1-aˆ6

Use symbolic analysis to show this, then explain.
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2.5.1 Pythagorean triplets (Euclid’s formula)

Euclid’s formula is a method for finding three integer lengths [a, b, c] ∈ N that satisfy Eq. 1.1.1 (p. 2). It is
important to ask Which set are the lengths [a, b, c] drawn from? There is a huge difference, both practical and
theoretical, whether they are from the real numbers R or from the counting numbers N. Given p, q ∈ N with
p > q, the three lengths [a, b, c] ∈ N of Eq. 1.1.1 are given by

a = p2 − q2, b = 2pq, c = p2 + q2. (2.5.6)

Figure 2.7: Beads on a string form perfect right triangles when the number of unit lengths between beads on each side satisfies Eq. 1.1.1.
For example, when p = 2, q = 1, the sides are [3, 4, 5].

This result may be directly verified, since

[p2 + q2]2 = [p2 − q2]2 + [2pq]2

or
p4 + q4 +��

�2p2q2 = p4 + q4 −��
�2p2q2 +��

�4p2q2.

Thus, Eqs. 2.5.6 are easily proved once given. Deriving Euclid’s formula (see AE-2, problem #1) is obviously
much more difficult, and is similar to the proof of Pell’s equation.

Table 2.1: Table of Pythagorean triplets computed from Euclid’s formula, Eq. 2.5.6, for various [p, q]. The last three columns are the
first, fourth, and penultimate values of Plimpton-322, along with their corresponding [p, q]. In all cases c2 = a2 + b2 and p = q + l, where
l =
√
c− b ∈ N.

q 1 1 1 2 2 2 3 3 3 5 54 27
l 1 2 3 1 2 3 1 2 3 7 71 23
p 2 3 4 3 4 5 4 5 6 12 125 50
a 3 8 15 5 12 21 7 16 27 119 12709 1771
b 4 6 8 12 16 20 24 30 36 120 13500 2700
c 5 10 17 13 20 29 25 34 45 169 18541 3229

A well-known example is the right triangle depicted in Fig. 2.7, defined by the integer lengths [3, 4, 5] that
have angles [0.54, 0.65, π/2] [rad], which satisfies Eq. 1.1.1. As quantified by Euclid’s formula (Eq. 2.5.6), there
are an infinite number of Pythagorean triplets (PTs). Furthermore, the seemingly simple triangle that has angles
of [30, 60, 90] ∈ N [deg] (i.e., [π/6, π/3, π/2] ∈ I [rad]) has one irrational (I) length ([1,

√
3, 2]).

The set from which the lengths [a, b, c] are drawn was not missed by the early Asians and was documented
by the Greeks. Any equation whose solution is based on integers is called a Diophantine equation, named for the
Greek mathematician Diophantus of Alexandria (ca. 250 CE) (see Fig. 1.1, p. 3).

A clay tablet from the 19th century BCE with the numbers engraved on it, as shown in Fig. 2.8, was discovered
in Mesopotamia, and cataloged in 1922 by George A. Plimpton.21 These numbers are a and c pairs from PTs
[a, b, c]. Given this discovery, it is clear that the Pythagoreans were following those who came long before them.
Recently a second tablet, dating between 350 and 50 BCE, has been reported, that indicates calculations of the
apparent motion of Jupiter based on a trapezoidal graph of the rate.22

It is of interest that PTs play a role on atomic physics, as discussed in Appendix I.

21https://www.nytimes.com/2010/11/27/arts/design/27tablets.html
22https://www.nytimes.com/2016/01/29/science/babylonians-clay-tablets-geometry-astronomy-jupiter.html
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Figure 2.8: Plimpton-322, a clay tablet from 1800 BCE that displays a and c values of the Pythagorean triplets [a, b, c], with the property
b =
√
c2 − a2 ∈ N. Several of the c values are primes, but not the a values. The clay is item 322 (item 3 from 1922) from the collection of

George A. Plimpton.

2.5.2 Pell’s equation

Pell’s equation,

x2
n −Ny2

n = (xn −
√
Nyn)(xn +

√
Nyn) = 1, (2.5.7)

with non square N ∈ N specified and x, y ∈ N unknown, has a venerable history in both physics (see p. 13) and
mathematics. Given its factored form, it is obvious that every solution xn, yn has the asymptotic property

xn
yn

∣∣∣∣
n→∞

→ ±
√
N. (2.5.8)

It is believed that Pell’s equation is directly related to the Pythagorean theorem, since both are simple binomials
that have integer coefficients (Stillwell, 2010, p. 48), with Pell’s equation being the hyperbolic version of Eq. 1.1.1.
For example, with N = 2, a solution is x = 17, y = 12 (i.e., 172 − 2 · 122 = 1).

A 2×2 matrix recursion algorithm, likely due to the Chinese and used by the Pythagoreans to investigate
√
N ,

is [
x
y

]
n+1

=
[
1 N
1 1

] [
x
y

]
n

, (2.5.9)

where we indicate the index outside the vectors.
Starting with the trivial solution [xo, yo]T = [1, 0]T (i.e., x2

o − Ny2
o = 1), additional solutions of Pell’s

equations are determined, having the property xn/yn →
√
N ∈ F, motivated by Euclid’s formula for Pythagorean

triplets (Stillwell, 2010, p. 44).
Note that Eq. 2.5.9 is a 2 × 2 linear matrix composition method (see p. 84), since the output of one matrix

multiplication is the input to the next.

Asian solutions: The first solution of Pell’s equation was published in about 628 CE by Brahmagupta, who
first discovered the equation (Stillwell, 2010, p. 46). Brahmagupta’s novel solution also used the composition
method, but in a different way from Eq. 2.5.9. Then in 1150 CE, Bhaskara II independently obtained solutions
using Eq. 2.5.9 (Stillwell, 2010, p.69). This is the composition method we shall explore here, as summarized in
Appendix B, Table B.1.

The best way to see how this recursion results in solutions to Pell’s equation is by example. Initializing the
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recursion with the trivial solution [x0, y0]T = [1, 0]T gives[
x1
y1

]
=
[
1
1

]
1

=
[
1 2
1 1

] [
1
0

]
0

12 − 2 · 12 = −1[
x
y

]
2

=
[
3
2

]
=
[
1 2
1 1

] [
1
1

]
1

32 − 2 · 22 = 1[
x
y

]
3

=
[
7
5

]
=
[
1 2
1 1

] [
3
2

]
2

(7)2 − 2 · (5)2 = −1[
x
y

]
4

=
[
17
12

]
=
[
1 2
1 1

] [
7
5

]
3

172 − 2 · 122 = 1[
x
y

]
5

=
[
41
29

]
=
[
1 2
1 1

] [
17
12

]
4

(41)2 − 2 · (29)2 = −1

Thus the recursion results in a modified version of Pell’s equation,

x2
n − 2y2

n = (−1)n, (2.5.10)

where only even values of n are solutions. This sign change had no effect on the Pythagoreans’ goal, since they
cared about only the ratio yn/xn → ±

√
2.

Modified recursion: We may restore the solution of Pell’s equation for N = 2 using a slightly modified linear
matrix recursion. To fix the (−1)n problem, we multiply the 2× 2 matrix by 1 =

√
−1, which gives[

x
y

]
1

= 

[
1
1

]
1

= 

[
1 2
1 1

] [
1
0

]
0

2 − 2 · 2 = 1[
x
y

]
2

= 2
[
3
2

]
2

= 

[
1 2
1 1

]


[
1
1

]
1

32 − 2 · 22 = 1[
x
y

]
3

= 3
[
7
5

]
3

= 

[
1 2
1 1

]
2
[
3
2

]
2

(7)2 − 2 · (5)2 = 1[
x
y

]
4

=
[
17
12

]
4

= 

[
1 2
1 1

]
3
[
7
5

]
3

172 − 2 · 122 = 1[
x
y

]
5

= 

[
41
29

]
5

= 

[
1 2
1 1

] [
17
12

]
4

(41)2 − 2 · (29)2 = 1.

Solution to Pell’s equation: By multiplying the matrix by 1, all the solutions (xk ∈ C) to Pell’s equation are
determined. The 1 factor corrects the alternation in sign, so every iteration yields a solution. For N = 2, n = 0
(the initial solution), [x0, y0] is [1, 0]0, [x1, y1] = [1, 1]1, and [x2, y2] = −[3, 2]2. These are easily checked using
this recursion.

The solution for N = 3 is given in Appendix B.2.1. Table B.1 (page 230) shows that every output of this
slightly modified matrix recursion gives solutions to Pell’s equation: [1, 0], [1, 1], [4, 2], [10, 6], . . . , [76, 44], . . . .

At each iteration, the ratio xn/yn approaches
√

2 with increasing accuracy, coupling it to the CFA, which may
also be used to find approximations to

√
N . The value of 41/29 ≈

√
2, with a relative error of <0.03%.

2.5.3 Fibonacci sequence
Another classic problem, also formulated by the Chinese, is the Fibonacci sequence, generated by the relationship

fn+1 = fn + fn−1. (2.5.11)

Here the next number fn+1 ∈ N is the sum of the previous two. If we start from [0, 1], this linear recursion equation
leads to the Fibonacci sequence fn = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .]. Alternatively, if we define yn+1 = xn,
then Eq. 2.5.11 may be compactly represented by a 2×2 companion matrix recursion (see the Fibonacci exercises
in NS-3). [

x
y

]
n+1

=
[
1 1
1 0

] [
x
y

]
n

, (2.5.12)

which has eigenvalues (1±
√

5)/2.
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The correspondence of Eqs. 2.5.11 and 2.5.12 is easily verified. Starting with [x, y]T0 = [0, 1]T , we obtain for
the first few steps:[

1
0

]
1

=
[
1 1
1 0

] [
0
1

]
0
,

[
1
1

]
2

=
[
1 1
1 0

] [
1
0

]
1
,

[
2
1

]
3

=
[
1 1
1 0

] [
1
1

]
2
,

[
3
2

]
4

=
[
1 1
1 0

] [
2
1

]
3
, . . . .

From the above, xn = [0, 1, 1, 2, 3, 5, . . .] is the Fibonacci sequence, since the next xn is the sum of the previous
two, and the next yn is xn.

Figure 2.9: A construction called the Fibonacci spiral. Note how it is constructed of squares that have areas given by the squares of the
Fibonacci numbers. In this way, the spiral is smooth and the radius increases as the Fibonacci numbers (e.g., 8 = 3 + 5, 13 = 5 + 8, etc.).
(Adapted from https://en.wikipedia.org/wiki/Golden spiral)

Exercise #24
Use the Octave/Matlab command compan(c) to find the companion matrix of the polynomial coefficients de-
fined by Eq. 2.5.11.

Sol: Using Matlab/Octave: f=[1, -1, -1]; C=compan(f);

C =
[
1 1
1 0

]
(2.5.13)

�

Exercise #25
Find the eigenvalues of matrix C.

Sol: The characteristic equation is

det
[
1− λ 1

1 −λ

]
= 0

or λ2 − λ− 1 = (λ− 1/2)2 − 1/4− 1 = 0, which has roots λ± = (1±
√

5)/2 ≈ {1.618,−0.618}. �

The mean-Fibonacci sequence: Suppose that the Fibonacci sequence recursion is replaced by the mean of the
last two values–namely, let

fn+1 = fn + fn−1

2 . (2.5.14)

This seems like a small change. But how does the solution differ? To answer this question it is helpful to look at
the corresponding 2× 2 matrix.

Exercise #26
Find the 2 × 2 matrix corresponding to Eq. 2.5.14. The 2 × 2 matrix may be found using the companion matrix
method (see p. 62).

Sol: Using Matlab/Octave code, we have

f=[1, -1/2, -1/2];
C=compan(f);

which returns

C = 1
2

[
1 1
2 0

]
. (2.5.15)

�
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Exercise #27
Find the steady-state solution for the mean-Fibonacci, starting from [1, 0]0. State the nature of both solutions.

Sol: By inspection one steady-state solution is [1, 1]T∞ or fn = 1. To find the full solution, we need to find the two
eigenvalues, defined by

det
[
1/2− λ 1/2

1 −λ

]
= λ2 − λ/2− 1/2 = (λ− 1/4)2 − (1/4)2 − 1/2 = 0.

Thus λ± = (1± 3)/4 = [1,−0.5]. The first solution converges to 1 while the second solution is (−1/2)n, which
changes sign at each time step and quickly converges to zero. The full solution is given by EΛnE−1[1, 0]T (see
Appendix B, p. 227). �

Relationships to digital signal processing: Today we recognize Eq. 2.5.11 as a discrete difference equation,
which is a pre-limit (pre–Stream 3) recursive form of a differential equation. The 2× 2 matrix form of Eq. 2.5.11
is an early precursor to 17th- and 18th-century developments in linear algebra. Thus the Greeks’ recursive solution
for the

√
2 and Bhaskara’s solution of Pell’s equation are early precursors to discrete-time signal processing as

well as to calculus.
There are strong similarities between Pell’s equation and the Pythagorean theorem. As we shall see, Pell’s

equation is related to the geometry of a hyperbola, just as the Pythagorean equation is related to the geometry of
a circle. We shall show, as one might assume, that there is a counterpart to Euclid’s formula for the case of Pell’s
equations, since these are all conic sections with closely related conic geometry. As we have seen, the solutions
involve

√
−1. The derivation is a trivial extension of that for Euclid’s formula for Pythagorean triplets. The early

solution of Brahmagupta was not related to this simple formula.

2.5.4 Diagonalization of a matrix (eigenvalue/eigenvector decomposition)
As derived in Appendix B, the most efficient way to compute An is to diagonalize the matrix A by finding its
eigenvalues and eigenvectors.

The eigenvalues λk and eigenvectors ~ek of a square matrix A are related by

A~ek = λk~ek, (2.5.16)

such that multiplying an eigenvector ~ek of A by the matrix A is the same as multiplying by a scalar, λk ∈ C (the
corresponding eigenvalue). The complete eigenvalue problem may be written as

AE = EΛ.

If A is a 2× 2 matrix,23 the matrices E and Λ (of eigenvectors and eigenvalues, respectively) are

E =
[
~e1 ~e2

]
and Λ =

[
λ1 0
0 λ2

]
.

Thus the matrix equation AE =
[
A~e1 A~e2

]
=
[
λ1~e1 λ2~e2

]
= EΛ contains Eq. 2.5.16 for each eigenvalue-

eigenvector pair.
The diagonalization of the matrix A refers to the fact that the matrix of eigenvalues, Λ, has nonzero elements

only on the diagonal. The key result is found by postmultiplication of the eigenvalue matrix by E−1, giving

AEE−1 = A = EΛE−1. (2.5.17)

If we now take powers of A, the nth power of A is

An = (EΛE−1)n

= EΛE−1EΛE−1 · · ·EΛE−1

= EΛnE−1. (2.5.18)

This is a very powerful result because the nth power of a diagonal matrix is extremely easy to calculate:

Λn =
[
λn1 0
0 λn2

]
.

Thus, from Eq. 2.5.18 we can calculate An using only two matrix multiplications:

An = EΛnE−1.
23These concepts may be easily extended to higher dimensions.
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2.5.5 Finding the eigenvalues:
The eigenvalues λk are determined from Eq. 2.5.16, by factoring out ~ek:

A~ek = λk~e

(A− λkI)~ek = ~0.

Matrix I = [1, 0; 0, 1]T is the identity matrix, having the dimensions of A, with elements δij (i.e., diagonal
elements δ11,22 = 1 and off-diagonal elements δ12,21 = 0). The vector ~ek is not zero, yet when operated on
by A − λkI , the result must be zero. The only way this can happen is if the operator is degenerate (has no
solution)—that is,

det(A− λI) = det
[
(a11 − λ) a12
a21 (a22 − λ)

]
= 0. (2.5.19)

This means that the two equations have the same roots (the equation is degenerate).
This determinant equation results in a second-degree polynomial in λ:

(a11 − λ)(a22 − λ)− a12a21 = 0,

the roots of which are the eigenvalues of the matrix A.

2.5.6 Finding the eigenvectors:
An eigenvector ~ek can be found for each eigenvalue λk from Eq. 2.5.16,

(A− λkI)~ek = ~0.

The left side of the above equation becomes a column vector, where each element is an equation in the elements
of ~ek, set equal to 0 on the right side. These equations are always degenerate, since the determinant is zero. Thus
the two equations have the same slope.

The vector ~ek is not zero, yet when operated on by A − λkI , the result must be zero. The only way this can
happen is if the operator is degenerate (has no solution)—that is,

det(A− λI) = det
[
(a11 − λ) a12
a21 (a22 − λ)

]
= 0. (2.5.20)

Solving for the eigenvectors is often confusing because they have arbitrary magnitudes, ||~ek|| =
√
~ek · ~ek =√

e2
k,1 + e2

k,2 = d. From Eq. 2.5.16, we can determine only the relative magnitudes and signs of the elements
of ~ek, so we have to choose a magnitude d. It is common practice to normalize each eigenvector to have unit
magnitude (d = 1).
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2.6 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell’s equation, Fibonacci sequence

Pythagorean triplets
Problem # 1: Euclid’s formula for the Pythagorean triplets a, b, c is a = p2− q2, b = 2pq, and
c = p2 + q2.

– 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and
nonzero?

– 1.2: Solve for p and q in terms of a, b, and c.

Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of
numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

– 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a c
119 169

3367 4825
4601 6649

12709 18541
65 97

Find a formula for a in terms of p and q.

– 2.2: Based on Euclid’s formula, show that c > (a, b).

– 2.3: What happens when c = a?

– 2.4: Is b+ c a perfect square? Discuss.

Pell’s equation:
Problem # 3: Pell’s equation is one of the most historic (i.e., important) equations of Greek
number theory because it was used to show that

√
2 ∈ I. We seek integer solutions of

x2 −Ny2 = 1.
As shown on page 42, the solutions xn, yn for the case of N = 2 are given by the linear 2×2 matrix recursion[

xn+1
yn+1

]
= 1

[
1 2
1 1

] [
xn
yn

]
with [x0, y0]T = [1, 0]T and 1 =

√
−1 = ejπ/2. It follows that the general solution to Pell’s equation for N = 2

is [
xn
yn

]
= (eπ/2)n

[
1 2
1 1

]n [
x0
y0

]
.
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To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

An = eπn/2
[
1 2
1 1

]n
= eπn/2

[
1 2
1 1

] [
1 2
1 1

] [
1 2
1 1

]
· · ·
[
1 2
1 1

]
,

which becomes tedious for n > 2.

– 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues
as Pell’s equation. Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your
results!

– 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of√
2. Explain why Pell’s equation is relevant to

√
2.

– 3.3: Find the first three values of (xn, yn)T by hand and show that they satisfy Pell’s
equation for N = 2. By hand, find the eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =
[
1 2
1 1

]
.

– 3.4: By hand, show that the matrix of eigenvectors, E, is

E =
[
~e+ ~e−

]
= 1√

3

[
−
√

2
√

2
1 1

]
.

– 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[
λ+ 0
0 λ−

]
– 3.6: Now that you have diagonalized A (Equation 2.5.18), use your results for E and Λ

to solve for the n = 10 solution (x10, y10)T to Pell’s equation with N = 2.

Problem # 4: Here we seek the general formula for xn. Like Pell’s equation, Eq. ?? has a
recursive, eigenanalysis solution. To find it we must recast xn as a 2 × 2 matrix relationship
and then proceed as we did for the Pell case.

– 4.1: By example, show that the Fibonacci sequence xn as described above may be gener-
ated by [

xn
yn

]
=
[
1 1
1 0

]n [
x0
y0

]
,

[
x0
y0

]
=
[
1
0

]
. (NS-3.1)

– 4.2: What is the relationship between yn and xn?

– 4.3: Write a Matlab/Octave program to compute xn using the matrix equation above. Test
your code using the first few values of the sequence. Using your program, what is x40? Note:
Consider using the eigenanalysis of A, described by Eq. 2.5.18 (p. 45).

– 4.4: Using the eigenanalysis of the matrixA (and a lot of algebra), show that it is possible
to obtain the general formula for the Fibonacci sequence

xn = 1√
5

[(
1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1]
. (NS-3.2)

– 4.5: What are the eigenvalues λ± of the matrix A?
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– 4.6: How is the formula for xn related to these eigenvalues? Hint: Find the eigenvectors.

– 4.7: What happens to each of the two terms[(
1±
√

5
)
/2
]n+1

?

– 4.8: What happens to the ratio xn+1/xn?

Problem # 5: Replace the Fibonacci sequence with

xn = xn−1 + xn−2

2 ,

such that the value xn is the average of the previous two values in the sequence.

– 5.1: What matrix A is used to calculate this sequence?

– 5.2: Modify your computer program to calculate the new sequence xn. What happens as
n→∞?

– 5.3: What are the eigenvalues of your new A? How do they relate to the behavior of xn as
n→∞? Hint: You can expect the closed-form expression for xn to be similar to Eq. NS-3.2.

– 5.4: What matrix A is used to calculate this sequence?

– 5.5: Modify your computer program to calculate the new sequence xn. What happens as
n→∞?

– 5.6: What are the eigenvalues of your new A? How do they relate to the behavior of xn as
n→∞? Hint: You can expect the closed-form expression for xn to be similar to Eq. NS-3.2.

Problem # 6: Consider the expression

N∑
1
f2
n = fNfN+1.

– 6.1: Find a formula for fn that satisfies this relationship. Hint: It holds for only the
Fibonacci recursion formula.

CFA as a matrix recursion

Problem # 7: The CFA may be writen as a matrix recursion. For this we adopt a special
notation, unlike other matrix notations,24 with k ∈ N:[

n
x

]
k+1

=
[
0 bxkc
0 1

xk−bxkc

] [
n
x

]
k

.

This equation says that nk+1 = bxkc and xk+1 = 1/(xk−bxkc). It does not mean that nk+1 = bxkcxk, as would
be implied by standard matrix notation. The lower equation says that rk = xk − bxkc is the remainder—namely,
xk = bx− kc+ rk (Octave/Matlab’s rem(x,floor(x)) function), also known as mod(x,y).

– 7.1: Start with n0 = 0 ∈ N, x0 ∈ I, n1 = bx0c ∈ N, r1 = x − bxc ∈ I, and
x1 = 1/r1 ∈ I, rn 6= 0. For k = 1 this generates on the left the next CFA parameter n2 = bx1c
and x2 = 1/r2 = 1/(x0 − bx0c) from n0 and x0. Find [n, x]Tk+1 for k = 2, 3, 4, 5.

24This notation is highly nonstandard due to the nonlinear operations. The matrix elements are derived from the vector rather than multi-
plying them. These calculation may be done with the help of Matlab/Octave.
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Chapter 3

Algebraic Equations: Stream 2

3.1 Algebra and geometry as physics

Stream 2 is geometry, which led to the merging of Euclid’s geometrical methods and the development of algebra
by al-Khwarizmi in 830 CE (Fig. 1.1, p. 3). This migration of ideas led Descartes and Fermat to develop analytic
geometry (Fig. 1.2, p. 5).

The mathematics up to the time of the Greeks, documented and formalized by Euclid, served students of
mathematics for more than two thousand years. Algebra and geometry were, at first, independent lines of thought.
When merged, the focus returned to the Pythagorean theorem. Algebra generalized the analytic conic section
into the complex plane, greatly extending the geometrical approach as taught in Euclid’s Elements. With the
introduction of algebra, numbers, rather than lines, could be used to reproduce geometrical lengths in the complex
plane. Thus the appreciation for geometry grew after the addition of rigorous analysis using numbers.

History of Mathematics after the 15th Century
16th Bombelli 1526–1572; Galileo 1564–1642; Kepler 1571–1630; Mersenne 1588–1648;

17th Huygens 1629–1695; Newton 1642–1727a, Principia 1687; Bernoulli, Jakob 1655–1705; Bernoulli, Johann 1667–
1748; Fermat, Pierre de 1607–1665; Pascal, Blaise 1623–1662; Descartes, René 1596–1648

18th Bernoulli, Daniel 1700–1782; Euler, Leonhard 1707–1783; d’Alembert, Jean le Rond 1717–1783; Lagrange, Joseph-
Louis 1736–1833; Laplace 1749–1827; Fourier 1768–1830; Gauss 1777–1855; Cauchy 1789–1857

19th Helmholtz 1821–1894; Kelvin 1824–1907; Kirchhoff 1824–1887; Riemann 1826–1866; Maxwell 1831–1879;
Rayleigh 1842–1919; Heaviside 1850–1925; Poincare 1854–1912; Hilbert 1862–1942; Einstein 1879–1955; Fletcher
1884–1981; Sommerfeld 1886–1951; Brillouin 1889–1969; Nyquist 1889–1976

20th Bode 1905–1982

aBorn Dec 25, 1942, Julian calendar

Physics inspires algebraic mathematics: The Chinese used music, art, and navigation to drive mathematics.
Much of their knowledge has been handed down as either artifacts, such as musical bells and tools, or mathematical
relationships documented, but not created, by scholars such as Euclid, Archimedes, Diophantus, and perhaps
Brahmagupta. With the invention of algebra in 830 CE by al-Khwarizmi, mathematics became more powerful and
blossomed. During the 16th and 17th centuries, it became clear that differential equations (DEs), such as the wave
equation, can characterize a law of nature at a single point in space and time. This principle was not obvious. A
desire to understand the motions of planets other objects precipitated many new discoveries. This period, centered
around Galileo, Newton, and Euler, is shown on the timeline in Fig. 1.2 (p. 5).

As we have described, the law of gravity was first formulated by Galileo using the concept of conservation of
energy, which determines how masses are accelerated when friction is not considered and the mass is constant.
Tycho Brahe investigated the motion of the planets. Starting in early 1600, Kepler (1571-1630) began an extended
visit with Brahe. In 1604, working with Brahe’s data Kepler described the inverse square law of light, and studied
the workings of the human eye. Kepler was also the first to predict that the orbits of planets are described by el-
lipses. It seems he under-appreciated the significance of his finding, as he continued working on his five polyhedra
nested model of planetary motion (Stillwell, 2010, p. 23).

51
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|1950|1640 |1700 |1750 |1800 |1850 |1900

Daniel Bernoulli
Euler

dAlembert

Gauss

Cauchy

Helmholtz

Riemann
Maxwell

Poincare

Rayleigh

Kirchhoff

Heaviside

Einstein
Kelvin

Stokes

Sommerfeld

Brillouin

Johann Bernoulli
Newton

Beethoven
Mozart

Figure 3.1: Timeline of the 300 years from the mid-17th to the mid-20th centuries CE, an important era in mathematics that produced a
continuous stream of fundamental theorems because mathematicians were sharing information. A few of the individuals who played notable
roles in this development, in chronological (birth) order, are Galileo, Mersenne, Newton, d’Alembert, Fermat, Huygens, Descartes, Helmholtz,
and Kirchhoff. These were some of the first to develop the basic ideas, in various forms, that were later reworked into the proofs that today we
recognize as the fundamental theorems of mathematics. Mozart and Beethoven are included for orientation.

Building on Galileo (1638) (see the discussion on pages vi-viii), Newton demonstrated that there must be a
gravitational potential between two masses (m1,m2) of the form

φNew(r(t)) ∝ m1m2

r(t) , (3.1.1)

where r = |x1−x2| is the Euclidean distance between the two point masses at locations x1 and x2. Using algebra
and his calculus, Newton formalized the equations of gravity, forces, and motion (Newton’s three laws), the most
important being

f(t) = d

dt
M(t)v(t), (3.1.2)

and showed that Kepler’s discovery of planetary elliptical motion naturally follows from these laws (see p. viii).
With the discovery of Uranus in 1781, “Kepler’s theory was ruined.” (Stillwell, 2010, p. 23).

Possibly the first measurement of the speed of sound, 1380 Paris feet per second, was made by Marin
Mersenne in 1630.a

a1 English foot is 1.06575 Paris feet.

Newton and the speed of sound: After Newton proposed the basic laws of gravity and explained the elliptical
motion of the planets, he proposed the first model of the speed of sound.

In 1630 Mersenne showed that the speed of sound was approximately 1000 [ft/s]. This may have been done
by finding the difference between the time of the flash of an explosion and the time it is heard. For example, if the
explosion is 1 [mi] away, the delay is about 5 [s]. Thus with a simple clock, such as a pendulum, and a explosive,
the speed may be accurately measured. If we say the speed of sound is co, then the equation for the wavefront
is f(x, t) = u(x − cot), where the function u(t) = 0 for t < 0 and 1 for t > 0. If the wave is traveling in the
opposite direction, then the formula is u(x+ cot). If one also assumes that sounds add in an independent manner
(superposition holds) (see Postulate P2 on p. 121), then the general solution for the acoustic wave is

f(x, t) = Au(x− cot) +Bu(x+ cot),

where A and B are the amplitudes of the two waves. This is the solution proposed by d’Alembert in 1747 for the
acoustic wave equation

∂2

∂x2 %(x, t) = 1
c2o

∂2

∂t2
%(x, t), (3.1.3)

one of the most important equations of mathematical physics (see Eq. 4.4.1, p. 141), 20 years after Newton’s
death.
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It was well established, at least by the time of Galileo, that the wavelength λ and frequency f of a pure tone
sound wave obey the relationship

fλ = co. (3.1.4)

Given what we know today, the general solution to the wave equation may be written in terms of a sum over
the complex exponentials, famously credited to Euler, as

%(x, t) = Ae2π(ft−x/λ) +Be2π(ft+x/λ), (3.1.5)

where t is time, x is position, and ft and x/λ are dimensionless. This equation describes only the steady-state
solution, with no onsets or dispersion. Thus this solution must be generalized to include these important effects.

The basics of sound propagation were within Newton’s grasp and were finally published in Principia in 1687.
The general solution to Newton’s wave equation [i.e., p(x, t) = G(t ± x/c)], where G is any function, was first
published 60 years later by d’Alembert.

Newton’s value for the speed of sound in air co was incorrect by the thermodynamic constant
√
ηo =

√
1.4,

a problem that would take well over a century to rectify, by Laplace in 1816, and experimentally by Rankine in
1850 (Rayleigh, 1896, p. 19–23, Vol. II). What was needed was the adiabatic process (the concept of constant-
heat energy). For audio frequencies (0.02–20 [kHz]), the temperature gradients cannot diffuse the distance of
a wavelength in one cycle, so the heat energy is trapped in the wave (Tisza, 1966; Pierce, 1981; Boyer and
Merzbach, 2011).1 To repair Newton’s formula for the sound speed it was necessary to define the dynamic
stiffness of air ηoPo, where Po is 1 [atm], or 105 [Pa] (1 [Pa] is 1 [N/m2]). This required replacing Boyle’s law
(PV/T = constant) with the adiabatic expansion law (PV ηo = constant). But this fix still ignores the important
viscous and thermal losses, as discussed in Appendix D (Kirchhoff, 1868; Rayleigh, 1896; Mason, 1927; Pierce,
1981).

Today we know that when ignoring viscous and thermal losses, the speed of sound is given by

co =

√
ηoPo
ρo

= 343 [m/s],

which is a function of the density ρo = 1.12 [kg/m3], Po = 105 [Pa], and the dynamic stiffness ηoPo of air.2

The speed of sound stated in other units is 343 [m/s], 1234.8 [km/h], 153.33 [m/s], 15.334 [cm/ms], 1.125 [ft/ms],
1125.3 [ft/s], 4.692 [s/mi], 12.78 [mi/min], 0.213 [mi/s], and 767.27 [mi/h]. A slightly useful approximation is
the time between the lightning flash and the thunder (≈5 [sec/mi]).

Newton’s success was important because it quantified the physics behind the speed of sound and demonstrated
that momentum (mv), not mass m, is transported by the wave. His concept was correct, and his formulation using
algebra and calculus represented a milestone in science.

In periodic structures, again the wave number becomes complex due to diffraction, as commonly observed
in optics (e.g., diffraction gratings) and acoustics (creeping surface waves). Thus Eq. 3.1.4 holds for only the
simplest cases. In general, the complex analytic (thus causal and dispersive) function propagation vector κ(x, s)
must be considered (see Eq. 3.1.6).

The corresponding discovery of the formula for the speed of light was made nearly two centuries after Prin-
cipia by Maxwell (ca.1861). Maxwell’s formulation also required great ingenuity, as it was necessary to hypothe-
size an experimentally unmeasured term in his equations to get the mathematics to correctly predict the speed of
light (and gravity waves). This parallel with the speed of sound is notable.

It is somewhat amazing that to this day we have failed to fully understand gravity significantly better than
Newton’s theory, although this may too harsh given Einstein’s famous work on general relativity in 1915.3

Case of dispersive wave propagation: This classic relationship λf = c is deceptively simple, yet confusing,
because the wave number4 k = 2π/λ becomes a complex function of frequency (has both real and imaginary
parts) in dispersive media when losses are considered, as discussed in Appendix D (Kirchhoff, 1868; Mason,
1928).

1There were other physical enigmas, such as the observation that sound disappears in a vacuum, or Pascal’s observation that a vacuum
cannot draw water up a column by more than 34 feet.

2ηo = cp/cv = 1.4 is the ratio of two thermodynamic constants, and Po = 105 [Pa] is the barometric pressure of air.
3Gravity waves were first observed experimentally while I was writing this chapter.
4This term is a misnomer, since the wave number is a complex function of the complex Laplace frequency s = σ + ω, thus not a number

in the common sense. Much worse, κ(s) = s/co must be complex analytic in s, which an even stronger condition. The term wave number is
so well established, that there is little hope for recovery at this point.
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A second important example is the case of electron waves in silicon crystals, where the wave number k(f) =
2πf/c is replaced by the complex analytic function of s, the propagation vector κ(s). In this case the wave
becomes the eigenfunction of the vector (3D) wave equation

p±(x, t) = Po(s)este±κ(x,s)·x, (3.1.6)

where |κ(x, s)| is the vector eigenvalue (Brillouin, 1953). In these more general cases, κ(x, s) must be a vector
complex analytic function of the Laplace frequency s = σ+ω, and inverted with the Laplace transform (Brillouin,
1960, with help from Sommerfeld). This is because electron “waves” in the dispersive semiconductor (e.g.,
silicon) are “causally filtered” in three dimensions—in magnitude, phase, and directions x. These 3D dispersion
relationships are known as Brillouin zones.

Silicon is a highly dispersive “wave-filter,” forcing the wavelength to be a function of both s and direction.
This view is elegantly explained by Brillouin (1953, Chap. 1) in his historic text. Although the most famous
examples come from quantum mechanics (Condon and Morse, 1929), modern acoustics contains a rich source of
related examples (Morse, 1948; Beranek, 1954; Ramo et al., 1965; Fletcher and Rossing, 2008).

3.1.1 The first algebra
Prior to the invention of algebra, people worked out mathematical problems as sentences, using an obtuse de-
scription of the problem (Stillwell, 2010, p. 93). Algebra changed this approach and led to a compact language
of mathematics, where numbers are represented as symbols (e.g., x and α). The problem to be solved could be
formulated in terms of sums of powers of smaller terms, the most common being powers of some independent
variable (i.e., time or frequency). If we define MN (z) = PN (z)/an and mk = ak/an, then

MN (z) ≡ zN +mN−1z
N−1 + · · ·+m0z

0 = zN +
N−1∑
k=0

mkz
k =

N∏
k=1

(z − zk) (3.1.7)

is called a monic polynomial, or simply a monic. The coefficient aN cannot be zero, or the polynomial would not
be of degree N . The resolution is to force aN = 1, since this simplifies the expression and does not change the
roots.

The key question is What values of z = zk result in MN (zk) = 0? In other words, what are the roots zk
of the polynomial? Answering this question consumed thousands of years, with intense efforts by many aspiring
mathematicians. In the earliest attempts, it was a competition to demonstrate mathematical acumen. Results were
held as a secret to the death bed. It would be fair to view this effort as an obsession. Today the roots of any
polynomial may be found, to high accuracy, by numerical methods. Finding roots is limited by the numerical
limits of the representation—namely, by IEEE 754 (see p. 19). There are also a number of important theorems.

Of particular interest is the problem of drawing a circle and a line and finding the intersection (root). There
was no solution to this venerable problem using geometry. The resolution is addressed in the solution of Euclid’s
formula (Problem #2 of Assignment 3.7).

3.1.2 Finding roots of polynomials
The problem of factoring polynomials has a history more than a millennium in the making.5 While the quadratic
(degree N = 2) was solved by the time of the Babylonians (i.e., the earliest recorded history of mathematics),
the cubic solution was finally published by Cardano in 1545. The same year, Cardano’s student Ferrari solved the
quartic (N = 4). In 1826 (281 years later) it was proved that the quintic (N = 5) could not be factored by analytic
methods.

As a concrete example we begin with the trivial case of the quadratic

P2(s) = as2 + bs+ c. (3.1.8)

First note that if a = 0, the quadratic reduces to the monomial P1(s) = bs + c. Thus we have the necessary
condition that a 6= 0. The best way to proceed is to divide a out and work directly with the monic M2(s) =
1
aP2(s). In this way we do not need to worry about the a = 0 exception.

The roots are the values of s = sk such thatM2(sk) = 0. One of the earliest mathematical results, recorded by
the Babylonians in about 2000 BCE, was the factoring of the quadratic by completing the square. We can isolate
s by rewriting Eq. 3.1.8 as

M2(s) ≡ 1
a
P2(s) = (s+ b/2a)2 − (b/2a)2 + c/a. (3.1.9)

5https://www.britannica.com/science/algebra/Fundamental-concepts-of-modern-algebra
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The factorization may be verified by expanding the squared term and canceling (b/2a)2:

M2(s) = [s2 + (b/a)s+����(b/2a)2]−����(b/2a)2 + c/a.

Setting Eq. 3.1.9 equal to zero and solving for the two roots s± give the quadratic formula:

s± = −b±
√
b2 − 4ac

2a

∣∣∣∣∣
a=1

= −b/2±
√

(b/2)2 − c. (3.1.10)

Role of the discriminant: Equation 3.1.10 can be further simplified. The term (b/2)2 − c > 0 under the square
root is called the discriminant. Nominally in physics and engineering problems, the discriminant is negative and
b/2�

√
c may be ignored (the damping is small compared to the resonant frequency), leaving only −c under the

radical. Thus the most natural way (i.e., corresponding to the most common physical cases) of writing the roots
(Eq. 3.1.10) is6

s± ≈ −b/2± 
√
|c| = −σo ± s0. (3.1.11)

This form separates the real and imaginary parts of the solution in a natural way. The term σo = b/2 is called
the damping, which accounts for losses in a resonant circuit; the term ωo =

√
|c|, for mechanical, acoustical,

and electrical networks, is called the resonant frequency. The last approximation ignores the (typically) minor
correction b/2 to the resonant frequency, which in engineering applications is almost always ignored. Knowing
that there is a correction is highlighted by this formula, which makes us aware that the small approximation exists
(thus can be ignored).

It is not required that a, b, c ∈ R > 0, but for physical problems of interest, this is almost always true (>99.99%
of the time).

Summary: The quadratic equation and its solution are ubiquitous in physics and engineering. It seems obvi-
ous that instead of memorizing the meaningless quadratic formula (Eq. 3.1.10), one should learn the physically
meaningful solution (Eq. 3.1.11), obtained via Eq. 3.1.9 with a = 1. Arguably, the factored and normalized form
(Eq. 3.1.9) is easier to remember as a method (completing the square) rather than as a formula to be memorized.

Additionally, the real (b/2) and imaginary (±
√
c) parts of the two roots have physical significance as the

damping and resonant frequencies. Equation 3.1.10 has none (it is useless).
No insight is gained by memorizing the quadratic formula. To the contrary, an important concept is gained by

learning how to complete the square, which is typically easier than identifying a, b, c and blindly substituting them
into Eq. 3.1.10. Thus it’s worth learning the alternative solution (Eq. 3.1.11), since it is more common in practice
and requires less algebra to interpret the final answer.

Exercise #1
By direct substitution, demonstrate that Eq. 3.1.10 is the solution of Eq. 3.1.8. Hint: Work with M2(x).

Sol: Setting a = 1, we can write the quadratic formula as

s± = −b± 1
√

4c− b2
2 .

Substituting this into M2(s) gives

M±(s±) = s±
2 + bs± + c = −b/2± 

√
c2 − (b/2)2

=
(
−b±

√
b2 − 4c

2

)2

+ b

(
−b±

√
b2 − 4c

2

)
+ c

=1
4

(
��b

2
���

���∓2b
√
b2 − 4c+ (��b2 −��4c)

)
+ 1

4

(
��
�−2b2 ±���

���2b
√
b2 − 4c

)
+ �c

=0.

�

6This is the case for mechanical and electrical circuits that have small damping. Physically b > 0 is the damping coefficient and
√
c > 0

is the resonant frequency. One may then simplify and factor the form as s2 + 2bs+ c2 = (s+ b+ c)(s+ b− c).
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In third grade I learned the times-table trick for 9:

9 · n = (n− 1) · 10 + (10− n).

With this simple rule I did not need to depend on my memory for the 9 times table. For example: 9 · 7 =
(7− 1) · 10 + (10− 7) = 60 + 3 and 9 · 3 = (3− 1) · 10 + (10− 3) = 20 + 7. By expanding, one can
see why it works: 9n = n10 +���(−10) +���(+10) − n = n(10 − 1). Note that the two terms (n − 1) and
(10− n) add to 9.

Learning an algorithm is much more powerful than memorizing the 9 times tables. How you think about
a problem can have a great impact on your perception.

Newton’s method for finding the roots of PN (s): Newton is well known for an approximate but efficient
method to find the roots of a polynomial. Consider the polynomial s, PN (s) ∈ C:

PN (s) = cN (s− so)N + cN−1(s− so)N−1 + · · ·+ c1(s− so) + c0, (3.1.12)

where we use Taylor’s formula (see p. 67) to determine the coefficients

ck = 1
k!

dk

dsk
PN (s)

∣∣∣∣
s=so

. (3.1.13)

If our initial guess for the root s1 is close to a root so (i.e., s1 − so is within the radius of convergence), then
|(s1 − so)k| � |(s1 − so)| for k ≥ 2 ∈ N. Thus we may truncate PN (s1) to its linear term c1:

PN (s1) ≈ (s1 − so)
d

ds
PN (s)

∣∣∣∣
so

+ PN (so)

= (s1 − so)P ′N (so) + PN (so),

where P ′N (so) is shorthand for dPN (so)/ds.
Newton’s approach (approximation) was to define a recursion such that the next guess sn+1 is closer to the

root so than the previous guess sn. Replacing s1 by sn+1 and so by sn gives

PN (sn+1) = (sn+1 − sn)P ′N (sn) + PN (sn)→ 0.

Here we assume PN (sn+1)→ 0 because sn+1 → so as n→∞.
Solving for sn+1, we get

sn+1 = sn −
PN (sn)
P ′N (sn) . (3.1.14)

Everything on the right is known; thus sn+1 should converge to the root so as n→∞.
Note that if sn is at a root, the numerator term PN (sn)→ 0, thus and the update goes to zero, and sn+1 → sn.

This difference is useful in detecting the stopping condition. Also note that the denominator can never be zero
near a root because P ′N (s) cannot share a root with PN (s).

In practice, it takes only a few steps to approach the root. In experimental trials (see Fig. 3.2) fewer than 10
steps give double-precision floating-point machine accuracy. If any value sn is close to a root of P ′N , the recursion
fails, giving a large value for sn+1 and forcing the method to restart at sn+1, far from the root. In such cases the
solution typically converges to a different root. It should not be difficult to detect these large non-convergent steps
by monitoring |sn+1 − sn|, which should be monotonically decreasing.

However, if one assumes that the initial guess s1 ∈ R and then evaluates the polynomial using real arithmetic,
the estimate sn+1 ∈ R. Thus the iteration will not converge if so ∈ C.

Root so ∈ C may be found by a recursion that defines a sequence sn → so, n ∈ N, such that PN (sn)→ 0
as n → ∞. As shown in Fig. 3.2, solving for sn+1 using Eq. 3.1.14 always gives one of the roots, due to
the analytic behavior of the complex logarithmic derivative P ′N/PN .

With every step, sn+1 is closer to the root, finally converging to the root in the limit. As it comes closer, the
linearity assumption becomes more accurate, resulting in a better approximation and thus a faster convergence.

Equation 3.1.14 depends on the log-derivative d logP (x)/dx = P ′(x)/P (x). It follows that even for cases
where fractional derivatives of roots are involved (see p. 149); Newton’s method should converge, since the log-
derivative linearizes the equation.7

7This seems like a way to understand fractional, even irrational, roots.
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Figure 3.2: Newton’s method applied to the polynomial that has real roots [1, 2, 3, 4] (left) and 5 complex roots (right). A random starting
point was chosen, and each curve shows the values of sn as Newton’s method converges to the root. Different random starting points converge
to different roots. The method always results in convergence to a root. Claims to the contrary (Stewart, 2012, p. 347) are a result of forcing the
roots to be real. For convergence, one must assume sn ∈ C. For a related discussion see Stillwell (2010, Sec. 14.7).

Newton’s view: Newton believed that imaginary roots and numbers have no meaning (see p. 135), thus he
sought only real roots (Stillwell, 2010, p. 119). In this case Newton’s relationship may be explored as a graph,
which puts Newton’s method in the realm of analytic geometry.

Example: Given a polynomial P2 = 1 − x2 that has roots ±1, we can use Newton’s method to find the roots.
Since P ′2(x) = −2x, Newton’s iteration becomes

xn+1 = xn + 1− x2
n

2xn
.

From the Gauss-Lucas theorem (see page 60), for the case of N = 2, the root of P ′2(x) is always the average of
the roots of P2(x). To start the iteration (n = 0) we need an initial guess for x0, which is an initial random guess
of where a root might be. The only place we may not start is at the roots of P ′N . For P2(x) = 1− x2,

x1 = x0 + 1− x2
0

2x0
= x0 + 1

2 (−x0 + 1/x0) .

Exercise #2
Let P2(x) = 1 − x2. Choose the expansion point as x0 = 1/2. Draw a graph describing the first step of the
iteration.

Sol: We start with an (x, y) coordinate system and put points at x0 = (1/2, 0) and the vertex of P2(x); that is,
(0, 1) (P2(0) = 1). Then we draw 1− x2, along with a line from x0 to x1. �

Exercise #3
Calculate x1 and x2 of Exercise #2. What root will it converge to? What are the roots of P2?

Sol: First we must find P ′2(x) = −2x. Thus the equation we will iterate is

xn+1 = xn + 1− x2
n

2xn
= x2

n + 1
2xn

= (xn + 1/xn)/2.

By hand,

x0 = 1/2

x1 = (1/2)2 + 1
2(1/2) = 1

4 + 1 = 5/4 = 1.25

x2 = (5/4)2 + 1
2(5/4) = (25/16) + 1

10/4 = 1
2

(
5
4 + 4

5

)
= 41

40 = 1.025.
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These estimates rapidly approach the positive real root x = 1. Note that if one starts at the root of P ′(x) = 0 (i.e.,
x0 = 0), the first step is indeterminate. �

Exercise #4
Write an Octave/Matlab script to check your answer for part Exercise #3.

Sol:
x=1/2;
for n = 1:3
x = x+(1-x*x)/(2*x);
end
�

Exercise #5
For n = 4, what is the absolute difference between the root and the estimate, |xr − x4|?

Sol: 4.6E-8 (very small!)�

Exercise #6
What happens if x0 = −1/2?

Sol: The solution converges to the negative root, x = −1.�

Exercise #7
Does Newton’s method (Kelley, 2003) work for P2(x) = 1 + x2? Hint: What are the roots in this case?

Sol: In this case P ′2(x) = +2x; thus the iteration gives

xn+1 = xn −
1 + x2

n

2xn
.

The roots are purely imaginary, x± = ±1. Newton’s method works fine as long as you use complex arithmetic.
Study Fig. 3.2, and then try Octave/Matlab to convince yourself. �

Exercise #8
What if you let x0 = 1 +  for the case of P2(x) = 1 + x2?

Sol:
x=1+j;
for n = 1:4
x = x-(1+x*x)/(2*x);
end

After 4 steps x4 = −0.0000046418 + 1.0000021605i. After 6 steps x6 = 8.46e − 23 + i. On the 7th step the
result is exact.

If you use only real arithmetic, obviously Newton’s method fails, because there is no way for the answer to
become complex. If, like Newton, you didn’t believe in complex numbers, your method would fail to converge to
the complex roots (i.e., Real in = Real out). This is because Octave/Matlab assumes x ∈ R if it is initialized as
R. By starting with a complex initial value, we fix the Real in = Real out problem. �

Basic properties of polynomials

In some sense polynomials such as PN (z) are the simplest constructions used in algebra, and a summary of their
most basic properties is helpful.

1. The degree of a polynomial is n.

2. Polynomials are single-valued; that is, for every z0, there is precisely one value for PN (z0).
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3. In mathematical physics and engineering it is common to have real coefficients an, but complex coefficients
are possible.

4. The coefficients of every polynomial are determined by its Taylor series—namely, Eq. 3.2.3 (see p. 67).

5. If the coefficients are real and positive, then the PN (x) is positive and real if x ≥ 0

6. The fundamental theorem of algebra states that PN (z) has exactly N roots.

7. The number of coefficients of the monomial MN (x) is equal to N , thus the number of roots.

8. The roots of polynomials with positive and real coefficients typically have complex roots—that is, ifPN (zk) =
0, then zk ∈ C.

9. The region of convergence (RoC) of every polynomial about the expansion point is infinite.

10. The roots of the derivative of a polynomial lie within the convex hull defined by the roots of PN (z), as
described by the Gauss-Lucas theorem (see discussion below Eq. 3.1.15).

11. The eigenvalues of the companion matrix are identical to the roots as the monic MN (x).

Exercise #9
Find the logarithmic derivative of f(x)g(x).

Sol: From the definition of the logarithmic derivative and the chain rule for the differentiation of a product, we
have

d

dx
ln f(x)g(x) = d

dx
ln f + d

dx
ln g

= 1
f

d

dx
f + 1

g

d

dx
g.

�

Example: If we assume that function P3(s) = (s− a)2/(s− b)π , then

lnP3(s) = 2 ln(s− a)− π ln(s− b)

and
d

ds
lnP3(s) = 2

s− a
− π

s− b
.

Reduction by the logarithmic derivative to simple poles: As shown for P3(s) of the previous example, a
function that has poles of arbitrary degree (i.e., π in the example) may be reduced to the sum of two functions
having simple poles by taking the logarithmic derivative, since

LN (s) = N(s)
D(s) = d

ds
lnPN (s) = P ′N (s)

PN (s) . (3.1.15)

Here the polynomial is the denominator D(s) = PN (s), while the numerator N(s) = P ′N (s) is the derivative
of D(s). Thus the logarithmic derivative can play a key role in the analysis of complex analytic functions, as it
reduces higher-order poles, even those of irrational degree, to simple poles (those of degree 1).

The logarithmic derivative LN (s) has the following special properties:

1. LN (s) has simple poles sp and zeros sz .

2. The poles of LN (s) are the zeros of PN (s).

3. The zeros of LN (s) (i.e., P ′N (sz) = 0) are the zeros of P ′N (s).

4. LN (s) is analytic everywhere other than at its poles.
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5. Since the zeros of PN (s) are simple (no second-order poles), the zeros of LN (s) always lie close to the
line connecting the two poles. One may easily demonstrate the truth of the statement numerically, and it
has been quantified by the Gauss-Lucas theorem, which specifies the relationship between the roots of a
polynomial and those of its derivative. Specifically, the roots of P ′N−1 lie inside the convex hull of the roots
of PN .

6. The eigenvalues sk of the companion matrix are equal to the roots of the monomial MN (s)
To understand the meaning of convex hull, consider the following construction: If stakes are placed at each
of the N roots of PN (x), and a string is then wrapped around the stakes, with all the stakes inside the string,
the convex hull is then the closed set inside the string. One can begin to imagine how the N − 1 roots of the
derivative must evolve with each set inside the convex hull of the previous set. This concept may be recused
to smaller values of N .

7. Newton’s method may be expressed in terms of the reciprocal of the logarithmic derivative, since

sk+1 = sk + εo/LN (s),

where εo is called the step size, which is used to control the rate of convergence of the algorithm. If the step
size is too large, the root-finding path may jump to a different domain of convergence and thus a different
root of PN (s).

8. Not surprisingly, given all the special proprieties, LN (s) plays an key role in mathematical physics.

Euler’s product formula: Counting may be written as a linear recursion simply by adding 1 to the previous
value, starting from 0. The even numbers may be generated by adding 2, starting from 0. Multiples of 3 may be
similarly generated by adding 3 to the previous value, starting from 0. Such recursions are fundamentally related
to prime numbers πk ∈ P, as first investigated by Euler. This logic is the basis of the sieve (see Sec. 2.4, p. 26).
The basic idea is both simple and important, taking almost everyone by surprise, likely even Euler. It is related to
the old idea that the integers may be generated by the geometric series when viewed as a recursion.

Example: Let’s look at counting modulo prime numbers. For example, if k ∈ N, then

k ·mod(k, 2), k ·mod(k, 3), k ·mod(k, 5)

are all multiples of the primes π1 = 2, π2 = 3, and π3 = 5.

+

Nnun

Delay

α = 1
Nn−M

Nn = αNn−M + un

M

Figure 3.3: This feedback network describes the linear discrete-time difference equation with delay M [s] given by Eq. 3.1.16. If M = 1
this circuit acts as an integrator. When the input is a step function, the output will be Nn = nun = [0, 1, 2, 3, . . .]. Such discrete–time
circuits are called digital filters.

To see this, we define the step function un = 0 for n < 0 and un = 1 for n ≥ 0 and the counting number
function Nn = 0 for n < 0. The counting numbers may be recursively generated from the recursion

Nn+1 = Nn−M + un, (3.1.16)

which for M = 1 gives Nn = n. For M = 2, Nn = 0, 2, 4, . . . gives the even numbers.
As was first published by Euler in 1737, one may recursively factor out the leading prime term, resulting in

Euler’s product formula. Based on the argument given in the discussion of the sieve on page 27, one may automate
the process and create a recursive procedure to identify multiples of the first item on the list, and then remove the
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multiples of that prime. The lowest number on this list is the next prime. One may then recursively generate all the
multiples of this new prime and remove them from the list. Any numbers that remain are candidates for primes.

The observation that this procedure may be automated with a recursive filter, such as that shown in Fig. 3.3,
implies that it may be transformed into the frequency domain and described in terms of its poles, which are related
to the primes. For example, the poles of the filter shown in Fig. 3.3 may be determined by taking the z-transform
of the recursion equation and solving for the roots of the resulting polynomial. The recursion equation is the time-
domain equivalent to Riemann’s zeta function ζ(s), which is the frequency-domain equivalent representation.

Exercise #10
Show that Nn = n follows from the above recursion.

Sol: If n = −1, we have Nn = 0 and un = 0. For n = 0 the recursion gives N1 = N0 + u0; thus N1 = 0 + 1.
When n = 1, we have N2 = N1 + 1 = 1 + 1 = 2. For n = 2, the recursion gives N3 = N2 + 1 = 3. Continuing
the recursion, we find thatNn = n. Today we denote a recursions of this form as a digital filter. The state diagram
for Nn is shown in Fig. 3.3. �

To start the recursion, we define un = 0 for n < 0. Thus u0 = u−1 + 1. But since u−1 = 0, u0 = 1. The
counting numbers follow from this recursion. A more understandable notation is convolution of the step function
with itself—namely,

nun = un ? un =
∞∑
m=0

umum−n ↔
1

(1− z)2 ,

which says that the counting numbers n̂ ∈ N are easily generated by convolution, which corresponds to a second-
order pole at z = 1 in the z-transform frequency domain (see Sec. 3.4.1).

Exercise #11
Write an Octave/Matlab program that generates the odd numbers Nn = {1, 0, 3, 0, 5, 0, 7, 0, 9, . . .} by removing
the even numbers.

Sol:
M=50; N=(0:M-1);
u=ones(1,M); u(1)=0;
Dem=[1 1]; Num=[1];
n=filter(Num,Dem,u);
y2=n.*N; F1=N-y2
which generates: F1 = [0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, . . .]. �

An alternative is to use the mod(n,N) function:
M=20; n=0:M; k=mod(n,2); m=(k==0).*n;
which generates m = [0, 1, 0, 3, 0, 5, . . .]

Exercise #12
Write a program to recursively down-sample Nn by 2:1.

Sol:
N=[1 0 3 0 5 0 7 0 9 0 11 0 13 0 15]
M=N(2:2:end);
which gives: M = [1, 3, 5, 7, 9, 11, 13, 15, . . .] �

For the next step toward a full sieve (Fig. 2.3, p. 27), we generate all the multiples of 3 (the second prime) and
subtract these from the list. This will either zero out these numbers from the list or create negative items, which
may then be removed. Numbers are negative when the number has already been removed because it has a second
factor of that number. For example, 6 is already removed because it is a multiple of 2 and thus was removed with
the multiples of prime number 2.

3.1.3 Matrix formulation of the polynomial
There is a simple relationship between every constant coefficient differential equation, its characteristic polyno-
mial, and the equivalent matrix form of that differential equation, defined by the companion matrix. The roots of
the monic polynomial are the eigenvalues of the companion matrix CN (Horn and Johnson, 1988, p. 147).
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The companion matrix: The N ×N companion matrix is defined as

CN =



0 −c0
1 0 0 −c1
0 1 0 −c2
... 0 1 0 · · ·

...

· · ·
. . . 0

...
0 1 0 −cN−2

0 1 −cN−1


N×N

. (3.1.17)

The constants cN−n are from the monic polynomial of degree N ,

PN (s) = sN + cN−1s
N−1 + · · ·+ c2s

2 + c1s+ c0

= sN +
N−1∑
n=0

cns
n,

which has coefficient vector
cN = [1, cN−1, cN−2, . . . , c1, c0]T .

Any transformation of a matrix that leaves the eigenvalues invariant (e.g., the transpose) results in an equivalent
definition of CN . Note that the Octave/Matlab companion matrix function C=compan(A) returns the coefficient
vector along the top row.

Example: Matlab/Octave returns the companion matrix in a different format with the coefficients along the top
row rather than on the final column. For example if P3(s) = [1, c2, c1, c0] then Octave/Matlab returns

P3(s) =

 −c2 −c1 −c0
1 0 0
0 1 0

 .
Exercise #13
Show that the eigenvalues of the 3× 3 companion matrix are the same as the roots of P3(s).

Sol: Expanding the determinant of C3 − sI3 along the rightmost column, we get

P3(s) = −

∣∣∣∣∣∣
−s 0 −c0
1 −s −c1
0 1 −(c2 + s)

∣∣∣∣∣∣ = c0 + c1s+ (c2 + s)s2 = s3 + c2s
2 + c1s+ c0.

Setting this to zero gives the requested result. �

Exercise #14
Find the companion matrix for the Fibonacci sequence defined by the recursion (i.e., difference equation)

fn+1 = fn + fn−1

and initialized with fn = 0 for n < 0 and f0 = 1.

Sol: Taking the z-transform gives the polynomial (z1 − z0 − z−1)F (z) = 0, which has the coefficient vector
c = [1,−1,−1]T , resulting in the Fibonacci companion matrix

C =
[
0 1
1 1

]
.

The Matlab/Octave companion matrix routine compan(C) uses an alternative definition that has the same eigen-
values (see p. 44). �

Example: A polynomial is represented in Matlab/Octave in terms of its coefficient vector. When the polynomial
vector for the poles of a differential equation is

cN = [1, cN−1, cN−2, . . . , c0]T ,
the coefficient cN = 1. This normalization guarantees that the leading term is not zero and the number of roots
(N ) is equal to the degree of the monic polynomial.
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3.1.4 Working with polynomials in Matlab/Octave

In Matlab/Octave there are eight related functions you must become familiar with:

1. R=roots(A): Vector A = [aN , aN−1, . . . , a0] ∈ C are the complex coefficients of polynomial PN (z) =∑N
n=0 anz

n ∈ C, where N ∈ N is the degree of the polynomial. It is convenient to force aN = 1,
corresponding to dividing the polynomial by this value, when it is not 1, thus guaranteeing it cannot be zero.
Further, R is the vector of roots [z1, z2, . . . , zn] ∈ C such that polyval(A,zk)=0.

Example: roots([1, -1])=1

2. y=polyval(A,x): This evaluates the polynomial defined by vector A ∈ CN evaluated at x ∈ C, return-
ing vector y(x)∈ C.

Example: polyval([1 -1],1)=0, polyval([1, 1],3)=4

3. P=poly(): This is the inverse of root(), returning a vector of polynomial coefficients P ∈ CN of
the corresponding characteristic polynomial, starting from either a vector of roots R or a matrix A, for
example, defined with the roots on the diagonal. The characteristic polynomial is defined as the determinant
of |A− λI| = 0 that has roots R.

Example: poly([1])=[1, -1], poly([1,2])=[1,-3,2]

Due to IEEE 754 scaling issues, this can give strange results that are numerically correct, but only within
the limits of IEEE 754 accuracy.

4. R=polyder(C): This routine takes the N coefficients of polynomial C and returns the N − 1 coefficients
of the derivative of the polynomial. This is useful when working with Newton’s method, where each step is
proportional to PN (x)/P ′N−1(x).

Example: polyder([1,1])= [1]

5. [K,R]=residue(N,D): Given the ratio of two polynomials N,D, residue(N,D) returns vectors K,R
such that

N(s)
D(s) =

∑
k

Kk

s− sk
, (3.1.18)

where sk ∈ C are the roots of the denominator D polynomial and K ∈ C is a vector of residues, which
characterize the roots of the numerator polynomial N(s). The use of residue(N,D) is discussed on
page 151. This is one of the most valuable time-saving routines I know.

Example: residue(2, [1 0 -1])= [1 -1]

6. C=conv(A,B): Vector C ∈ CN+M−1 contains the polynomial coefficients of the convolution of the two
vectors of coefficients of polynomials A,B ∈ CN and B ∈ CM .

Example: [1, 2, 1]=conv([1, 1], [1, 1])

7. [C,R]=deconv(N,D): Vectors C, N, D ∈ C. This operation uses long division of polynomials to find
C(s) = N(s)/D(s) with remainder R(s), where N = conv(D,C)+R, which is

C = N

D
with remainder R. (3.1.19)

Example: By defining the coefficients of two polynomials as A = [1, a1, a2, a3] and B = [1, b1, b+ 2], we
can find the coefficients of the product from C=conv(A,B) and recoverB fromC with B=deconv(C,A).



64 CHAPTER 3. ALGEBRAIC EQUATIONS: STREAM 2

8. A=compan(D): Vector D = [1, dN−1, dN−2, . . . , d0]T ∈ C contains the coefficients of the monic poly-
nomial

D(s) = sN +
N∑
k=1

dN−ks
k,

and A is the companion matrix of vector D (Eq. 3.1.17, p. 62). The eigenvalues of A are the roots of the
monic polynomial D(s).

Example: compan([1 -1 -1])= [1 1; 1 0]

Exercise #15
Practice the use of Matlab’s/Octave’s related functions that manipulate roots, polynomials, and residues: root(),
conv(), deconv(), poly(), polyval(), polyder(), residue(), compan().

Sol: We try Newton’s method for various polynomials. We use N=poly(R) to provide the coefficients of a
polynomial given the roots R. Then we use root() to factor the resulting polynomial. Finally, we use Newton’s
method and show that the iteration converges to the nearest root.8 �

3.2 Eigenanalysis
At this point we turn a corner in the discussion toward the important topic of eigenanalysis, which starts with the
computation of the eigenvalues of a matrix, and their eigenvectors. As briefly discussed on page 23, eigenvectors
are mathematical generalizations of resonances, or modes, naturally found in physical systems.

When you pluck the string of a violin or guitar, or hammer a bell or tuning fork, there are natural resonances
that occur. These are the eigenmodes of the instrument. The frequency of each mode is related to the eigenvalue,
which in physical terms is the frequency of the mode. But this idea goes way beyond simple acoustical instruments.
Wave-guides and atoms are resonant systems. The resonances of the hydrogen atom are called the Lyman series,
a special case of the Rydberg series and Rydberg atom (Bohr, 1954; Gallagher, 2005).

Thus this stream runs deep in both physics and eventually mathematics. In some real sense, eigenanalysis was
what the Pythagoreans were seeking to understand. This relationship is rarely spoken about in the literature, but
once you see it, it can never be forgotten, as it colors your entire view of all aspects of modern physics.

3.2.1 Eigenvalues of a matrix
The method for finding eigenvalues is best described with an example.9 Starting from the matrix Eq. 2.5.15 (p. 44),
the eigenvalues are defined by the eigenmatrix equation

1
2

[
1 1
2 0

] [
e1
e2

]
= λ

[
e1
e2

]
. (3.2.1)

The unknowns here are the eigenvalue λ and the eigenvector e = [e1, e2]T . First we find λ by subtracting the right
from the left:

1
2

[
1 1
2 0

] [
e1
e2

]
− λ

[
e1
e2

]
= 1

2

[
1− 2λ 1

2 −2λ

] [
e1
e2

]
= 0.

The only way this equation for e can have a non-trivial (e1 = e2 = 0) solution is if the matrix is singular. If it is
singular, the determinant of the matrix is zero.

Example: The determinant in the above equation is the product of the diagonal elements minus the product of the
off-diagonal elements, which results in the quadratic equation

−2λ(1− 2λ)− 2 = 4λ2 − 2λ− 2 = 0.

Completing the square gives
(λ− 1/4)2 − (1/4)2 − 1/2 = 0;

thus the roots (i.e., eigenvalues) are λ± = 1±3
4 = {1,−1/2}.

8A Matlab/Octave program that does this may be downloaded from https://jontalle.web.engr.illinois.edu/uploads/493/M/

NewtonJPD.m.
9Appendix B (p. 227) is an introduction to the topic of eigenanalysis for 2× 2 matrices.
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Exercise #16
Expand Eq. 3.2.1 and recover the quadratic equation.

Sol:
(λ− 1/4)2 − (1/4)2 − 1/2 = λ2 − λ/2 +(((((

(((1/4)2 − (1/4)2 − 1/2 = 0.

Thus completing the square is the same as the original equation. �

Exercise #17
Find the eigenvalues of the matrix of Eq. 2.5.9 (see p. 42).

Sol: This is a minor variation on the previous example. Briefly, we have

det
[
1− λ N

1 1− λ

]
= (1− λ)2 −N = 0.

Thus λ± = 1±
√
N. �

Exercise #18
Starting with Eq. 3.2.1 and initial conditions [x1, y1]T = [1, 0]T , compute the first five values of [xn, yn]T .

Sol: Here is a Matlab/Octave code for computing [xn, yn]T :

x=[1;0];
A=[1 1;2 0]/2;
for k=1:10; x(k+1)=A*x(:,k); end

which gives the rational (xn ∈ Q) sequence: 1, 1/2, 3/4, 5/8, 11/24, 21/25, 43/26, 85/27, 171/28, 341/29,
683/210, . . .. �

Exercise #19
Show that the solution to the mean-Fibonacci sequence (Eq. 2.5.14, page 44) is bounded, unlike that of the Fi-
bonacci sequence. Explain what is going on.

Sol: Because the next value is the mean of the last two, the sequence is bounded. To see this one needs to compute
the eigenvalues of the matrix in Eq. 2.5.15 (p. 44).�

The key to the analysis of such equations is called eigenanalysis, or the modal-analysis method (see Appendix
B). The eigenvalues (eigenfrequencies) are also known as resonant frequencies in engineering and eigenmodes
in physics. Eigenmodes describe the naturally occurring “ringing” found in physical wave-dominated boundary
value problems and in resonant circuits. Each mode’s eigenvalue quantifies the mode’s natural complex frequency
sk = σk + ωk.

Complex eigenvalues result in damped modes having frequencies sk ∈ C, which decay in time as τk = 1/σk
due to energy losses, as determined by σk.

Two modes that have exactly the same frequency are said to be degenerate. This is a very special condition
representing a very high degree of symmetry. When two modes are slightly different in frequency, one hears a
beating of the modes at the difference frequency (they are not degenerate). If they have different decay, the beats
will die away with the shorter of the two time constants.

Common examples include tuning forks, pendulums, bells, and the strings of musical instruments (such as
guitar and fiddles), all of which (except for tuning forks) have hundreds of modes (Fletcher and Rossing, 2008;
Morse, 1948). For those interested in musical acoustics, these books are excellent.

3.2.2 Cauchy’s theorem and eigenmodes
Cauchy’s residue theorem (see p. 151) is used to find the time-domain response of each frequency-domain complex
eigenmode. Thus eigenanalysis and eigenmodes of physics are the same thing (see p. 141) but are described using
different notional methods.10 The eigenanalysis method is summarized in Appendix B.3 (see p. 230).

10During the discovery or creation of quantum mechanics, two alternatives were developed: Schrödinger’s differential equation method and
Heisenberg’s matrix method. Eventually it was realized the two were equivalent.
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Taking a simple example of a 2× 2 matrix T ∈ C, we start from the definition of the two eigenequations

T e± = λ±e± (3.2.2)

corresponding to two eigenvalues λ± ∈ C and two 2× 1 eigenvectors e± ∈ C.

Example: Assume that T is the Fibonacci matrix in Eq. 2.5.12 (see p. 43).
The eigenvalues λ± may be merged into a 2× 2 diagonal eigenvalue matrix

Λ =
[
λ+ 0
0 λ−

]
,

while the two eigenvectors e+ and e− are merged into a 2× 2 eigenvector matrix

E = [e+, e−] =
[
e+

1 e−1
e+

2 e−2

]
, (3.2.3)

corresponding to the two eigenvalues. Using matrix notation, we can write this compactly as

T E = EΛ. (3.2.4)

Note that while λ± and E± commute, EΛ 6= ΛE.
From Eq. 3.2.4 we may obtain two very important relations:

1. the diagonalization of T ,
Λ = E−1T E, (3.2.5)

and

2. the eigenexpansion of T ,
T = EΛE−1, (3.2.6)

which is used for computing powers of T (i.e., T 100 = E−1Λ100E).

Example: If we take

T =
[
1 1
1 −1

]
,

then the eigenvalues are given by (1 − λ±)(1 + λ±) = −1; thus λ± = ±
√

2. This method of eigenanalysis is
discussed on page 41 and in Appendix B.2 (see p. 229).

Exercise #20
Show that the geometric series formula holds for 2 × 2 matrices. Starting with the 2 × 2 identity matrix I2 and
a ∈ C, with |a| < 1, show that

I2(I2 − aI2)−1 = I2 + aI2 + a2I2
2 + a3I3

2 + · · · .

Sol: Multiply both sides by I2 − aIk2 results in an identity

I2 = I2 + aI2 + a2I2
2 + a3I3

2 + · · · − aI2(aI2 + a2I2
2 + a3I3

2 + · · · )
= [1 + (a+ a2 + a3 + · · · )− (a+ a2 + a3 + a4 + · · · )]I2
= I2.

This equality requires that the two series converge, but only if |a| < 1. �

When the matrix T is not a square matrix, Eq. 3.2.6 may be generalized as

Tm,n = Um,mΛm,nV†n,n.

This useful generalization of eigenanalysis is called singlar value decomposition (SVD). To see this use the
Matlab/Octave command [U,L,V]=svd(A) where A is a rectangular (nonsquare) matrix.
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Exercise #21
Verify that Λ = E−1AE.

Sol: We shall work with the unnormalized eigenmatrix cE, where c =
√√

2 2 + 1 =
√

3. To compute the inverse
of cE, 1) swap the diagonal values, 2) change the sign of the off diagonals, and 3) divide by the determinant ∆:

(cE)−1 = 1
2c
√

2

[
1
√

2
−1

√
2

]
= 1

2c

[
0.707 1
−0.707 1

]
.

We wish to show that Λ = E−1AE

1

2��
1

c

[
0.707 1
−0.707 1

] [
1 2
1 1

]
��

1
c

[√
2 −

√
2

1 1

]
=
[
1 +
√

2 0
0 1−

√
2

]
which is best verified with Matlab/Octave. �

Exercise #22
Verify thatA = EΛE−1.

Sol: We wish to show that[
1 2
1 1

]
= 1
��
√

3

[√
2 −

√
2

1 1

]
·
[
1 +
√

2 0
0 1−

√
2

]
.�
�
√

3
2
√

2

[
1
√

2
−1

√
2

]
.

All the above solutions have been verified with Octave.
Eigenmatrix diagonalization is helpful in generating solutions for finding the solutions of Pell’s and Fi-

bonacci’s equations using transmission matrices. �

Example: If the matrix corresponds to a transmission line, the eigenvalues have units of seconds [s][
V +

V −

]
n

=
[
e−sTo 0

0 esTo

] [
V +

V −

]
n+1

. (3.2.7)

In the time domain the forward traveling wave v+
n+1(t − (n + 1)To) = v+

n (t − nTo) is delayed by To. Two
applications of the matrix delays the signal by 2To.

Summary: The GCD (Euclidean algorithm), Pell’s equation, and the Fibonacci sequence may all be written as
compositions of 2 × 2 matrices. Thus Pell’s equation and the Fibonacci sequence are special cases of the 2 × 2
matrix composition [

x
y

]
n+1

=
[
a b
c d

] [
x
y

]
n

.

This is an important and common thread of these early mathematical findings. This 2 × 2 linearized matrix
recursion plays a special role in physics, mathematics, and engineering because one-dimensional system equations
are solved using the 2×2 eigenanalysis method. More than several thousand years of mathematical trial and error
set the stage for this breakthrough. But it took even longer to be fully appreciated.

The key idea of the 2 × 2 matrix solution, widely used in modern engineering, can be traced back to Brah-
magupta’s solution of Pell’s equation for arbitrary N . Brahmagupta’s recursion, identical to that of the Pythagore-
ans’ N = 2 case (see Eq. 2.5.9, p. 42), eventually led to the concept of linear algebra, defined by the simultaneous
solutions of many linear equations. The recursion by the Pythagoreans (6th century BCE) predated the creation of
algebra by al-Khwarizmi (ninth century CE), as seen in Fig. 1.1 (see p. 3).

3.2.3 Taylor series
An analytic function is one that meets these criteria:

1. It may be expanded in a Taylor series:

P (x) =
∞∑
n=0

cn(x− xo)n. (3.2.8)
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2. It converges for |x− xo| < 1, called the region of convergence (RoC), with coefficients cn.

3. The Taylor series coefficients cn are defined by taking derivatives of P (x) and evaluating them at the
expansion point xo—namely,

cn = 1
n!

dn

dxn
P (x)

∣∣∣∣
x=xo

. (3.2.9)

4. Although P (x) may be multivalued, the Taylor series is always single-valued.

Exercise #23
Verify that c0 and c1 of Eq. 3.2.8 follow from Eq. 3.2.9.

Sol: To obtain c0, for n = 0, there is no derivative (d0/dx0 indicates no derivative is taken), so we must simply
evaluate P (x − xo) = c0 + c1(x − xo) + · · · at x = xo, leaving c0. To find c1, we take one derivative, which
results in P ′(x) = c1 + 2c2(x− xo)) + · · · . Evaluating this at x = xo leaves c1. Each time we take a derivative
we reduce the degree of the series by 1, leaving the next constant term. �

Exercise #24
Suppose we truncate the Taylor series expansion to N terms. What is the name of such functions?

Sol: When an infinite series is truncated, the resulting function is an N th-degree polynomial:

PN (x) =
N∑
n=0

= c0 + c1(x− xo) + c2(x− xo)2 + · · ·+ cN (x− xo)N .

We can find c0 by evaluating PN (x) at the expansion point xo, since from the above formula PN (xo) = c0. From
the Taylor formula, c1 = P ′N (x)|xo . �

Exercise #25
How many roots do PN (x) and P ′N (x) have?

Sol: According to the fundamental theorem of algebra, PN (x) has N roots and P ′N (x) has N − 1 roots. The
Gauss-Lucas theorem states that the N − 1 roots of P ′N (x) lie inside the convex hull of the N roots of PN (x) (see
p. 60).�

Exercise #26
Would it be possible to find an inverse Gauss-Lucas theorem, that states where the roots of the integral of a
polynomial might be?

Sol: To the best of my knowledge this problem has not been addressed. However it seems a question worthy of
significant thought.

With each integral there is a new degree of freedom that must be accommodated. Thus this problem is difficult.
But since there is only one extra degree of freedom, it does not seem intractable. To solve this problem a constraint
is needed. �

Properties: The Taylor formula is a prescription for how to uniquely define the coefficients cn. Without the
Taylor series formula, we would have no way of determining cn. The proof of the Taylor formula is transparent;
The coefficients may be determined by simply taking successive derivatives of Eq. 3.2.8 and then evaluating the
result at the expansion point. If P (x) is analytic, then this procedure will always be successful. If P (x) fails to
have a derivative of any order, then the function is not analytic and Eq. 3.2.8 is not valid.

The Taylor series representation of P (x) has special applications for solving differential equations for these
reasons:

1. It is single-valued.

2. The series if valid inside the RoC (an open set).

3. All its derivatives and integrals are uniquely defined.
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4. It may be continued into the complex plane by extending x ∈ C. This extension is necessary because the
eigenvalues are typically in C. In fact the only reasonable eigenvalues must be complex, having negative
real parts. If the real part of λk is zero, the solution is loss-less, thus never dies away, which is non-physical
in the macroscopic world.11 If it is positive, the solution is unstable (blows up). Typically this involves
expanding the series about a different expansion point.

Analytic continuation: A limitation of the Taylor series expansion is that it is not valid outside of its RoC.
One method for working with this limitation is to move the expansion point. This is called analytic continuation.
However, analytic continuation is a nontrivial operation because: (1) It requires manipulating an infinite number
of derivatives of P (x), (2) at the new expansion point xo, where (3) P (x − xo) may not have derivatives, due
to possible singularities. (4) Thus one needs to know where the singularities of P (s) are in the complex s plane.
Due to these many problems analytic continuation is rarely used, other than as an important theoretical concept.
In Appendix C.1.1 (p. 233) we consider a novel definition of analytic continuation.

Every Taylor series is a single valued representation because powers of the variable are single valued. Single
valuedness is key feature to the series representation. However functions have regions where the series is not valid.
This is best seen with a simple example using the geometric series

f(s) = 1
1− as =

∞∑
n=0

(as)n, |as| < 1

with a, s ∈ C. Note that f(s) has a pole at so = 1/a and residue 1/a.
However f(s) is perfectly well defined for |as| > 1, for which it has a different series expansion. If we let

s = 1/z we find

f(z) = 1
1− a/z = −z/a

1− z/a = −z
a

∞∑
n=0

(z
a

)n
, |z/a| < 1.

Expressed in terms of z = 1/s we have that |sa| > 1.
Thus the first expansion is good inside the circle |s| < 1/a while the second is valid outside the circle. While

each series is single valued within its RoC, f(s) is valid everywhere, except at the pole s = 1/a, where it is
singular.

Example: The similar case is the geometric series P (x) = 1/( − x) about the expansion point x = 1. The
function P (x) is defined everywhere, except at the singular point x = , whereas the geometric series is valid for
|x| < 1. However P (x) is valid for |x| > 1. For example P (10) = 1/( − 10) = ( + 10)/( + 10)( − 10) =
−(+ 10)/101.

Role of the Taylor series: The Taylor series plays a key role in the mathematics of differential equations and
their solution, as the coefficients of the series uniquely determine the analytic series representation via its deriva-
tives. The implications and limitations of the power series representation are very specific: If the series fails to
converge (i.e., outside the RoC), it is meaningless.

Every differential equation has as many independent solutions as it has eigenvalues. To obtain these solutions
we must use the Taylor series, with its single-value property, to uniquely represents each solution. The general
solution is then the weighted sum over the independent solutions. This theory trivially follows from the Cauchy
residue theorem CT-3 (Eq. 4.5.3, p. 151).

Starting from a differential equation, it may be transformed to a matrix equation using the companion matrix
(Sec. 3.1.3, p. 62) having K eigenvalues λ1, · · · , λk, · · · , λK , with a general solution

f(t;Ck) =
K∑
k=1

Cke
skt.

The constants Ck ∈ C are determined using the initial conditions.
A very important fact about the RoC: It is relevant to only the series, not the function being expanded. Typically

the function has a pole at the radius of the RoC, beyond which the series fails to converge. However, the function
being expanded is valid everywhere (other than at its poles). This point has been inadequately explained in many
text books. In addition, the RoC is the region of divergence (RoD), which is the RoC’s complement.

The Taylor series does not need to be infinite to converge to the function it represents, since it obviously works
for any polynomial PN (x) of degree N . But in the finite case (N < ∞), the RoC is infinite and the series is the

11Quantum eigenstates are lossless.
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function PN (x) exactly, everywhere. Of course, PN (x) is a polynomial of degree N . When N →∞, the Taylor
series is valid only within the RoC, and it is (typically) the representation of the reciprocal of a polynomial.

These properties are both the curse and the blessing of the analytic function. On the positive side, analytic
functions are the ideal starting point for solving differential equations, which is exactly how they were used by
Newton and others. Analytic functions are “smooth,” since they are infinitely differentiable, with coefficients
given by Eq. 3.2.9. They are single-valued, so there can be no ambiguity in their interpretation. On the negative
side, they only represent the function within the RoC, which depends on the expansion point.

Two well-known analytic functions are the geometric series (|x| < 1)

1
1− x = 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn (3.2.10)

and the exponential series (|x| <∞)

ex = 1 + x+ 1
2x

2 + 1
3 · 2x

3 + 1
4 · 3 · 2x

4 + · · · =
∞∑
n=0

1
n!x

n. (3.2.11)

Exercise #27
Provide the Taylor series expression for the following functions:

F1(x) =
∫ x 1

1− xdx (3.2.12)

Sol: F1(x) = x+ 1
2x

2 + 1
3x

3 + · · · �

F2(x) = d

dx

1
1− x (3.2.13)

Sol: F2(x) = 1 + 2x+ 3x2 + · · · �

F3(x) = ln 1
1− x (3.2.14)

Sol: F3(x) = 1 + 1
2x+ 1

3x
2 + · · · �

F4(x) = d

dx
ln 1

1− x (3.2.15)

Sol: F4(x) = 1 + x+ x2 + x3 + · · · �

Exercise #28
Using symbolic manipulation (Matlab, Octave, Mathematica), expand the function F (s) in a Taylor series and
find the recurrence relationships among the Taylor coefficients cn, cn−1, cn−2. Assume a ∈ C and T ∈ R.

F (s) = eas

Sol: A Google search on octave syms taylor is useful. The Matlab/Octave code to expand this in a Taylor series is
syms s

taylor(exp(s),s,0,’order’,10)

�

Exercise #29
Find the coefficients of the following functions by the method of Eq. 3.2.9 and give the RoC.
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1. w(x) = 1
1−x .

Sol: From a straightforward expansion we know the coefficients are

1
1− x = 1 + x+ (x)2 + (x)3 + · · · = 1 + x− x2 +−x3 + · · · .

Working this out using Eq. 3.2.9 is more work:
c0 = 1

0!w
∣∣
0 = 1; c1 = 1

1!
dw
dx

∣∣∣
0

= − −
(1−x)2

∣∣∣
x=0

= ; c2 = 1
2!
d2w
dx2

∣∣∣
0

= 1
2!

−2
(1−x)3

∣∣∣
0

= −1;

c3 = 1
3!
d3w
dx3

∣∣∣
0

= −
(1−x)4

∣∣∣
0

= −j.

However, if we take derivatives of the series expansion, it is much easier and we can even figure out the
term for cn:
c0 = 1; c1 = d

dx

∑
(x)n

∣∣∣
0

= j; c2 = 1
2!

d2

dx2

∑
(jx)n

∣∣∣
0

= 2()2;

c3 = 1
3!

d3

dx3

∑
(jx)n

∣∣∣
0

= ()3 = −;
· · · ,
cn = 1

n! 
nn! = n.

The RoC is |xj| = |x| < 1. �

2. w(x) = ex.

Sol: cn = 1
n! 

n. The RoC is |x| <∞. Functions with an RoC of∞ are called entire. Thus cn = cn−1/n.
�

Exercise #30
Show that Z(s) = 1/

√
s is positive-real but not a Brune impedance.

Sol: Since it may not be written as the ratio of two polynomials, it is not in the Brune impedance class. If we
write Z(s) = |Z(s)|eφ in polar coordinates, since −π/4 ≤ φ ≤ π/4 when |∠s| < π/2, Z(s) satisfies the Brune
condition and thus is positive-real. �

Determining the region of convergence (RoC): Determining the RoC for a given analytic function is quite
important and may not always be obvious. In general the RoC is a circle whose radius extends from the expansion
point out to the nearest pole. Thus when the expansion point is moved, the RoC changes, since the location of the
pole is fixed.

Example: For the geometric series (Eq. 3.2.10), the expansion point is xo = 0 and the RoC is |x| < 1, since
1/(1 − x) has a pole at x = 1. We may move the expansion point by a linear transformation—for example, by
replacing x with z + 3. Then the series becomes 1/((z + 3)− 1) = 1/(z + 2), so the RoC becomes 3 because in
the z plane the pole has moved to −2.

Example: A second important example is the function 1/(x2 + 1), which has the same RoC as the geometric
series, since it may be expressed in terms of its residue expansion (also called its partial fraction expansion)

1
x2 + 1 = 1

(x+ 1)(x− 1) = 1
2

(
1

x− 1 −
1

x+ 1

)
.

Each term has an RoC of |x| < |1| = 1. The amplitude of each pole is called the residue, defined in Eq. 4.5.4
(see p. 151). The residue for the pole at 1 is 1/2.

The roots must be found by factoring the polynomial (e.g., Newton’s method). Once the roots are known, the
residues are best found via linear algebra.

In summary, the function 1/(x2 + 1) is the sum of two geometric series, with poles at ±1, which is not
initially obvious because the roots are complex and conjugate. Only when the function is factored does it become
clear what is going on.

Exercise #31
Verify that the above expression is correct and show that the residues are ±1/2.

Sol: We cross-multiply and cancel, leaving 1, as required. The RoC is the coefficient on the pole. Thus the residue
of the pole at x is /2. �



72 CHAPTER 3. ALGEBRAIC EQUATIONS: STREAM 2

Exercise #32
Find the residue of d

dz z
π .

Sol: Taking the derivative gives πzπ−1, which has a pole at z = 0. Applying the formula for the residue (Eq. 4.5.4,
p. 151), we find

c−1 = π lim
z→0

zzπ−1 = π lim
z→0

zπ = 0.

Thus the residue is zero.�

3.2.4 Analytic functions
Any function that has a Taylor series expansion is called an analytic function. Within the RoC, the series expansion
defines a single-valued function. Polynomials 1/(1 − x) and ex are examples of analytic functions that are real
functions of their real argument x.

Every analytic function has a corresponding differential equation, which is determined by the coefficients ak
of the analytic power series. An example is the exponential, which has the property that it is the eigenfunction of
the derivative operation

d

dx
eax = aeax,

which may be verified using Eq. 3.2.11. This relationship is a common definition of the exponential function,
which is special because it is the eigenfunction of the derivative.

The complex analytic power series (i.e., complex analytic functions) may also be integrated term by term,
since ∫ x

f(x)dx =
∑ ak

k + 1x
k+1. (3.2.16)

Newton took full advantage of this property of the analytic function and used the analytic series (Taylor series) to
solve analytic problems, especially for working out integrals. This enabled him to solve differential equations. To
fully understand the theory of differential equations, one must master single-valued analytic functions and their
analytic power series.

Single- vs. multivalued functions: Polynomials and their∞-degree extensions (analytic functions) are single-
valued: For each x there is a single value for PN (x). The roles of the domain and co-domain may be swapped
to obtain an inverse function with properties that can be very different from those of the function. For example,
y(x) = x2+1 has the inverse x = ±

√
y − 1, which is double-valued and complex when y < 1. Periodic functions

such as y(x) = sin(x) are even more “exotic,” since x(y) = arcsin(x) = sin−1(x) has an infinite number of x(y)
values for each y. This problem was first addressed in Bernhard Riemann’s 1851 PhD thesis, written while he was
working with Gauss.

Exercise #33
Let y(x) = sin(x). Then dy/dx = cos(x). Show that dx/dy = ±1/

√
1− y2.

Sol: Since sin2 x + cos2 x = 1, it follows that y2(x) + (dy/dx)2 = 1. Thus dy/dx = ±
√

1− y2. Taking the
reciprocal gives the result.

To fully understand this, Google “implicit function theorem” (D’Angelo, 2017, p. 104). �

Exercise #34
Evaluate the integral

I(y) =
∫ y dy√

1− y2
.

Sol: From the previous Exercise we know that

x(y) =
∫ x

dx =
∫ y dy√

1− y2
.

But since y(x) = sin(x), it follows that x(y) = sin−1 y = arcsin(y). �
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Exercise #35
Find the Taylor series coefficients of y = sin(x) and x = sin−1(y). Note that log es = s and

sin(sin−1(s)) = sin−1(sin(s)) = 1.

Hint: Use symbolic Octave. Note sin−1(y) = arcsin(y).

Sol: syms s;taylor(sin(s),’order’,10);

sin(s) = s− s3/3! + s5/5!− s7/7! + · · ·

and syms s;taylor(asin(s),’order’,15);

arcsin(s) = s+ 1
6s

2 + 3
40s

5 + 5
112s

7 + 35
1152s

9 + 63
2816s

11 + 231
13312s

13 + · · ·

= s+ 1
3 · 21 s

3 + 3
5 · 23 s

5 + 5
7 · 24 s

7 + 7 · 5
9 · 27 s

9 + 7 · 32

11 · 28 s
11 + 3 · 7 · 11

13 · 210 s
13 + · · ·

Note that every complex analytic function may be expanded in a Taylor series, within its RoC. It follows that the
inverse is also complex analytic, as demonstrated in this case using symbolic algebra. �

Exercise #36
What is the necessary condition such that if dy/dx = F (x), then dx/dy = 1/F (x)?

Sol: This will be true when df(x)/dx = F (x) is complex analytic because the Fundamental Theorem of Complex
Calculus (FTCC) (see p. 135) defines the antiderivative. In this case dy/dx = (dx/dy)−1 (except at singular
points, where it is not analytic).�

3.2.5 Brune impedances

A special family of functions is formed from ratios of two polynomials Z(s) = N(s)/D(s) commonly used to
define an impedance Z(s), called a Brune impedance. Impedance functions are a special class of complex analytic
functions because they must have a nonnegative real part

<Z(s) = <N(s)
D(s) ≥ 0

so as to obey conservation of energy. A physical Brune impedance cannot have a negative resistance (the real
part); otherwise, it would act like a power source, violating conservation of energy. Most impedances used in
engineering applications are in the class of Brune impedances, defined by the ratio of two polynomials of degrees
M and N :

ZBrune(s) = PM (s)
PN (s) = sM + a1S

M−1 + · · ·+ a0

sN + b1SN−1 + · · ·+ b0
, (3.2.17)

whereM = N±1 (i.e.,N = M±1). This fraction of polynomials is sometimes known as a Padé approximation,
with poles and zeros, defined as the complex roots of the two polynomials. The key property of the Brune
impedance is that the real part of the impedance is nonnegative (positive or zero) in the right s half-plane:

<Z(s) = < [R(σ, ω) + jX(σ, ω)] = R(σ, ω) ≥ 0 for <s = σ ≥ 0. (3.2.18)

Since s = σ + ω, the complex frequency (s) right half-plane (RHP) corresponds to <s = σ ≥ 0. This condition
defines the class of positive-real functions, also known as the Brune condition, which is frequently written in the
abbreviated form

<Z(<s ≥ 0) ≥ 0. (3.2.19)

As a result of this positive-real (PR) constraint, the subset of Brune impedances (those given by Eq. 3.2.17 and
satisfying Eq. 3.2.18) must be complex analytic in the entire right s half-plane. This is a powerful constraint that
places strict limitations on the locations of both the poles and the zeros of every positive-real Brune impedance.
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A little history: The key idea that every impedance Z(s) must be complex analytic and its real part be nonneg-
ative (<Z(s) ≥ 0) for σ = <s > 0, as first proposed by Otto Brune in his PhD thesis at MIT. His supervised was
Ernst A. Guillemin, an MIT electrical engineering professor who played an important role in the development of
circuit theory and likely was a student of Arnold Sommerfeld.12 Other MIT advisers were Norbert Wiener and
Vannevar Bush. Brune’s primary, but non-MIT advisor was W. Cauer, who was trained in 19th-century German
mathematics, perhaps under Sommerfeld (Brune, 1931b).

3.2.6 Complex analytic functions
We are given that the argument of an analytic function F (x) is complex; that is, x ∈ R is replaced by s = σ+ω ∈
C. Recall that R ⊂ C. Thus

F (s) =
∞∑
n=0

cn(s− so)n, (3.2.20)

with cn ∈ C. In this case, that function is said to be a complex analytic.
An important example is when the exponential becomes complex, since

est = e(σ+ω)t = eσteωt = eσt [cos(ωt) +  sin(ωt)] . (3.2.21)

Taking the real part gives

<{est} = eσt
eωt + e−ωt

2 = eσt cos(ωt)

and ={est} = eσt sin(ωt). Once the argument is allowed to be complex, it becomes obvious that the ex-
ponential and circular functions are fundamentally related. This exposes the family of entire circular func-
tions [i.e., es, sin(s), cos(s), tan(s), cosh(s), sinh(s)] and their inverses [ln(s), arcsin(s), arccos(s), arctan(s),
cosh−1(s), sinh−1(s)], first fully elucidated by Euler in about 1750 (Stillwell, 2010, p. 315).

Note that because sin(ωt) is periodic, its inverse must be multivalued. What was needed is some systematic
way to account for this multivalued property. This extension to multivalued functions is called a branch cut,
invented by Riemann in his 1851 PhD thesis, supervised by Gauss in the final years of Gauss’s long life.

The Taylor series of a complex analytic function: However, there is a fundamental problem: We cannot
formally define the Taylor series for the coefficients ck until we have defined the derivative with respect to the
complex variable dF (s)/ds, with s ∈ C. Thus simply substituting s for x in an analytic function leaves a major
hole in one’s understanding of the complex analytic function.

It was Cauchy in 1814 (Fig. 3.1, p. 52) who uncovered the much deeper relationships within complex ana-
lytic functions (see p. 125) by defining differentiation and integration in the complex plane, leading to several
fundamental theorems of complex calculus, including the fundamental theorem of complex calculus and Cauchy’s
formula.

There seems to be some disagreement as to the status of multivalued functions: Are they functions, or is a
function strictly single-valued? If so, then we are missing out on a host of interesting possibilities, including all
the inverses of nearly every complex analytic function. For example, the inverse of a complex analytic function is
a complex analytic function (e.g., es and log(s)).

Impact of complex analytic mathematics on physics: It seems likely, if not obvious, that the success of New-
ton was his ability to describe physics using mathematics. He was inventing new mathematics at the same time he
was explaining new physics. The same might be said for Galileo. It seems likely that Newton was extending the
successful techniques and results of Galileo’s work on gravity (Galileo, 1638). Galileo died on January 8, 1642,
and Newton was born January 4, 1643, just short of one year later. Obviously Newton was well aware of Galileo’s
great success and naturally would have been influenced by him (see p. 6).

The application of complex analytic functions to physics was dramatic, as may be seen in the six volumes on
physics written by Arnold Sommerfeld (1868–1951), and from the productivity of his many (36) students (e.g.,
Debye, Lenz, Ewald, Pauli, Guillemin, Bethe, Heisenberg, Morse, and Seebach, to name a few), notable coworkers
(Leon Brillouin), and others (John Bardeen) upon whom Sommerfeld had a strong influence. Sommerfeld is
famous for training many students who were awarded the Nobel Prize in Physics, yet he never won a Nobel Prize
(the prize is not awarded in mathematics). Sommerfeld brought mathematical physics (the merging of physical and
experimental principles via mathematics) to a new level with the use of complex integration of analytic functions

12It must be noted that University of Illinois Professor ‘Mac’ Van Valkenburg was arguably more influential in circuit theory during the
same period. Mac’s books are certainly more accessible, but perhaps less widely cited.
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to solve otherwise difficult problems, thus following the lead of Newton, who used real integration of Taylor series
to solve differential equations (Brillouin, 1960, Ch. 3 by Sommerfeld).
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3.3 Problems AE-1

Topics of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse,
convolution, Newton’s root finding method, Riemann zeta function. Deliverables: Answers to problems

Note: The term analytic is used in two different ways. (1) An analytic function is a function that may be
expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate sys-
tem.

Polynomials and the fundamental theorem of algebra (FTA)
Problem # 1: A polynomial of degree N is defined as

PN (x) = a0 + a1x+ a2x
2 + · · ·+ aNx

N .

– 1.1: How many coefficients an does a polynomial of degree N have?

– 1.2: How many roots does PN(x) have?

Problem # 2: The fundamental theorem of algebra (FTA)

– 2.1: State and then explain the FTA.

– 2.2: Using the FTA, prove your answer to question 1.2. Hint: Apply the FTA to prove
how many roots a polynomial PN(x) of order N has.

Problem # 3: Consider the polynomial function P2(x) = 1 + x2 of degree N = 2 and the
related function F (x) = 1/P2(x). What are the roots (e.g., zeros) x± of P2(x)? Hint: Complete
the square on the polynomial P2(x) = 1 + x2 of degree 2, and find the roots.

Problem # 4: F (x) may be expressed as (A,B, x± ∈ C)

F (x) = A

x− x+
+ B

x− x−
, (AE-1.1)

where x± are the roots (zeros) of P2(x), which become the poles of F (x); A and B are the residues. The
expression for F (x) is sometimes called a partial fraction expansion or residue expansion, and it appears in many
engineering applications.

– 4.1:Find A,B ∈ C in terms of the roots x± of P2(x).

– 4.2: Verify your answers for A and B by showing that this expression for F (x) is indeed
equal to 1/P2(x).

– 4.3: Give the values of the poles and zeros of P2(x).

– 4.4: Give the values of the poles and zeros of F (x) = 1/P2(x).
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Analytic functions
Overview: Analytic functions are defined by infinite (power) series. The function f(x) is said to be analytic at
any value of constant x = xo, where there exists a convergent power series

P (x) =
∞∑
n=0

an(x− xo)n

such that P (xo) = f(xo). The point x = xo is called the expansion point. The region around xo such that
|x− xo| < 1 is called the radius of convergence, or region of convergence (RoC). The local power series for f(x)
about x = xo is defined by the Taylor series:

f(x) ≈ f(xo) + df

dx

∣∣∣
x=xo

(x− xo) + 1
2!
d2f

dx2

∣∣∣
x=xo

(x− xo)2 + · · ·

=
∞∑
n=0

1
n!

dn

dxn
f(x)

∣∣∣∣
x=xo

(x− xo)n.

Two classic examples are the geometric series13 where an = 1,

1
1− x = 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn, (AE-1.2)

and the exponential function where an = 1/n!, Eq. 3.2.11 (p. 70). The coefficients for both series may be derived
from the Taylor formula.

Problem # 5: The geometric series

– 5.1: What is the region of convergence (RoC) for the power series Eq. AE-1.2 of 1/(1−x)
given above—for example, where does the power series P (x) converge to the function value
f(x)? State your answer as a condition on x. Hint: What happens to the power series when
x > 1?

– 5.2: In terms of the pole, what is the RoC for the geometric series in Eq. AE-1.2?

– 5.3: How does the RoC relate to the location of the pole of 1/(1− x)?

– 5.4: Where are the zeros, if any, in Eq. AE-1.2?

– 5.5: Assuming x is in the RoC, prove that the geometric series correctly represents
1/(1− x) by multiplying both sides of Eq. AE-1.2 by (1− x).

Problem # 6: Use the geometric series to study the degree N polynomial. It is very important
to note that all the coefficients cn of this polynomial are 1.

PN (x) = 1 + x+ x2 + · · ·+ xN =
N∑
n=0

xn. (AE-1.3)

– 6.1: Prove that

PN (x) = 1− xN+1

1− x . (AE-1.4)

13The geometric series is not defined as the function 1/(1 − x), it is defined as the series 1 + x + x2 + x3 + · · · , such that the ratio of
consecutive terms is x.



78 CHAPTER 3. ALGEBRAIC EQUATIONS: STREAM 2

– 6.2: What is the RoC for Eq. AE-1.3?

– 6.3: What is the RoC for Eq. AE-1.4?

– 6.4: How many poles does PN(x) (Eq. AE-1.3) have? Where are they?

– 6.5: How many zeros does PN(x) (Eq. AE-1.4) have? State where are they in the complex
plane.

– 6.6: Explain why Eqs. AE-1.3 and AE-1.4 have different numbers of poles and zeros.

– 6.7: Is the function 1/(1 − x) analytic outside of the RoC stated in the first question in
Problem 5? Hint: Can it be represented by a different power series outside this RoC?

– 6.8: Extra credit. Evaluate PN(x) at x = 0 and x = 0.9 for the case of N = 100, and
compare the result to that from Matlab.
%sum the geometric series and P_100(0.9)
clear all;close all;format long
N=100; x=0.9; S=0;
for n=0:N
S=S+xˆn
end
P100=(1-xˆ(N+1))/(1-x);
disp(sprintf(’S= %g, P100= %g, error= %g’,S,P100, S-P100))

Problem # 7 The exponential series

– 7.1: What is the RoC for the exponential series Eq. 3.2.11?

– 7.2: Let x =  in Eq. 3.2.11, and write out the series expansion of ex in terms of its real
and imaginary parts.

– 7.3: Let x = θ in Eq. 3.2.11, and write out the series expansion of ex in terms of its real
and imaginary parts. How does your result relate to Euler’s identity (eθ = cos(θ) +  sin(θ))?

Inverse analytic functions and composition
Overview: It may be surprising, but every analytic function has an inverse function. Starting from the function
(x, y ∈ C)

y(x) = 1
1− x

the inverse is
x = y − 1

y
= 1− 1

y
.

Problem # 8: Consider the inverse function described above

– 8.1: Where are the poles and zeros of x(y)?

– 8.2: Where (for what condition on y) is x(y) analytic?
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Problem # 9 Consider the exponential function z(x) = ex (x, z ∈ C).

– 9.1: Find the inverse x(z).

– 9.2: Where are the poles and zeros of x(z)?

– 9.3: If y(s) = 1/(1− s) and z(s) = es, compose these two functions to obtain (y ◦ z)(s).
Give the expression for (y ◦ z)(s) = y(z(s)).

– 9.4: Where are the poles and zeros of (y ◦ z)(s)?

– 9.5: Where (for what condition on x) is (y ◦ z)(x) analytic?

Convolution
Multiplying two short or simple polynomials is not demanding. However, if the polynomials have many terms, it
can become tedious. For example, multiplying two 10th-degree polynomials is not something one would want to
do every day.

An alternative is a method called convolution, as described in Sec. 3.4 (p. 82).

Problem # 10: Convolution of sequences. Practice convolution (by hand!!) using a few simple
examples. Show your work!!! Check your solution using Matlab.

– 10.1: Convolve the sequence {0 1 1 1 1} with itself.

– 10.2: Calculate {1, 1} ? {1, 1} ? {1, 1}.

Problem # 11: Multiplying two polynomials is the same as convolving their coefficients.

f(x) = x3 + 3x2 + 3x+ 1
g(x) = x3 + 2x2 + x+ 2.

– 11.1: In Octave/Matlab, compute h(x) = f(x) · g(x) in two ways: (1) use the commands
roots and poly, and (2) use the convolution command conv. Confirm that both methods
give the same result.

– 11.2: What is h(x)?

Newton’s root-finding method
Problem # 12: Use Newton’s iteration to find the roots of the polynomial

P3(x) = 1− x3.

– 12.1: Draw a graph describing the first step of the iteration starting with x0 = (1/2, 0).

– 12.2: Calculate x1 and x2. What number is the algorithm approaching?

– 12.3: Here is an Octave/Matlab script for the P2(x) case. Modify it to find P3(x):
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x(1)=1/2; %x(1)=0.9; %x(1)=-10
y(1)=x(1);
for n=2:10

x(n) = x(n-1) + (1-x(n-1)ˆ2)/(2*x(n-1));
y(n) = (1+y(n-1)ˆ2)/(2*x(n-1));
end

semilogy(abs(x)-1); hold on
semilogy(abs(7)-1,’or’); hold off

– 12.4: For n = 4, what is the absolute difference between the root and the estimate,
|xr − x4|?

– 12.5: Does Newton’s method work for P2(x) = 1 + x2? If so, why? Hint: What are the
roots in this case?

– 12.6: What if we let x0 = (1 + )/2 for the case of P2(x) = 1 + x2?

Riemann zeta function ζ(s)
Definitions and preliminary analysis: The zeta function ζ(s) is defined by the complex analytic power series

ζ(s) ≡
∞∑
n=1

1
ns

= 1
1s + 1

2s + 1
3s + 1

4s + · · · .

This series converges, and thus is valid, only in the RoC given by <s = σ > 1, since there |n−σ| ≤ 1. To
determine its formula in other regions of the s plane, one must extend the series via analytic continuation (see
p. 69).

Euler product formula: As Euler first published in 1737, one may recursively factor out the leading prime
term, which results in Euler’s product formula.14 Multiplying ζ(s) by the factor 1/2s and subtracting from ζ(s)
remove all the terms 1/(2n)s (e.g., 1/2s + 1/4s + 1/6s + 1/8s + · · · )(

1− 1
2s

)
ζ(s) = 1 + 1

2s + 1
3s + 1

4s + 1
5s + · · · −

(
1
2s + 1

4s + 1
6s + 1

8s + 1
10s + · · ·

)
, (AE-1.5)

which results in (
1− 1

2s

)
ζ(s) = 1 + 1

3s + 1
5s + 1

7s + 1
9s + 1

11s + 1
13s + · · · . (AE-1.6)

Problem # 13: Questions about the Riemann zeta function.

– 13.1: What is the RoC for Eq. AE-1.6?

– 13.2: Repeat the algebra of Eq. AE-1.5 using the lead factor of 1/3s.

– 13.3: What is the RoC for Eq. AE-1.6?

– 13.4: Repeat the algebra of Eq. AE-1.5 for all prime scale factors (i.e., 1/5s, 1/7s, . . .,
1/πsk, . . .) to show that

ζ(s) =
∏
πk∈P

1
1− π−sk

=
∏
πk∈P

ζk(s), (AE-1.7)

where πp represents the pth prime.
14This is known as Euler’s sieve, as distinguished from the Eratosthenes sieve.
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– 13.5: Given the product formula, identify the poles of ζp(s) (p ∈ Z), which is important
for defining the RoC of each factor. For example, the pth factor of Eq. AE-1.7, expressed as an
exponential, is

ζp(s) ≡
1

1− π−sp
= 1

1− e−sTp , (AE-1.8)

where Tp ≡ ln πp.

– 13.6: Plot Eq. AE-1.8 using zviz for p = 1. Describe what you see.
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3.4 Root classification by convolution

Following the exploration of algebraic relationships by Fermat and Descartes, the first theorem was being formu-
lated by d’Alembert. The idea behind this theorem is that every polynomial of degree N (Eq. 3.1.7) has at least
one root. Every polynomial may be written as the product of a monomial root and a second polynomial of degree
of N− 1. By the recursive application of this concept, it is clear that every polynomial of degree N has N roots.
Today this result is known as the fundamental theorem of algebra:

Every polynomial equation P (z) = 0 has a solution in the complex numbers. As Descartes observed,
a solution z = a implies that P (z) has a factor z − a. The quotient

Q(z) = P (z)
z − a

= P (z)
a

[
1 + z

a
+
(z
a

)2
+
(z
a

)3
+ · · ·

]
(3.4.1)

is then a polynomial of one lower degree. . . . We can go on to factorize P (z) into n linear factors.

—Stillwell (2010, p. 285).

The ultimate expression of this theorem is given by Eq. 3.1.7 (p. 54), which indirectly states that an nth degree
polynomial has n roots. We shall use the term degree when speaking of polynomials and the term order when
speaking of differential equations. A general rule is that order applies to the time domain and degree to the
frequency domain, since the Laplace transform of a differential equation, having constant coefficients, of orderN ,
is a polynomial of degree N in Laplace frequency s.

Today this theorem is so widely accepted we fail to appreciate it. Certainly at about the time you learned the
quadratic formula, you were prepared to understand the concept of polynomials having roots. The simple quadratic
case may be extended to a higher-degree polynomial. The Octave/Matlab command roots([1, a2, a1, a0]) pro-
vides the roots [s1, s2, s3] of the cubic equation, defined by the coefficient vector [1, a2, a1, a0]. The command
poly([s1, s2, s3]) returns the coefficient vector. I don’t know the largest degree that can be accurately factored
numerically by Matlab/Octave, but I’m sure it’s well over N = 103. Today, finding the roots numerically is a
solved problem.

The best way to gain insight into the polynomial factorization problem is through the inverse operation, multi-
plication of monomials. Given the roots xk, there is a simple algorithm for computing the coefficients ak of PN (x)
for any n, no matter how large. This method is called convolution. Convolution is said to be a trapdoor function,
since it is easy, while the inverse, factoring (deconvolution), is hard and analytically intractable for degree N ≥ 5
(Stillwell, 2010, p. 102).

3.4.1 Convolution of monomials

As outlined by Eq. 3.1.7 (page 54), a polynomial has two equivalent descriptions, first as a series with coefficients
an and second as a product of monomial roots xr. The question is What is the relationship between the coefficients
and the roots? The simple answer is that they are related by convolution.

Let us start with the quadratic

(x+ a)(x+ b) = x2 + (a+ b)x+ ab, (3.4.2)

where in vector notation [−a,−b] are the roots and [1, a+ b, ab] are the coefficients.
To see how the result generalizes, we may work out the coefficients for the cubic (N = 3). Multiplying the

following three factors gives

(x−1)(x−2)(x−3) = (x2−3x+2)(x−3) = x(x2−3x+2)−3(x2−3x+2) = x3−6x2 +11x−6. (3.4.3)

When the roots are [1, 2, 3], the coefficients of the polynomial are [1,−6, 11,−6]. To verify, we can substitute
the roots into the polynomial and show that they give zero. For example, r1 = 1 is a root, since P3(1) =
1− 6 + 11− 6 = 0.

As the degree increases, the algebra becomes more difficult. Imagine trying to work out the coefficients for
N = 100. What is needed is a simple way of finding the coefficients from the roots. Fortunately, convolution
keeps track of the bookkeeping, formalizing the procedure, along with Newton’s deconvolution method for finding
the roots of polynomials (see p. 56).
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Convolution of two vectors: To obtain the coefficients by convolution we may write the monomial roots as vec-
tors [1, a] and [1, b]. Convolution is a recursive operation described by [1, a] ? [1, b], where ? denotes convolution.
The convolution of [1, a] ? [1, b] is done as follows: Reverse one of the two monomials, padding unused elements
with zeros. Next slide one monomial against the other, forming the local scalar product (element-wise multiply
and add):

a 1 0 0
0 0 1 b
= 0

a 1 0
0 1 b
= x2

a 1 0
1 b 0
= (a+ b)x

0 a 1
1 b 0
= abx0

0 0 a 1
1 b 0 0
= 0

,

resulting in coefficients [. . . , 0, 0, 1, a+ b, ab, 0, 0, . . .].
If we reverse one of the polynomials and then take successive scalar products, all the terms in the sum of the

scalar product correspond to the same power of x. This explains why the convolution of the coefficients gives the
same answer as the product of the polynomials.

As seen from the above example, the positions of the first monomial coefficients are reversed and then slid
across the second set of coefficients, the scalar product is computed, and the result is placed in the output vector.
Outside the range shown, all the elements are zero. In summary,

[1,−1] ? [1,−2] = [1,−1− 2, 2] = [1,−3, 2].

In general,
[a, b] ? [c, d] = [ac, bc+ ad, bd].

Convolving a third term [1,−3] with [1,−3, 2] gives (Eq. 3.4.3)

[1,−3] ? [1,−3, 2] = [1,−3− 3, 9 + 2,−6] = [1,−6, 11,−6],

which is identical to the cubic example found by the algebraic method.
When we convolve one monomial factor at a time, the overlap is always two elements; thus it is never necessary

to compute more than two multiplications and one addition for each output coefficient. This greatly simplifies the
operations (i.e., they are easily done in your head). Thus the final result is more likely to be correct. Comparing
this to the algebraic method, we see that convolution has the clear advantage.

Exercise #37
What three nonlinear equations would we need to solve to find the roots of a cubic?

Sol: From our formula for the convolution of three monomials, we may find the nonlinear deconvolution rela-
tionships between the roots [−a,−b,−c] and the cubic’s coefficients [1, α, β, γ]:15

(x+ a) ? (x+ b) ? (x+ c) = (x+ c) ? (x2 + (a+ b)x+ ab)
= x · (x2 + (a+ b)x+ ab) + c · (x2 + (a+ b)x+ ab)
= x3 + (a+ b+ c)x2 + (ab+ ac+ cb)x+ abc

= [1, a+ b+ c, ab+ ac+ cb, abc].

It follows that the nonlinear equations must be

α = a+ b+ c

β = ab+ ac+ bc

γ = abc.

These equations may be solved by the classic cubic solution, which therefore is a deconvolution problem, also
known as long division of polynomials. Therefore the following long division of polynomials must be true:

x3 + (a+ b+ c)x2 + (ab+ ac+ bc)x+ abc

x+ a
= x2 + (b+ c)x+ bc.

�

15By working with the negative roots, we may avoid an unnecessary and messy alternating sign problem.
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The product of a monomial P1(x) and a polynomial PN (x) gives PN+1(x): This is another way of stating the
fundamental theorem of algebra. Each time we convolve a monomial with a polynomial of degree N , we obtain
a polynomial of degree N + 1. The convolution of two monomials results in a quadratic (degree 2 polynomial).
The convolution of three monomials gives a cubic (degree 3). In general, the degree k of the product of two
polynomials of degree n,m is the sum of the degrees (k = n + m). For example, if the degrees are each 5
(n = m = 5), then the resulting degree is 10.

While we all know this theorem from high school algebra class, it is important to explicitly identify the
fundamental theorem of algebra.

Note that the degree of a polynomial is one less than the length of the vector of coefficients. Since the leading
term of the polynomial cannot be zero, or else the polynomial would not have degree N , when we look for roots,
the coefficient can (and should always) be normalized to 1.

In summary, the product of two polynomials of degree m,n having m and n roots is a polynomial of degree
m + n. This is an analysis process of merging polynomials by coefficient convolution. Multiplying polynomials
is a merging process into a single polynomial.

Composition of polynomials: Convolution is not the only important operation between two polynomials. An-
other is composition c(z) = f(z) ◦ g(z) = f(g(z)) which is defined for analytic functions f(z) and g(z). For
example suppose f(z) = 1 + z + z2 and g(z) = e2z . Thus

f(z) ◦ g(z) = 1 + e2z + (e2z)2 = 1 + e2z + e4z.

Note that f(z) ◦ g(z) 6= g(z) ◦ f(z).

Exercise #38
Find g(z) ◦ f(z).

Sol: e2f(z) = e2(1+z+z2) = e2e(1+z+z2) = e2ezez
2

�

3.4.2 Residue expansions of rational functions
As we discussed on page 63, there are eight important Matlab/Octave routines that are closely related: conv(),
deconv(), poly(), polyder(), polyval(), residue() and root(). Several of these are
complements of each other or do a similar operation in a slightly different way. The routines conv() and
poly() build polynomials from the roots, while root() solves for the roots given the polynomial coefficients.
The operation residue() expands the ratio of two polynomials in a partial fraction expansion, as poles and
residues.

When lines and planes are defined, the equations are said to be linear in the independent variables. In keeping
with this definition of linear, we say that the equations are nonlinear when the equations have degree greater than
1 in the independent variables. The term bilinear has a special meaning: Both the domain and codomain are
linearly related by lines (or planes). As an example, impedance is defined in frequency as the ratio of the voltage
over the current, but it often has a representation as the ratio of two polynomials, N(s) and D(s):

Z(s) = N(s)
D(s) = sLo +Ro +

K∑
k=0

Kk

s− sk
. (3.4.4)

Here Z(s) is the impedance, V and I are the voltage and current at radian frequency ω, andKk, sk are the residues
and eigenvalues.16

Such an impedance is typically specified as a rational or bilinear function—namely, the ratio of two polyno-
mials, PN (s) = N(s) = [aN , an−1, . . . , ao] and PK(s) = D(s) = [bK , bK−1, . . . , bo] of degrees N,K ∈ N, as
functions of complex Laplace frequency s = σ + ω with simple roots. Most impedances are rational functions,
since they may be written asD(s)V = N(s)I . SinceD(s) andN(s) are both polynomials in s, a rational function
is also called a bilinear transformation, or in the mathematical literature a Möbius transformation, which comes
from a corresponding scalar differential equation of the form

K∑
k=0

bk
dk

dtk
i(t) =

N∑
n=0

an
dn

dtn
v(t) ↔ I(ω)

K∑
k=0

bks
k = V (ω)

N∑
n=0

ans
n. (3.4.5)

16Note that the relationship between the impedance and the residues Kk is a linear one, ideally solved by setting up a linear system of
equations in the unknown residues.
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This construction is also known as the ABCD method in the engineering literature (Eq. 3.8.1, p. 107). This
equation, as well as Eq. 3.4.4, follows from the Laplace transform (see p. 117) of the differential equation (on
left) by forming the impedance Z(s) = V/I = A(s)/B(s). This form of the differential equation follows from
Kirchhoff’s voltage and current laws (KCL, KVL) or from Newton’s laws (for the case of mechanics).

Impedance is a very important and general concept. It is typically defined as the
ratio of the change in voltage across a device, over the current through the device,
which is known as Ohm’s law. However it applies to many more physical vari-
ables than just electricity (see Table 3.2, p. 110), which leads to the concept of a
generalized impedance.
It began as the real ratio of the voltage drop over the current through, but by at
least 1893 it was realized that complex numbers could be used to represent the
complex impedance of inductors (mass) and capacitors (springs) (Heaviside, 1892;
Kennelly, 1893). As we explore more deeply it is is likely that Maxwell understood
this concept as well, since he first formulated his famous equations of electricity
using complex analysis (Maxwell, 1865).
Since impedance is the ratio of a force over a flow, it does not directly depend on
either the force or the flow. Rather it is the complex, frequency dependent propor-
tionality factor between them:

force = Z(s) · flow with s, Z(s) ∈ C,

where s = σ + ω is the Laplace frequency.

The physical properties of an impedance: Based on d’Alembert’s observation that the solution to the wave
equation is the sum of forward and backward traveling waves, the impedance may be rewritten in terms of forward
and backward traveling waves (see p. 141):

Z(s) = V

I
= V + + V −

I+ − I−
= ro

1 + Γ(s)
1− Γ(s) , (3.4.6)

where ro = V +/I+ is called the characteristic impedance of the transmission line (e.g., wire) connected to the
load impedance Z(s), and Γ(s) = V −/V+ = I−/I+ is the reflection coefficient corresponding to Z(s). Any
impedance of this type is called a Brune impedance due to its special properties (Brune, 1931a; Van Valkenburg,
1964a). Like Z(s), Γ(s) is causal and complex analytic. The impedance and the reflectance function Γ(s) must
both be complex analytic, since they are related to the bilinear transformation, which ensures the mutual complex
analytic properties.

Due to the bilinear transformation, the physical properties of Z(s) and Γ(s) are very different. Specifically,
the real part of the load impedance is nonnegative (<{Z(ω)} ≥ 0) if and only if |Γ(s)| ≤ 1. In the time-domain,
the impedance z(t) ↔ Z(s) must have a value of ro at t = 0. Correspondingly, the time-domain reflectance
γ(t)↔ Γ(s) must be zero at t = 0.

This is the basis of conservation of energy, which may be traced back to the properties of the reflectance Γ(s).

Exercise #39
Show that if <{Z(s)} ≥ 0, then |Γ(s)| ≤ 1.

Sol: Taking the real part of Eq. 3.4.6, which must be ≥ 0, we find

<{Z(s)} = ro
2

[
1 + Γ(s)
1− Γ(s) + 1 + Γ∗(s)

1− Γ∗(s)

]
= ro

1− |Γ(s)|2

|1 + Γ(s)|2 ≥ 0.

Thus |Γ| ≤ 1. �

3.5 Introduction to analytic geometry
Analytic geometry came about as Euclid’s geometry merged with algebra. The combination of Euclid’s (323 BCE)
geometry and al-Khwarizmi’s (830 CE) algebra resulted in a totally new and powerful tool, analytic geometry,
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independently worked out by Descartes and Fermat (Stillwell, 2010). The development of matrix algebra during
the 18th century, enabled an analysis in more than three dimensions. Due to modern computation, today this is
one of the most powerful tools used in artificial intelligence, data science, and machine learning. The utility and
importance of these new tools cannot be overstated. The timeline for this period of development in mathematics
is shown in Fig. 1.2 (see p. 5).

There are many important relationships between Euclidean geometry and 16th-century algebra. Table 3.1 is
an attempt at a detailed comparison. Important similarities include vectors, their Pythagorean lengths [a, b, c],

c =
√

(x2 − x1)2 + (y2 − y1)2, (3.5.1)

a = x2 − x1, and b = y2 − y1, and the angles. Euclid’s geometry had length and angles but no concept of
coordinates or thus of vectors. One of the main innovations of analytic geometry is that we could compute with
real, and soon after, complex numbers, first observed in the completion of squares, Eq. 3.1.9 (page 54).

3.5.1 Merging the concepts
Several new concepts came with the development of analytic geometry:

1. Composition of functions: If y = f(x) and z = g(y), then the composition of functions f and g is denoted
z(x) = g ◦ f(x) = g(f(x)).

2. Elimination: Given two functions f(x, y) and g(x, y), elimination removes either x or y. This procedure,
well known to the Chinese, is now known as Gaussian elimination.

3. Intersection: One may speak of the intersection of two lines to define a point or two planes to define a line.
This is a special case of elimination when the functions f(x, y) and g(x, y) are linear in their arguments.
The term intersection is also an important but very different from the meaning of the term as used in set
theory.

4. Vectors: Analytic geometry provides the concept of a vector (see Appendix A.3.1, p. 221) as a line with
length and orientation (i.e., direction). Analytic geometry defines vectors in any number of dimensions as
ordered sets of points.

5. Scalar products of vectors: Analytic geometry extends the ideas of Euclidean geometry with the introduction
of the scalar (dot) product of two vectors f ·g and the scalar wedge-product f ∧g. The vector wedge-product
adds a unit vector ⊥ the plane of the two vectors (Fig. 3.4)

f ∧ gẑ.
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Table 3.1: An ad hoc comparison of Euclidean geometry and analytic geometry. I am uncertain of the classification of the items in the
third column.

Euclidean geomerty: R3 Analytic geometry: Rn Uncertain

Proof

Line length

Line intersection

Point

Projection (scalar product)

Line direction

Vector (sort of)

Conic section

Square roots
(spiral of Theodorus)

Numbers

Algebra

Power series

Analytic functions

Complex analytic functions:
sin θ, cos θ, eθ, log z
Scalar product

Wedge (scalar) productA fB

Generalized scalar product (Eq. 3.5.5)

Normed vector spaces

Composition

Elimination

Integration

Derivatives

Calculus

Polynomial ∈ C
Fundamental theorem of algebra

Recursion

Iteration ∈ C2,
Newton’s method

Appximation:
(Least squares)

What algebra also added to geometry was the ability to compute with complex (polar) numbers. For example,
in geometry the length of a line (Eq. 3.5.1) was measured with a compass; numbers played no role. Once algebra
was available, the line’s Euclidean length could be computed numerically, directly from the coordinates of the two
ends, defined by the 3-vector

e = xx̂ + yŷ + zẑ = [x, y, z]T ,

which represents a point at (x, y, z) ∈ R3 ⊂ C3 in three dimensions, having direction from the origin (0, 0, 0) to
(x, y, z). An alternative matrix notation is e = [x, y, z]T , a column vector of three numbers. These two notations
are different ways of representing a vector e.

By defining the vector, analytic geometry allows Euclidean geometry to become quantitative, beyond the
physical drawing of an object (e.g., a sphere, triangle, or line). With analytic geometry we have the Euclidean
concept of a vector, a line that has a magnitude (length) and direction (angle), but analytic, defined in terms of
physical coordinates (i.e., numbers). The difference between two vectors (x − y) defines a third vector form, a
concept already present in Euclidean geometry. For the first time, complex numbers were allowed into geometry
(but rarely used before Cauchy and Riemann).

Scalar product of two vectors: When we use algebra, many concepts that are obvious with Euclid’s geometry
may be made precise. There are many examples of how algebra extends Euclidean geometry, the most basic being
the scalar product (also known as the dot product) between vectors x ∈ R3 and κ ∈ C3:

x · κ = (xx̂ + yŷ + zẑ) · (αx̂ + βŷ + γẑ) ∈ C
= αx+ βy + γz.

Scalar products play an important role in vector algebra and calculus.
In vector notation the scalar product is written as (see Appendix A.3, p. 221).

x · κ =

xy
z

T αβ
γ

 =
[
x, y, z

] αβ
γ

 = αx+ βy + γz. (3.5.2)

If κ(s) ∈ C3 is a complex function of frequency s, then the scalar product is a complex function of s.
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θ

L∗

A ·B = ||A|| ||B|| cos θ ∈ R

C = A ∧B ẑ = ||A|| ||B|| sin θ ẑ ∈ R

A
∧
B

A

B

Vector product: ⊥ AB plane

Scalar product: InAB plane

ŷ
x̂

ẑ

Figure 3.4: Vectors A,B,C ∈ C are used to define the scalar product A · B ∈ C and the scalar wedge-product A ∧ B ∈ C. The
scalar wedge-product is the same as the vector cross-product except the output is a scalar. As shown, the scalar dot and wedge-products
complement each other, since one is proportional to the sine of the angle θ between them, and the other to the cosine. The dot product
computes the projection of one vector on the other (the length of the base of the triangle formed by the two vectors), while the vector
wedge-product A ∧ B computes the area of the right triangle (area = base · height = A ·B L∗) formed by the two vectors. Thus
|A ·B|2 + |A∧B|2 = ||A||2||B||2. The scalar triple productC · (A×B) represents the volume of the parallelepiped (i.e., prism) defined
by the three vectorsA,B, and C. When all the angles are 90◦, the volume becomes a cuboid.

Norm (length) of a vector: The norm of a vector

||e|| ≡ +
√

e · e ≥ 0

is defined as the positive square root of the scalar product of the vector with itself (see Appendix A.3). This is a
generalization of the length, in any number of dimensions, that forces the sign of the square root to be nonnegative.
The length is a concept of Euclidean geometry, and it must always be positive and real. A complex (or negative)
length is not physically meaningful. More generally, the Euclidean length of a line is given as the norm of the
difference between two real vectors e1, e2 ∈ R:

||e1 − e2||2 = (e1 − e2) · (e1 − e2)
= (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≥ 0. (3.5.3)

From this formula we see that the norm of the difference of two vectors is a compact expression for the Euclidean
length. A zero-length vector, such as a point, is the result of the fact that

||x− x||2 = (x− x) · (x− x) = 0.

Integral definition of a scalar product: Following Euclid, we only considered a vector to be a set of elements
{xn} ∈ R, index over n ∈ N. Starting with Fig. 3.4 we assume the vectors are in C.

An obvious question presents itself: Can we extend our definition of vectors to differentiable functions (i.e.,
f(t) and g(t)) indexed over t ∈ R with coefficients labeled by t ∈ R rather than by n ∈ N? Clearly, if the
functions are analytic, there is no obvious reason that this should be a problem, since analytic functions may be
represented by a convergent series that has Taylor coefficients and thus are integrable term by term.

Specifically, under certain conditions, the function f(t) may be thought of as a vector, defining a normed
vector space called a Hilbert space. This intuitive and somewhat obvious idea is powerful. In this case the scalar
product can be defined in terms of the integral

f(t) · g(t) =
∫
t

f(t)g(t)dt

= ||f(t)|| ||g(t)|| cos θ

summed over t ∈ R, rather than a sum over n ∈ N.
This definition of the vector scalar product allows for a significant but straightforward generalization of our

vector space, which will turn out to be both useful and an important extension of the concept of a normed vector
space. In this space we can define the derivative of a norm with respect to t, which is not possible for the discrete
case, indexed over n. The distinction introduces the concept of analytic continuity in the index t, which also fails
to exist for the discrete index n ∈ N.
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Pythagorean theorem and the Schwarz inequality: Regarding Fig. 3.4, suppose we compute the difference
between vector A ∈ R and αB ∈ R as L = ||A − αB|| ∈ R, where α ∈ R is a scalar that modifies the length
of B. We seek the value of α, which we denote as α∗, that minimizes the length of L. From simple geometrical
considerations, L(α) will be minimum when the difference vector is perpendicular to B, as shown in the figure
by the dashed line from the tip ofA ⊥ B.

To show this algebraically, we write the expression for L(α), take the derivative with respect to α, and set it
to zero, which gives the formula for α∗. The argument does not change, but the algebra greatly simplifies if we
normalizeA andB to be unit vectors a = A/||A|| and b = B/||B||, which each have norm = 1:

L2 = (a− αb) · (a− αb) = 1− 2αa · b+ α2. (3.5.4)

Thus the length is shortest (L = L∗, as shown in Fig. 3.4) when

d

dα
L2
∗ = −2a · b+ 2α∗ = 0.

Solving for α∗ ∈ R, we find α∗ = a · b. Since L∗ > 0 (a 6= b), Eq. 3.5.4 becomes

1− 2|a · b|2 + |a · b|2 = 1− |a · b|2 > 0.

In terms ofA andB this is |A ·B| < ||A|| ||B|| cos θ, as shown adjacent toB in Fig. 3.4.
In conclusion, cos θ ≡ |a · b| < 1. Thus the scalar product between two vectors is their direction cosine.

Furthermore, since this forms a right triangle, the Pythagorean theorem must hold. The triangle inequality says
that the sum of the lengths of the two sides must be greater than the length of the hypotenuse. Note that Θ ∈ R 6∈ C.
Equality cannot be obtained because in Fourier space the scalar product defines an open set, which gives rise to
Gibbs ringing in the time domain (Greenberg, 1988, p. 854). This derivation is an abbreviated version of a related
discussion on p. 93.

Vector cross (×) and wedge (∧) products of two vectors: The vector product (cross-product) A×B and the
exterior product (wedge-product)A∧B are the second and third types of vector products. As shown in Fig. 3.4,

C = A×B = (a1x̂ + a2ŷ + a3ẑ)× (b1x̂ + b2ŷ + b3ẑ) =

∣∣∣∣∣∣
x̂ ŷ ẑ
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
is ⊥ to the plane defined by A and B. The cross-product is strictly limited to two input vectors A and B ∈ R2

taken from three real dimensions (i.e., R3).
The exterior (wedge) product generalizes the cross-product, since it may be defined in terms of any two vectors

A,B ∈ C2 taken from n dimensions (Cn) with output in C1. Thus the cross-product is composed of three wedge-
products.

From this specific example we see that the absolute value of the wedge-product |a ∧ b| = ||a × b||; namely,

|(a2ŷ + a3ẑ) ∧ (b2ŷ + b3ẑ)| = ||a × b|| = ||a|| ||b|| | sin θ|.

The wedge product is especially useful because it is zero when the two vectors are colinear: that is, x̂∧ x̂ = 0 and
x̂ ∧ ŷ = 1, where x̂ and ŷ are unit vectors.

Since
a · b = ||a|| ||b|| cos θ and a ∧ b = ||a|| ||b|| sin θ,

it follows that
a · b + a ∧ b = ||a|| ||b|| eθ,

which may be viewed as a generalized complex scalar product ∈ C, with the right-hand side the polar form.
The main advantage of the wedge-product is that it is valid in n ≥ 3 dimensions since it is defined for any two

vectors in any number of dimensions.

Scalar triple product: The triple of a third vector C with the vector productA×B ∈ R is

C · (A×B) =

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ∈ R3,

which equals the volume of a parallelepiped.
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3.5.2 Generalized scalar product
As shown in Fig. 3.4, any two vectors A,B ∈ {x̂, ŷ} define a plane. There are two types of scalar products:17

the scalar dot product
A ·B = ||A|| ||B|| cos θ ∈ R,

and the scalar wedge product18

A ∧B = ||A|| ||B|| sin θ ∈ R.

As shown in the figure, these two products form a right triangle and thus may be naturally merged, defining the
complex analytic scalar product

AfB = A ·B + A ∧B = ||A|| ||B||eθ ∈ C. (3.5.5)

Important examples, based on the Poynting theorem, come from Maxwell’s equations

P = E fH = E ·H + E ∧H [W/m2]

(Sommerfeld, 1952, p. 26), and the corresponding momentum equation (Johnson et al., 1994)

M = D fB = D ·B + D ∧B = 1
c2o

P [J s/m4].

While the solar constant P = 1.3 [kW/m2] is large, solar gravity, which follows from Maxwell’s equations, is
1/c2o = 1.1× 10−17 smaller.

Example: If we defineA = 3x̂− 2ŷ + 0ẑ andB = 1x̂ + 1ŷ + 0ẑ, then the cross-product is

A×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
3 −2 0
1 1 0

∣∣∣∣∣∣ = (3+ 2)ẑ.

Since a1 ∈ C, this example violates the common assumption that A ∈ R3. The wedge-product A ∧B takes two
vectors and returns a scalar, which is the magnitude of a vector ⊥ to the plane defined by the two input vectors
(see Fig. 3.4). It is defined as

A ∧B =
∣∣∣∣a1 b1
a2 b2

∣∣∣∣ =
∣∣∣∣ 3 1
−2 1

∣∣∣∣
= (3x̂− 2ŷ) ∧ (x̂ + ŷ)

= 3 · 0����:
0

x ∧ x− 2ŷ ∧ x̂ + 3x̂ ∧ ŷ− 2���:0ŷ ∧ ŷ
= (3+ 2)||x̂ ∧ ŷ||
= (3+ 2)||ẑ|| = 3+ 2.

This defines a compact and useful algebra (Hestenes, 2003).

Impact of Analytic Geometry: The most obvious impact of analytic geometry was its detailed analysis of
the conic sections using algebra rather than drawings with a compass and ruler. An important example is the
composition of the line and circle, a venerable pre-Euclid construction.

Once algebra was invented, analysis could be done using formulas. With analysis came complex numbers.
The first two mathematicians to appreciate this mixture of Euclid’s geometry and the new algebra were Fermat

and Descartes (Fig. 1.5, p. 9). Soon Newton contributed to this effort by adding physics (e.g., calculations in
acoustics, orbits of the planets, and the theory of gravity and light, significant concepts for 1687) (Stillwell, 2010,
p. 115-117)).

Given these new methods, many new solutions to problems emerged. The complex roots of polynomials
continued to appear, without any obvious physical meaning. Newton called them imaginary. Complex numbers
seem to have been viewed as an inconvenience. Newton’s solution to this dilemma was to simply ignore the
“imaginary” cases (Stillwell, 2010, p. 115–19).

17https://en.wikipedia.org/wiki/Bivector
18In some texts the wedge-product is called the vector exterior-product.
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3.5.3 Development of Analytic Geometry
The first “algebra” (al-jabr) is credited to al-Khwarizmi (830 CE). Its invention advanced the theory of polynomial
equations in one variable, Taylor series, and composition versus intersections of curves. The solution of the
quadratic equation had been worked out thousands of years earlier, but with algebra a general solution could be
defined. The Chinese had found the way to solve several equations in several unknowns—for example, finding the
values of the intersections of two circles. With the invention of algebra by al-Khwarizmi, a powerful tool became
available to solve more difficult problems.

In algebra there are two contrasting operations on functions: composition and elimination (e.g., intersection).

Composition:

Composition is the merging of functions by feeding one into the other. If the two functions are f and g, then their
composition is indicated by f ◦ g, meaning the function y = f(x) is substituted into the function z = g(y), giving
z = g(f(x)).

Composition is not limited to linear equations, even though that is where it is most frequently applied. That
requires solving for that substitution variable, which is not always possible in the case of nonlinear equations.
However, many tricks are available that may work around this restriction. For example, if one equation is in x2

and the other in x3 or
√
x, it may be possible to multiply the first by x or square the second. The point is that one

of the variables must be isolated so that when it is substituted into the other equation, the variable is removed from
the mix.

Example: Let y = f(x) = x2 − 2 and z = g(y) = y + 1. Then

g ◦ f = g(f(x)) = (x2 − 2) + 1 = x2 − 1. (3.5.6)

In general, composition does not commute (i.e., f ◦ g 6= g ◦ f ), as is easily demonstrated. Swapping the order of
composition for our example gives

f ◦ g = f(g(y)) = z2 − 2 = (y + 1)2 − 2 = y2 + 2y − 1. (3.5.7)

Intersection:

Complementary to composition is intersection (i.e., decomposition). For example, the intersection of two lines is
defined as the point where they meet. This is not to be confused with finding roots. A polynomial of degree N
has N roots, but the points where two polynomials intersect has nothing to do with the roots of the polynomials.
The intersection is a function (equation) of lower degree, implemented by Gaussian elimination.

A system of linear equations Ax = y has many interpretations, and one should not be biased by the notation.
As engineers, we are trained to view x as the input and y as the output. Then y = Ax seems natural, much like
the functional relationship y = f(x). But what does the linear relationship x = Ay mean, when x is the input?
The answer is y = A−1x.

But when we work with systems of equations, there are many uses of equations, and we need to be more
flexible in our interpretation. For example, y = A2x has a useful meaning, and in fact we saw this type of
relationship we worked with Pell’s equation (p. 42) and the Fibonacci sequence (p. 43). As another example,
consider [

z1
z2

]
=
[
a1x a1y
a2x a2y

] [
x
y

]
,

which is reminiscent of a two-dimensional surface z = f(x, y). We shall find that such generalizations are much
more than a curiosity.

Intersection of two lines: Unless they are parallel, two lines meet at a point. In terms of linear algebra, this may
be written as two linear equations19 (on the left) along with the intersection point [x1, x2]T given by the inverse of
the 2× 2 set of equations (on the right):[

a b
c d

] [
x1
x2

]
=
[
y1
y2

] [
x1
x2

]
= 1

∆

[
d −b
−c a

] [
y1
y2

]
. (3.5.8)

By substituting the expression for the intersection point [x1,x2]T into the original equation, we see that it satisfies
the equations. Thus the equation on the right is the solution to the equation on the left.

19When we write the equation Ax = y in matrix format, the two equations are ax1 + bx2 = y1 and dx1 + ex2 = y2 with unknowns
(x1, x2), whereas in the original equations ay + bx = c and dy + ex = f , the unknowns are y and x. Thus in matrix format, the names are
changed. The first time you see this scrambling of variables, it can be confusing.
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Elimination:

Note the structure of the inverse: (1) The diagonal values (a, d) are swapped, (2) the off-diagonal values (b, c) are
negated, and (3) the 2×2 matrix is divided by the determinant ∆ = ad− bc. If ∆ = 0, there is no solution. When
the determinant is zero (∆ = 0), the slopes of the two lines

slope = b

a
= d

c

are equal; thus the lines are parallel. Only if the slopes differ can there be a unique solution.
Algebra can give the solution when geometry cannot. When the two curves fail to intersect on the real plane,

the solution still exists, but it is complex-valued. In such cases, geometry, which considers only the real solutions,
fails. For example, when the coefficients [a, b, c, d] are complex, the solution exists but the determinant can be
complex. Thus algebra is much more general than geometry. Geometry fails when the solution has a complex
intersection.

3.5.4 Applications of scalar products

Another important example of algebraic expressions in mathematics is Hilbert’s generalization of the Pythagorean
theorem (Eq. 1.1.1), known as the Schwarz inequality and shown in Fig. 3.5. What is special about this general-
ization is that it proves that when the vertex is 90◦, the Euclidean length of the leg is minimum.

Vectors may be generalized to have∞ dimensions. For example U = [u1, u2, . . . , u∞], V = [v1, v2, . . . , v∞].
The Euclidean inner product (i.e., scalar product) between two such vectors generalizes the finite-dimensional case

U ·V =
∞∑
k=1

ukvk = ‖U‖‖V‖ cos θ

where θ ∈ R is the multivalued angle between the two normalized (unit) vectors

θ = cos−1
(

U
‖U‖ ·

V
‖U‖

)
.

As with the finite case the norm ||U|| =
√

U ·U =
√∑

u2
k, the scalar product of the vector with itself,

defines the length of the infinite component vector. There is an issue of convergence when the norm of the vectors
is zero.

It is a somewhat arbitrary requirement that a, b, c ∈ R for (Eq. 1.1.1). This seems natural enough, since the
sides are lengths. But, what if these lengths are taken from high–dimensionality complex vectors, as for the lossy
vector wave equation or the lengths of vectors in the Fourier transform (F T ) ∈ Cn? Then the equation generalizes
to K →∞ dimensions

c · c = ||c||2 =
K→∞∑
k=1

|ck|2.

As before, ||c|| =
√
||c||2 is the norm of vector c, akin to a length, which must be finite (converge). This is simply

the important case of complex analytic functions, which also must converge.

V + α∗U

|V ·U|/||V||

U
α∗U

E
(α
∗ )

=
V
−
α
∗
U

E(α) =
V
−
αU

V

αU

Figure 3.5: The Schwarz inequality is related to the shortest distance (length of a line) between the ends of the two vectors. ||U || =
√
U · U

is the scalar product of that vector with itself.
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Schwarz inequality: The Schwarz inequality says that the magnitude of the inner product of two vectors is less
than or equal to the product of their lengths:

|U · V | ≤ ||U || ||V ||.

This may be simplified by normalizing the vectors to have unit length (Û = U/||U ||, V̂ = V/||V ||), in which case
−1 < Û · V̂ ≤ 1. Another simplification is to define the scalar product in terms of the direction cosine

cos θ = |Û · V̂ | ≤ 1.

From these definitions we may define the minimum difference between the two vectors as the perpendicular
from the end of the first to the intersection with the second. As shown in Fig. 3.5, U ⊥ V may be found by
minimizing the length of the vector difference:

min
α
||V − αU ||2 = ||V ||2 + 2αV · U + α2||U ||2 > 0

0 = ∂α (V − αU) · (V − αU)
= V · U − α∗||U ||2

∴ α∗ = V · U/||U ||2.

The Schwarz inequality follows:

Imin = ||V − α∗U ||2 = ||V ||2 − |U · V |
2

||U ||2
> 0 (3.5.9)

0 ≤ |U · V | ≤ ||U || ||V ||.

An important example of such a vector space includes the definition of the F T where we may set

U(ω) = e−ω0t V (ω) = eωt U · V =
∫
ω

eωte−ω0t
dω

2π = δ(ω − ω0).

It seems that the Fourier transform is a result that follows from a minimization, unlike the Laplace transform,
which follows from causality. This explains the important differences between the two in terms of their properties
(unlike the LT , the F T is not complex analytic). Recall that

U · V + U ∧ V = ||U || ||V ||eθ.

3.5.5 Gaussian Elimination
The method for finding the intersection of equations is based on the recursive elimination of all the variables but
one. This method, known as Gaussian elimination (Appendix 5, p. 224), works across a broad range of cases but
may be defined as a systematic algorithm when the equations are linear in the variables (Strang et al., 1993). Rarely
do we even attempt to solve problems in several variables of degree greater than 1. But Gaussian elimination may
still work in such cases (Stillwell, 2010, p. 90).

In Appendix 3.6.5 (p. 99) we derive the inverse of a 2 × 2 linear system of equations. Even for a 2 × 2 case,
the general solution requires a great deal of algebra. Working out a numeric example of Gaussian elimination is
more instructive. For example suppose we wish to find the intersection of the two equations

x− y = 3
2x+ y = 2.

This 2 × 2 system of equations is so simple that you may immediately visualize the solution: By adding the two
equations, y is eliminated, leaving 3x = 5. But doing it this way takes advantage of the specific example, and
we need a method for larger systems of equations. We need a generalized (algorithmic) approach. This general
approach is called Gaussian elimination.

We start by writing the equations in matrix form (note this is not in the form Ax = y):[
1 −1
2 1

] [
x
y

]
=
[
3
2

]
. (3.5.10)
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Next, we eliminate the lower left term (2x) using a scaled version of the upper left term (x). Specifically, we
multiply the first equation by −2 and add it to the second equation, replacing the second equation with the result.
This gives [

1 −1
0 3

] [
x
y

]
=
[

3
2− 3 · 2

]
=
[

3
−4

]
. (3.5.11)

Note that the top equation did not change. Once the matrix is “upper triangular” (zero below the diagonal), we
have the solution. If we start from the bottom equation, y = −4/3. Then the upper equation gives x−(−4/3) = 3
or x = 3− 4/3 = 5/3.

In principle, Gaussian elimination is easy, but if you make a calculation mistake along the way, it is very
difficult to find your error. The method requires a lot of mental labor, and you have a high probability of making
a mistake. Thus you do not want to apply this method every time. For example, suppose the elements are
complex numbers or polynomials in some other variable such as frequency. Once the coefficients become more
complicated, the seemingly trivial problem becomes corrosive. There is a much better way that is easily verified;
it puts all the numerics at the end in a single step.

The above operations may be automated by finding a carefully chosen upper-diagonalized matrix G. For
example, we can define the Gaussian matrix that zeros the element 2 in the matrix in Eq. 3.5.10. More generally
let

G =
[
1 0
a 1

]
. (3.5.12)

Multiplying Eq. 3.5.10 by G, we find[
1 0
a 1

] [
1 −1
2 1

] [
x
y

]
=
[

1 −1
a+ 2 1− a

] [
x
y

]
=
[

3
3a+ 2

]
. (3.5.13)

Thus we obtain Eq. 3.5.11 if we let a = −2 (we choose a to force the lower left to be zero). At this point we can
either back-substitute and obtain the solution, as we did above, or find a matrix L that finishes the job by removing
elements above the diagonal. Note that the determinant of matrix G is 1, thus it will always have an inverse.

Exercise #40
Using G and A from the discussion above, show that det(G) = det(GA) = 3.

Sol: A common convention is to denote det(A) = |A|. The two sides of the identity are

|A| = det
[
1 −1
2 1

]
= 1 + 2 = 3, |GA| = det

[
1 −1
0 3

]
= 3,

and |G| = 1. Thus |GA| = |G||A| = 3. �

Matrix inverse: In Appendix 3.6.5 (p. 99), finding the inverse of a general 2 × 2 matrix takes three steps: (1)
swap the diagonal elements, (2) reverse the signs of the off-diagonal elements, and (3) divide by the determinant
∆ = ab− cd. Specifically, [

a b
c d

]−1
= 1

∆

[
d −b
−c a

]
. (3.5.14)

There are very few things that you must memorize, but the inverse of a 2× 2 matrix is one of them. It needs to be
in your mental toolkit, like completing the square (see p. 54).

While it is difficult to compute the inverse matrix from scratch (see Appendix 5), it takes only a few seconds
(four dot products) to verify it (steps 1 and 2):[

a b
c d

] [
d −b
−c a

]
=
[
ad− bc −ab+ ab
cd− cd −bc+ ad

]
=
[
∆ 0
0 ∆

]
. (3.5.15)

Thus dividing by the determinant gives the 2× 2 identity matrix. A good strategy (don’t trust your memory) is to
write down the inverse as best you recall and then verify.

Using the 2× 2 matrix inverse on our example (Eq. 3.5.10), we find[
x
y

]
= 1

1 + 2

[
1 1
−2 1

] [
3
2

]
= 1

3

[
5

−6 + 2

]
=
[

5/3
−4/3

]
. (3.5.16)

If you use this method, you will rarely (never) make a mistake and the solution is easily verified.
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Augmented matrix: There is one minor notational improvement. Rather than writing the matrix equation as
Eq. 3.5.10 (Ax = y), we place the y vector next to the elements of A to remove the equal sign, which is cumber-
some. In this case we write GAaug:

GAaug =
[

1 0
−2 1

] [
1 −1 3
2 1 2

]
=
[

1 −1 3
0 3 −4

]
.

3.6 Matrix algebra: Systems

3.6.1 Vectors
Vectors as columns of ordered sets of scalars ∈ C. When we write them out in text, we typically use row notation,
with the transpose symbol:

[a, b, c]T =

ab
c

 .
This is strictly to save space on the page. The notation for conjugate transpose is †, for exampleab

c

† =
[
a∗ b∗ c∗

]
.

The above example is said to be a 3-dimensional vector because it has three components.

Row vs. column vectors: With rare exceptions, vectors are columns, denoted column-major.20 To avoid confu-
sion, it is a good rule to make your mental default column-major, in keeping with most signal processing (vector-
ized) software.21 Column vectors are the unstated default of Matlab/Octave, only revealed when matrix operations
are performed. The need for the column (or row) major is revealed as a consequence of efficiency when accessing
long sequences of numbers from computer memory. For example, when forming the sum of many numbers using
the Matlab/Octave command sum(A), where A is a matrix, Matlab/Octave operates on the columns, returning a
row vector of column sums:

sum

[
1 2
3 4

]
= [4, 6].

If the data were stored in row-major order, the answer would be the column vector
[
3
7

]
. Thus Matlab/Octave is

column-major by default.

3.6.2 Vector products
A scalar product (aka dot product) is defined to “weight” vector elements before summing them, resulting in a
scalar. The transpose of a vector (a row-vector) is typically used as a scale factor (i.e., weights) on the elements
of a vector. For example, 1

2
−1

 ·
1

2
3

 =

 1
2
−1

T 1
2
3

 =
[
1 2 −1

] 1
2
3

 = 1 + 2 · 2− 3 = 2.

A more interesting example defines a polynomial1
2
4

 ·
 1
s
s2

 =

1
2
4

T  1
s
s2

 =
[
1 2 4

]  1
s
s2

 = 1 + 2s+ 4s2.

Polar scalar product: The vector-scalar product in polar coordinates is (Fig. 3.4, p. 88)

B ·C = ‖B‖ ‖C‖ cos θ ∈ R,

where cos θ ∈ R is called the direction-cosine betweenB and C.
20https://en.wikipedia.org/wiki/Row-_and_column-major_order
21In contrast, reading words in English is ‘row-major.’
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Polar wedge product: The vector wedge product in polar coordinates is (Fig. 3.4, p. 88)

B ∧C = ‖B‖ ‖C‖ sin θ ∈ R,

where sin θ ∈ R is therefore the direction-sine betweenB and C.

Complex polar scalar product: From these two polar definitions and eθ = cos θ +  sin θ,

B ·C + B ∧C = ||B||||C|| es.

Hence
|B ·C|2 + |B ∧C|2 = |‖B‖2 ‖C‖2 cos2 θ|+ |‖B‖2 ‖C‖2 sin2 θ| = ||B||2||C||2.

This relationship holds true in any vector space, of any number of dimensions, containing vectors B and C. In
this case s = σ + ω ∈ C can be the Laplace frequency. Jaynes (1991) has an relevant discussion about this type
of scalar product.

3.6.3 Norms of vectors

The norm of a vector is the scalar product of the vector with itself

‖A‖ =
√
A ·A ≥ 0,

forming the Euclidean length of the vector.22

Euclidean distance between two points in R3: The scalar product of the difference between two vectors (A−
B) · (A−B) is the Euclidean distance between the points they define

‖A−B‖ =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.

Triangle inequality

‖A+B‖ =
√

(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 ≤ ‖A‖+ ‖B‖.

In terms of a right triangle this says the the sum of the lengths of the two sides is greater to the length of the
hypotenuse, and equal when the triangle degenerates into a line.

Vector cross product: The vector product (aka cross product)A×B = ‖A‖ ‖B‖ sin θ is defined between the
two vectorsA andB. In Cartesian coordinates

A×B = det

∣∣∣∣∣∣
x̂ ŷ ẑ
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .

The triple product: This is defined between three vectors as

A · (B ×C) = det

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
This may be indicated without the use of parentheses, since there can be no other meaningful interpretation.
However for clarity, parentheses should be used. The triple product is the volume of the parallelepiped (3D-crystal
shape) outlined by the three vectors, as shown in Fig. 3.4 p. 88.

22This leaves open the interpretation of the curly-norm ‖A‖ =
√
A fA ≥ 0. The obvious answer is in the properties of the Schwarz

inequality, which has a complex analytic angle θ ∈ C( 6∈ R).



3.6. MATRIX ALGEBRA OF SYSTEMS 97

Dialects of vector notation: Physical fields are, by definition, functions of space x [m], and in the most
general case, time t [s]. When Laplace transformed, the fields become functions of space and complex fre-
quency (e.g., E(x, t) ↔ E(x, s)). As before, there are several equivalent vector notations. For example,
E(x, t) =

[
Ex, Ey, Ez

]T = Ex(x, t)x̂ + Ey(x, t)ŷ + Ez(x, t)ẑ is “in-line,” to save space. The same
equation may written in “displayed” notation as:

E(x, t) =

Ex(x, t)
Ey(x, t)
Ez(x, t)

 =

ExEy
Ez

 (x, t) =
[
Ex, Ey, Ez

]T ≡ Exx̂ + Eyŷ + Ez ẑ.

Note the four notations for vectors, bold font, element-wise columns, element-wise transposed rows and dyadic
format. These are all shorthand notations for expressing the vector. Such usage is similar to a dialect in a language.

Complex elements: When the elements are complex (∈ C), the transpose is defined as the complex conjugate
of the elements. In such complex cases the transpose conjugate may be denoted with a † rather than T−2

3
1

† =
[
2 −3 1

]
∈ C.

For this case when the elements are complex, the dot product is a real number (like a length)

a · b = a†b =
[
a∗1 a∗2 a∗3

] b1b2
b3

 = a∗1b1 + a∗2b2 + a∗3b3 ∈ R.

Norm of a complex vector: The dot product of a vector with itself is called the norm of a

‖a‖ =
√
a†a ≥ 0.

which is always non-negative, and real.
Such a construction is useful when a and b are related by an impedance matrix

V (s) = Z(s)I(s)

and we wish to compute the power. For example, the impedance of a mass is ms and a capacitor is 1/sC. When
given a system of equations (a mechanical or electrical circuit) one may define an impedance matrix.

Complex power: In this special case, the complex power P (s) ∈ C(s) is defined, in the complex frequency
domain (s), as

P (s) = I†(s)V (s) = I†(s)Z(s)I(s)↔ p(t) [W].

The real part of the complex power must be positive. The imaginary part corresponds to available stored energy.

3.6.4 Matrices
When working with matrices, the role of the weights and vectors can change, depending on the context. A useful
way to view a matrix is as a set of column vectors, weighted by the elements of the column-vector of weights
multiplied from the right. For example,


a11 a12 a13 · · · a1M
a21 a22 a23 · · · a2M

. . .
aN1 aN2 aN3 · · · aNM



w1
w2
w3
...

wM

 = w1


a11
a21
a31

...
aN1

+ w2


a12
a22
a32

...
aN2

+ · · ·+ wM


a1M
a2M
a3M

...
aNM

 ,

where the weights are
[
w1, w2, . . . , wM

]T
. Note that a23 is in row 2, column 3, thus is arow,col. Rows are index

vertically, according to the column definition of a vector. Think of the matrix asM column vectors with an1 being
the first vector.
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Alternatively, the matrix is a set of row vectors of weights, each of which is applied to the column vector on
the right ([w1, w2, . . . ,WM ]T ). Both views are important (and correct). Don’t think of a matrix as being just one
or the other. It is both, but not at the same time.

The determinant of a matrix is denoted as either detA or simply |A| (as in the absolute value). The inverse of
a square matrix isA−1 or invA. If |A| = 0, the inverse does not exist. If it does thenAA−1 = A−1A.

Matlab/Octave’s notional convention for a row-vector is [a, b, c] and a column-vector is [a; b; c]. A prime on
a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the prime.
The : argument converts the array into a column vector, without conjugation. A tacit notation in Matlab is that
vectors are columns and the index to a vector is a row vector. Matlab defines the notation 1:4 as the “row-vector”
[1, 2, 3, 4], which is unfortunate as it leads users to assume that the default vector is a row. This can lead to serious
confusion later, as Matlab’s default vector is a column. I have not found the above convention explicitly stated,
and it took me years to figure this out for myself.

3.6.5 N ×M complex matrices
Here are some definitions to learn:

1. Scalar: A number – for example {a, b, c, α, β, . . .} ∈ {Z,Q, I,R,C}

2. Vector: A quantity having direction as well as magnitude, often denoted by a bold letter x, or with an
arrow over the top x. In matrix notation, this is typically represented as a single row [x1, x2, x3, . . .] or
single column [x1, x2, x3 . . .]T (where T indicates the transpose). In this class we will typically use column
vectors. The vector may also be written out using unit vector notation to indicate direction. For example:
x3,1 = x1x̂ + x2ŷ + x3ẑ = [x1, x2, x3]T , where x̂, ŷ, ẑ are unit vectors in the x, y, z Cartesian directions
(here the vector’s subscript 3, 1 indicates its dimensions). The type of notation used frequently depends on
the engineering problem you are solving.

3. Matrix: A =
[
a1,a2,a3, . . . ,aM

]
N,M

= {an,m}N,M can be a non-square matrix if the number of elements
in each of the vectors (N ) is not equal to the number of vectors (M ). When M = N , the matrix is square.
It may be inverted if its determinant |A| =

∏
λk 6= 0 (where λk are the eigenvalues). In this text we mainly

work only with 2× 2 and 3× 3 square matrices.

4. Linear system of equations: Ax = b where x and b are vectors and matrix A is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse x = A−1b.

(b) Equivalence: If two systems of equations A0x = b0 and A1x = b1 have the same solution (i.e.,
x = A−1

0 b0 = A−1
1 b1), they are said to be equivalent.

(c) Augmented matrix: The first type of augmented matrix is defined by combining the matrix with the
right-hand side. For example, given the linear system of equations of the form Ax = y[

a b
c d

] [
x1
x2

]
=
[
y1
y2

]
,

the augmented matrix is

[A|y] =
[
a b y1
c d y2

]
.

A second type of augmented matrix may be used for finding the inverse of a matrix (rather than solving
a specific instance of linear equations Ax = b). In this case the augmented matrix is

[A|I] =
[
a b 1 0
c d 0 1

]
.

Performing Gaussian elimination on this matrix, until the left side becomes the identity matrix, yields
A−1. This is because multiplying both sides by A−1 gives A−1A|A−1I = I|A−1.

5. Permutation matrix (P ): A matrix that is equivalent to the identity matrix, but with scrambled rows (or
columns). Such a matrix has the properties det(P ) = ±1 and P 2 = I . For the 2× 2 case, there is only one
permutation matrix:

P =
[
0 1
1 0

]
P 2 =

[
0 1
1 0

] [
0 1
1 0

]
=
[
1 0
0 1

]
.
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A permutation matrix P swaps rows or columns of the matrix it operates on. For example, in the 2×2 case,
pre-multiplication swaps the rows,

PA =
[
0 1
1 0

] [
a b
α β

]
=
[
α β
a b

]
,

whereas post-multiplication swaps the columns,

AP =
[
a b
α β

] [
0 1
1 0

]
=
[
b a
β α

]
.

For the 3×2 case there are 3 ·2/2 = 3 such matrices (swap a row with the other 2, then swap the remaining
two rows).

6. Gaussian elimination (GE) operations Gk: There are three types of elementary row operations, which may
be performed without fundamentally altering a system of equations (e.g. the resulting system of equations
is equivalent). These operations are (1) swap rows (e.g. using a permutation matrix), (2) scale rows, or (3)
perform addition/subtraction of two scaled rows. All such operations can be performed using matrices.

For lack of a better term, we’ll describe these as ‘Gaussian elimination’ or ‘GE’ matrices.23 We will catego-
rize any matrix that performs only elementary row operations (but any number of them) as a ‘GE’ matrix.
Therefore, a cascade of GE matrices is also a GE matrix.

Consider the GE matrix

G =
[
1 0
1 −1

]
.

(a) This pre-multiplication scales and subtracts row (2) from (1) and returns it to row (2).

GA =
[
1 0
1 −1

] [
a b
α β

]
=
[

a b
a− α b− β

]
.

The shorthand for this Gaussian elimination operation is (1)← (1) and (2)← (1)− (2).

(b) Post-multiplication adds and scales columns.

AG =
[
a b
α β

] [
1 0
−1 1

]
=
[
a− b b
α− β β

]
.

Here the second column is subtracted from the first, and placed in the first. The second column is
untouched. This operation is not a Gaussian elimination. Therefore, to put Gaussian elimination
operations in matrix form, we form a cascade of pre-multiplication matrices.
Here det(G) = 1, G2 = I , which won’t always be true if we scale by a number greater than 1. For

instance, if G =
[

1 0
m 1

]
(scale and add), then we have det(G) = 1, Gn =

[
1 0

n ·m 1

]
.

Inverse of the 2× 2 matrix
We shall now apply Gaussian elimination to find the solution [x1, x2] for the 2 × 2 matrix equation Ax = y
(Eq. 3.5.8, left). We assume to know [a, b, c, d] and [y1, y2].

Here we wish to prove that the left equation (i) has an inverse given by the right equation (ii):[
a b
c d

] [
x1
x2

]
=
[
y1
y2

]
(i);

[
x1
x2

]
= 1

∆

[
d −b
−c a

] [
y1
y2

]
(ii).

To take the inverse:
(1) swap the diagonal, (2) change the off-diagonal signs, and (3) normalize by the determinant ∆. We wish to
show that the intersection (solution) is given by the equation on the right.

23The term ‘elementary matrix’ may also be used to refer to a matrix that performs an elementary row operation. Typically, each elementary
matrix differs from the identity matrix by a single row operation. A cascade of elementary matrices could be used to perform Gaussian
elimination.
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Exercise #1
Show that the equation on the right is the solution of the equation on the left.

Sol: By direct substitution (composition) of the right equation into the left equation, we have[
a b
c d

]
· 1

∆

[
d −b
−c a

] [
y1
y2

]
= 1

∆

[
ad− bc −ab+ ab
cd− cd −cb+ ad

]
= 1

∆

[
∆ 0
0 ∆

]
, (3.6.1)

which gives the identity matrix. �
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3.7 Problems AE-2

Topics of this homework:
Linear vs nonlinear systems of equations, Euclid’s formula, Gaussian elimination, matrix permutations, Ohm’s
law, two-port networks,

Deliverables: Answers to problems

Gaussian elimination
Problem # 1: Gaussian elimination

– 1.1: Find the inverse of

A =
[
1 2
4 3

]
.

– 1.2: Verify that A−1A = AA−1 =
[
1 0
0 1

]
.

Problem # 2: Find the solution to the following 3 × 3 matrix equation Ax = b by GE. Show
your intermediate steps. You can check your work at each step using Octave/Matlab.1 1 −1

3 1 1
1 −1 4

x1
x2
x3

 =

1
9
8

 .
– 2.1 Show (i.e., verify) that the first GE matrix G1, which zeros out all entries in the first

column is given by

G1 =

 1 0 0
−3 1 0
−1 0 1

 .
Identify the elementary row operations that this matrix performs.

– 2.2 Find a second GE matrix, G2, to put G1A in upper triangular form. Identify the
elementary row operations that this matrix performs.

– 2.3 Find a third GE matrix G3 that scales each row so that its leading term is 1. Identify
the elementary row operations that this matrix performs.

– 2.4: Find the last GE matrix, G4, which subtracts a scaled version of row 3 from row 2,
and scaled versions of rows 2 and 3 from row 1, such that you are left with the identity matrix
(G4G3G2G1A = I).

– 2.5: Solve for {x1, x2, x3}T using the augmented matrix format G4G3G2G1{A|b} (where
{A|b} is the augmented matrix). Note that if you’ve performed the preceding steps correctly,
x = G4G3G2G1b.

– 2.6: Find the pivot matrix G that rescales the second row of the augmented matrix A|b by
1/3.
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Two linear equations
Problem # 3 In this problem we transition from a general pair of equations

f(x, y) = 0
g(x, y) = 0

to the important case of two linear equations

y = ax+ b

y = αx+ β.

Note that to help keep track of the variables, roman coefficients (a, b) are used for the first equation and Greek
(α, β) for the second.

– 3.1: What does it mean, graphically, if these two linear equations have (1) a unique
solution, (2) a nonunique solution, or (3) no solution?

– 3.2: Assuming the two equations have a unique solution, find the solution for x and y.

– 3.3: When will this solution fail to exist (for what conditions on a, b, α, and β)?

– 3.4: Write the equations as a 2×2 matrix equation of the formA~x = ~b, where ~x = {x, y}T .

– 3.5: Find the inverse of the 2× 2 matrix, and solve the matrix equation for x and y.

– 3.6: Discuss the properties of the determinant of the matrix (∆) in terms of the slopes of
the two equations (a and α).

Problem # 4: The application of linear functional relationships between two variables
We use 2× 2 matrices to describe two-port networks, as discussed in Sec. 3.8 (p. 107). Transmission lines are a

great example: Both voltage and current must be tracked as they travel along the line. Figure 3.10 (p. 111) shows
an example segment of a transmission line.

Suppose you are given the following pair of linear relationships between the input (source) variables V1 and
I1 and the output (load) variables V2 and I2 of the transmission line:[

V1
I1

]
=
[
 1
1 −1

] [
V2
I2

]
.

– 4.1: Let the output (the load) be V2 = 1 and I2 = 2 (i.e., V2/I2 =1/2 {Ω}). Find the input
voltage and current, V1 and I1.

– 4.2: Let the input (source) be V1 = 1 and I1 = 2. Find the output voltage and current, V2
and I2.

Integer equations: applications and solutions
Any equation for which we seek only integer solutions is called a Diophantine equation.

Problem # 5: A practical example of using a Diophantine equation:
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“A merchant had a 40-pound weight that broke into 4 pieces. When the pieces were weighed, it was found that
each piece was a whole number of pounds and that the four pieces could be used to weigh every integral weight
between 1 and 40 pounds. What were the weights of the pieces?” - Bachet de Bèziriac (1623)24.

Here, weighing is performed using a balance scale that has two pans, with weights on either pan. Thus, given
weights of 1 and 3 pounds, one can weigh a 2-pound weight by putting the 1-pound weight in the same pan with
the 2-pound weight, and the 3-pound weight in the other pan. Then the scale will be balanced. A solution to the
four weights for Bachet’s problem is 1 + 3 + 9 + 27 = 40 pounds.

– 5.1: Show how the combination of 1-, 3-, 9-, and 27-pound weights can be used to weigh
1, 2, 3, . . . , 8, 28, and 40 pounds of milk (or something else, such as flour). Assuming that the
milk is in the left pan, provide the position of the weights using a negative sign − to indicate
the left pan and a positive sign + to indicate the right pan. For example, if the left pan has 1
pound of milk, then 1 pound of milk in the right pan, +1, will balance the scales.

Hint: It is helpful to write the answer in matrix form. Set the vector of values to be weighed equal to a matrix
indicating the pan assignments, multiplied by a vector of the weights [1, 3, 9, 27]T . The pan assignments matrix
should contain only the values −1 (left pan), +1 (right pan), and 0 (leave out). You can indicate these using −, +,
and blanks.

Vector algebra in R3

Definitions of the scalar (also called a dot product)A ·B, crossA×B and triple productA · (B ×C), may be
found in Appendix A (p. 217), where A,B,C in R3 ⊂ C3), as shown in Fig. 3.4, p. 88. A fourth “double-cross”
(A) vector product is:25

A× (B ×C) = αoB − βoC.

where αo = A ·C and βo = A ·B (Note: A× (B ×C) 6= (A×B)×C).

Problem # 6: Scalar product A ·B

– 6.1: IfA = axx̂ +ayŷ +azẑ andB = bxx̂ + byŷ + bzẑ, write out the definition of A ·B.

– 6.2: The dot product is often defined as ||A|| ||B|| cos(θ), where ||A|| =
√
A ·A and θ

is the angle betweenA,B. If ||A|| = 1, describe how the dot product relates to the vector B.

Problem # 7: Vector (cross) product A×B

– 7.1: IfA = axx̂+ayŷ+azẑ andB = bxx̂+byŷ+bzẑ, write out the definition of A×B.

– 7.2: Show that the cross product is equal to the area of the parallelogram formed by
A,B, namely ||A|| ||B|| sin(θ), where ||A|| =

√
A ·A and θ is the angle betweenA andB.

Problem # 8: Triple productA · (B ×C)
LetA = [a1, a2, a3]T ,B = [b1, b2, b3]T , C = [c1, c2, c3]T be three vectors in R3.

24Taken from Rotman (1996, p. 50)
25Greenberg p. 694, Eq. 8.
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– 8.1: Starting from the definition of the dot and cross product, explain using a diagram

and/or words, how one shows that: A · (B ×C) =

∣∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣∣.

θ

L∗

A ·B = ||A|| ||B|| cos θ ∈ R

C = A ∧B ẑ = ||A|| ||B|| sin θ ẑ ∈ R

A
∧
B

A

B

Vector product: ⊥ AB plane

Scalar product: InAB plane

ŷ
x̂

ẑ

Figure 3.6: This is figure is identical to Fig. 3.4 (p. 88), Sec. 3.5. Definitions of vectors A,B,C (vectors in R3) used in the definition of
A ·B,A×B andA · (B ×C). There are two algebraic vector products, the scalar (dot) productA ·B ∈ R and the vector (cross) product
A ×B ∈ R3. Note that the result of the dot product is a scalar, while the vector product yields a vector, which is ⊥ to the plane containing
A,B.

– 8.2: Describe why |A · (B×C)| is the volume of parallelepiped generated byA,B, and
C.

– 8.3: Explain why three vectors A, B, C are in one plane if and only if the triple product
A · (B×C) = 0.

Problem # 9: Given two vectors A,B in the x̂, ŷ plane shown in Fig. 3.6 (same as 3.4 on
page 88), withB = ŷ (i.e., ||B|| = 1).

– 9.1: Show that A may be split into two orthogonal parts, one in the direction of B and
the other perpendicular (⊥) to B. Hint: Express the vector products of A and B (dot and
cross) in polar coordinates (Greenberg, 1988).

A = (A ·B)B +B × (A×B)
= A‖ +A⊥.

Ohm’s Law
In general, impedance is defined as the ratio of a force to a flow. For electrical circuits, the voltage is the force
and the current is the flow. Ohm’s law states that the voltage across and the current through a circuit element
are related by the impedance of that element (which may be a function of frequency). For resistors, the voltage
over the current is called the resistance and is a constant (e.g., the simplest case is V/I = R). For inductors and
capacitors, the voltage over the current is a frequency-dependent impedance (e.g., V/I = Z(s), where s is the
complex frequency s ∈ C).

As shown in Table 3.2 (p. 110), the impedance concept also holds in mechanics and acoustics. In mechanics,
the force is equal to the mechanical force on an element (e.g., a mass, dashpot, or spring) and the flow is the
velocity. In acoustics, the force is pressure and the flow is the volume velocity or particle velocity of air molecules.

Problem # 10: The resistance of an incandescent (filament) lightbulb, measured cold, is about
100 ohms. As the bulb lights up, the resistance of the metal filament increases.
Ohm’s law says that the current

V

I
= R(T ),

where T is the temperature. In the United States, the voltage is 120 volts (RMS) at 60 [Hz]. Find the current when
the light is first switched on.
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Problem # 11: The power in watts is the product of the force and the flow. What is the power
of the lightbulb of Problem 10?

Problem # 12: State the impedance Z(s) of each of the following circuit elements: (1) a resis-
tor with resistance R, (2) an inductor with inductance L, and (3) a capacitor with capacitance
C.

Problem # 13: Consider what happens at the triple point of water. As water freezes or thaws,
the temperature remains constant at 0 (C°). Once all the water is frozen and more heat is
removed, the temperature drops below 0°. As heat is added, water thaws but the temperature
remains at 0°. Once all the ice has melted, what is the temperature as more heat is added?

Model the triple point using a Zener diode, a resistor, and a capacitor. A Zener diode holds the voltage constant
independent of current. For the case of water’s triple point, the voltage represents the temperature of water at the
triple point, clamped at 0 [C°]. The current represents the heat flux. The latent heat of water at the triple point is
32 Cal/gm. Thus as the temperature rises from below freezing, the water is clamped at 0° once the triple point is
reached. At that point, adding more heat flux has no effect on the temperature until all the ice melts. Once the ice
has melted, the temperature again begins to rise until it hits the boiling point, where it again stays at 100° until all
the water has evaporated.

Nonlinear (quadratic) to linear equations

In the following problems we deal with algebraic equations in more than one variable that are not linear equations.
For example, the circle x2+y2 = 1 may be solved for y(x) = ±

√
1− x2. If we let z+ = x+y = x+

√
1− x2 =

eθ, we obtain the equation for half a circle (y > 0). The entire circle is described by the magnitude of z as
|z|2 = (x+ y)(x− y) = 1.

Problem # 14: Give the curve defined by the equation:

x2 + xy + y2 = 1

– 14.1: Find the function y(x).

– 14.2: Using Matlab/Octave, plot y(x) and describe the graph.

– 14.3: What is the name of this curve?

– 14.4: Find the solution (in x, p, and q) to these equations:

x+ y = p

xy = q.

– 14.5: Find an equation that is linear in y starting from equations that are quadratic
(second-degree) in the two unknowns x and y:

x2 + xy + y2 = 1 (AE-2.1)

4x2 + 3xy + 2y2 = 3. (AE-2.2)

– 14.6: Compose the following two quadratic equations and describe the results.

x2 + xy + y2= 1
2x2 + xy = 1
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Nonlinear intersection in analytic geometry
Euclid’s formula for Pythagorean triplets (Eq. 2.5.6, p. 41) can be derived by intersecting a circle and a secant
line. Consider the nonlinear equation of a unit circle having radius 1, centered at (x, y) = (0, 0),

x2 + y2 = 1,

and the secant line through (−1, 0),
y = t(x+ 1),

a linear equation having slope t and intercept x = −1. If the slope 0 < t < 1, the line intersects the circle at a
second point (a, b) in the positive x, y quadrant. The goal is to find a, b ∈ N and then show that c2 = a2 + b2.
Since the construction gives a right triangle with short sides a, b ∈ N, then it follows that c ∈ N.

1) t = p/q ∈ Q
2) a = p2 − q2

3) b = 2pq
4) c = p2 + q2

2) b(a) = t(a + c)
1) c2 = a2+ b2

4) ζ = |c|eiθ = |c|1+it
1−it = |c|(cos(θ) + i sin(θ))

3) ζ(t) ≡ a+b = 1−t2+2t
1+t2

Diophantus’s Proof:

1) 2φ + η = π

2) η + Θ = π
3) ∴ φ = Θ/2

Euclidean Proof:

(a, b)b

a
φ

η

φ

b(a) = t (a + c)

O
c2 = a2 + b2

c = p
2 + q

2

b
=

2p
q

Θ a = p2 − q2

Y

X

Pythagorean triplets:

Figure 3.7: Derivation of Euclid’s formula for the Pythagorean triplets (PT) [a, b, c], based on a composition of a line, having
a rational slope t = p/q ∈ F, and a circle c2 = a2 + b2, [a, b, c] ∈ N. This analysis is attributed to Diophantus (Di·o·phan′·tus)
(250 CE), and today such equations are called Diophantine (Di·o·phan′·tine) equations. PTs have applications in architecture and
scheduling, and many other practical problems. Most interesting is their relation to Rydberg’s formula for the eigenstates of the
hydrogen atom (Appendix I).

Problem # 15: Derive Euclid’s formula

– 15.1: Draw the circle and the line, given a positive slope 0 < t < 1.

Problem # 16: Substitute y = t(x+ 1) (the line equation) into the equation for the circle, and
solve for x(t).
Hint: Because the line intersects the circle at two points, you will get two solutions for x. One of these solutions
is the trivial solution x = −1.

– 16.1: Substitute the x(t) you found back into the line equation, and solve for y(t).

– 16.2: Let t = q/p be a rational number, where p and q are integers. Find x(p, q) and
y(p, q).

– 16.3: Substitute x(p, q) and y(p, q) into the equation for the circle, and show how Euclid’s
formula for the Pythagorean triples is generated.

For full points you must show that you understand the argument. Explain the meaning of the comment “magic
happens” when t4 cancels.
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3.8 Transmission (ABCD) matrix composition method
Matrix composition: Matrix multiplication represents a composition of 2× 2 matrices because the input to the
second matrix is the output of the first [this follows from the definition of composition: f(x) ◦ g(x) = f(g(x))].
Thus the ABCD matrix is also known as the transmission matrix, or occasionally the chain matrix. The general
expression for the transmission matrix T (s) is[

V1
I1

]
=
[

A (s) B (s)
C (s) D (s)

] [
V2
−I2

]
= T (s)

[
V2
−I2

]
. (3.8.1)

The four coefficients A (s),B (s),C (s),D (s) are all complex analytic functions of the Laplace frequency s =
σ + ω (see p. 117). Typically they are polynomials in s. For example, C (s) = s2 + 1. A sum and parallel
combination of inductors (masses), capacitors (springs), and resistors (dashpots) results in an Brune impedance,
defined as the ratio of two polynomials. Thus such methods are called lumped-element networks. A symbolic
eigenanalysis of 2× 2 matrices may be found in Appendix B.3 (see p. 230).

It is a standard convention to always define the current (flow) into the node. Since the input current on the left
of Eq. 3.8.1 is the same as the output current on the right (I2), we need the negative sign on I2 to match the sign
convention of current into every node. When we use this construction, all the currents will all agree.

We have already used 2 × 2 matrix composition for: (1) representing complex numbers (see p. 16), (2) com-
puting the gcd(m,n) of m,n ∈ N (see p. 28), (3) computing Pell’s equation (see p. 42), and (4) computing the
Fibonacci sequence (see p. 43). Thus it appears that 2× 2 complex analytic matrices have high utility.

Definitions of A ,B ,C ,D : By writing the equations that correspond to Eq. 3.8.1, we see that

A (s) = V1

V2

∣∣∣∣
I2=0

, B (s) = −V1

I2

∣∣∣∣
V2=0

, C (s) = I1
V2

∣∣∣∣
I2=0

, D (s) = −I1
I2

∣∣∣∣
V2=0

. (3.8.2)

Example: Figure 3.8 shows two examples of networks that may be analyzed using the ABCD transmission matrix
method.

Each equation has a physical interpretation and a corresponding name. Functions A and C are said to be
blocked because the output current I2 is zero. Functions B and D are said to be short-circuited because the output
voltage V2 is zero. These two terms (blocked vs. short-circuited) are electrical engineering–centric, arbitrary, and
fail to generalize to other cases; thus we should avoid these terms.

+

−

+

−

R1 R2

I1

V1 V2

C I2
+

−

+

−

U1

Zin

L = 1 C = 3

C = 2 L
=

4

P1 P2

U2

Figure 3.8: Left: A low-pass RC electrical filter. The circuit elements R1, R2, and C are defined. Right: A band-pass acoustic filter.
Here, the pressure P is analogous to voltage, and the velocity U is analogous to current. The circuit elements are labeled with their L and C
values as integers, to make the algebra simple.

For example, in a mechanical system blocked would correspond to an output isometric (no length change)
velocity of zero. In mechanics the isometric force is defined as the maximum applied force conditioned on zero
velocity (the blocked force). Thus the short-circuited force (B ) would correspond to zero force, which is nonsense.
These engineering-centric terms do not gracefully generalize, so better terminology is needed. Much of this was
sorted out by Thévenin in about 1883 (Van Valkenburg, 1964a; Johnson, 2003; Kennelly, 1893).

A and D are called voltage (force) and current (velocity) transfer functions, since they are ratios of voltages
and currents, whereas B and C are known as the transfer impedance and transfer admittance. For example, the
unloaded (blocked) (I2 = 0) output voltage V2 = I1/C corresponds to the isometric force in mechanics. In this
way each term expresses an output (port 2) in terms of an input (port 1) for a given load condition.

Exercise #2
Derive the formula for C in terms of the input and output currents and voltages. Hint: See Eq. 3.8.2.
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Solution: Writing out the lower equation gives I1 = C V2 − D I2 and setting I2 = 0, we may obtain the
equation for C = I1/V2|I2=0. �

Exercise #3
Can C = 0?

Solution: Yes, if I2 = 0 and I1 = I2, then C = 0. In such cases the 2-port is ill-conditioned as shown in
Appendix B.3, Eq. B.3.1. For C 6= 0, there needs to be a finite shunt impedance across V1, so that I1 6= I2 = 0.�

3.8.1 Thévenin parameters of a source
An important concept in circuit theory is that of the Thévenin parameters: the blocked force (zero flow) and
the blocked flow (zero force). Their ratio defines the Thévenin impedance (Johnson, 2003). The open-circuit
voltage is defined as the voltage V2 when the load current is zero (I2 = 0), which was shown in Eq. 3.8.2 to be
V2/I1|I2=0 = 1/C .

Thévenin Voltage: From Eq. 3.8.1 there are two definitions for the Thévenin voltage VThev = V2, conditioned
on the source on the left:

VThev

I1

∣∣∣∣
I2=0

= 1
C

and
VThev

V1

∣∣∣∣
I2=0

= 1
A
. (3.8.3)

A more general expression is needed when the source impedance is mixed.

Thévenin impedance The Thévenin impedance is the impedance looking into port 2 with V1 = 0; thus

ZThev = V2

I2

∣∣∣∣
V1=0

. (3.8.4)

From the upper equation of Eq. 3.8.1, with V1 = 0, we obtain AV2 = B I2; thus

ZThev = B
A
. (3.8.5)

3.8.2 The impedance matrix
With a bit of algebra, we can find the impedance matrix in terms of A ,B ,C ,D (Van Valkenburg, 1964a, p. 310):[

V1
V2

]
=
[
z11 z12
z21 z22

] [
I1
I2

]
= Z (s)

[
I1
I2

]
= 1

C

[
A ∆T
1 D

] [
I1
−I2

]
. (3.8.6)

The determinate of the transmission matrix is ∆T = ±1, and if C = 0, the impedance matrix does not exist (see
Exercise #42).

Definitions of z11(s), z12(s), z21(s), z22(s): The definitions of the matrix elements are easily read off of the
equation as

z11 ≡
V1

I1

∣∣∣∣
I2=0

, z12 ≡ −
V1

I2

∣∣∣∣
I1=0

, z21 ≡
V2

I1

∣∣∣∣
I2=0

, z22 ≡ −
V2

I2

∣∣∣∣
I1=0

. (3.8.7)

These definitions follow trivially from Eq. 3.8.6 and each element has a physical interpretation. For example,
the unloaded (I2 = 0, also called blocked or isometric) input impedance is z11(s) = A (s)/C (s), while the
unloaded transfer impedance is z21(s) = 1/C (s). For reciprocal systems (Postulate P6, p. 122), z12 = z21, since
∆T = 1. For antireciprocal systems, such as dynamic (also called magnetic) loudspeakers and microphones (Kim
and Allen, 2013), ∆T = −1; thus z21 = −z12 = 1/C . Finally z22 is the impedance looking into port 2 with port
1 open/blocked (I1 = 0).

To understand the meaning of the four impedance variables we analyze the transmission matrix of Fig. 3.9[
V1
I1

]
=
[
1 + zayb zc(1 + zayb) + za

yb 1 + ybzc

] [
V2
−I2

]
. (3.8.8)
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+

−

+

−

za zc

I1

V1 V2

yb
I2

Figure 3.9: Equivalent circuit for a transmission matrix. This allows us to better visualize the matrix elements in terms of complex
impedances za(s), zc(s), yb(s), as defined in this figure.

Note that it is easy to invert the T (s) matrix because ∆T = ±1.
From the circuit elements defined in Fig. 3.9 (i.e., za, zc, yb) we can compute the impedance matrix elements

of Eq. 3.8.6 (i.e., z11, z12, z21, z22). For example, the impedance matrix element z11, in terms of za and yb, is
easily read off of Fig. 3.9 as the sum of the series and shunt impedances:

z11(s)|I2=0 = za + 1/yb = A
C
.

Given the impedance matrix, we can then compute transmission matrix T (s)—namely, from Eq. 3.8.6,

1
C (s) = z21,

A (s)
C (s) = z11.

The theory is best modeled using the transmission matrix (Eq. 3.8.1), while experimental data are best modeled
using the impedance matrix (Eq. 3.8.6).

Rayleigh reciprocity: Figure 3.9 is particularly helpful in understanding the Rayleigh reciprocity Postulate P6
(B (s) = ±C (s), pages 122, 256):

V2

I1

∣∣∣∣
I2=0

= V1

I2

∣∣∣∣
I1=0

.

This says that the unloaded output voltage over the input current is symmetric, which is obvious from Fig. 3.9.

3.8.3 Network power relationships
Impedance is a general concept, closely tied to the definition of power P (t) (and energy). Power is defined as the
product of the effort (force) and the flow (current). As described in Table 3.2, these concepts are very general,
applying to mechanics, electrical circuits, acoustics, thermal circuits, and any other case where conservation of
energy applies. Two basic variables are defined, generalized force and generalized flow, also called conjugate
variables. The product of the conjugate variables is the power, and the ratio is the impedance. For example, for
the case of voltage and current,

P (t) ≡ v(t)i(t), v(t) = z(t) ? i(t), i(t) = y(t) ? v(t)

where ? represents convolution (Sec. 4.7.4 page 164)

v(t) = z(t) ? i(t) ≡
∫ ∞
t=0

z(τ)i(t− τ)dτ ↔ Z(ω)I(ω).

Power vs. power series, linear vs. nonlinear Another place where second-degree equations appear in physical
applications is in energy and power calculations. The electrical power is given by the product of the voltage v(t)
and current i(t) (or in mechanics as the force times the velocity). For example, if we define P = v(t)i(t) to be the
power P [watts], then the total energy [joules] at time t is (Van Valkenburg, 1964a, Sec. 14)

E (t) =
∫ t

0
v(t)i(t)dt.

From this observe that the power is the rate of change of the total energy

P (t) = d

dt
E (t),

reminiscent of the fundamental theorem of calculus (Eq. 4.2.2, p. 135).
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3.8.4 Ohm’s law and impedance
The ratio of voltage to current is called the impedance and it has units of [ohms]. For example, given a resistor of
R = 10 [ohms],

v(t) = R i(t);

namely, 1 [amp] flowing through the resistor would give 10 [volts] across it. Merging the linear relationship due
to Ohm’s law with the definition of power shows that the instantaneous power in a resistor is quadratic in voltage
and current:

P (t) = v(t) · i(t) = v(t)2/R = i(t)2R, E (t) =
∫ t

−∞
P (t)dt. (3.8.9)

Note that Ohm’s law is linear in its relationship between voltage and current, whereas power and energy are
quadratic nonlinear functions.

Ohm’s law generalizes the I(ω), V (ω) relation in a very important way, resulting in a linear complex analytic
function of complex frequency s = σ + ω (Kennelly, 1893; Brune, 1931a). Impedance is a fundamental concept
in many fields of engineering. For example:26 Newton’s second law F = ma obeys Ohm’s law, with mechanical
impedance Z(s) = sm. Hooke’s law F = kx for a spring is described by a mechanical impedance Z(s) = k/s.
In mechanics a resistor is called a dashpot and its impedance is a positive-real constant.

Kirchhoff’s laws: KCL and KVL: The laws of electricity and mechanics may be written using Kirchhoff’s
current and voltage laws (KCL and KVL), which lead to linear systems of equations in the currents and voltages
(velocities and forces) of the system under study, with complex coefficients having positive-real parts.

Transfer functions (transfer matrix): The most common standard reference is a physical system that has an
input x(t) and an output y(t). If the system is linear, then it may be represented by its impulse response h(t). In
such cases, the system equation is

y(t) = h(t) ? x(t)↔ Y (ω) = H(s)|σ=0X(ω),

namely, the convolution of the input with the impulse response gives the output. This relationship may be written
in the frequency domain as a product of the Laplace transform of the impulse response evaluated on the ω-axis
and the Fourier transform of the input X(ω)↔ x(t) and output Y (ω)↔ y(t).

If the system is nonlinear, then the output is not given by a convolution, and the Fourier and Laplace transforms
have no obvious meaning.

The question that must be addressed is why the power is nonlinear, whereas a power series of H(s) is linear:
Both have powers of the underlying variables. This is confusing and rarely, if ever, addressed. The quick answer
is that powers of the Laplace frequency s correspond to derivatives, which are linear operations, whereas the
product of the voltage v(t) and current i(t) is nonlinear. It is confusing because the work power has two different
meanings. The important and interesting question will be addressed on page 121 in terms of the system postulates
of physical systems.

Table 3.2: The generalized impedance is defined as the ratio of a force to a flow, a concept that also holds in mechanics and acoustics. In
mechanics, the force is the mechanical force on an element (e.g., a mass, dashpot, or spring) and the flow is the velocity. In acoustics, the
force is the gradient of the pressure, and the flow is the volume velocity or particle velocity of air molecules.

Case Potential Flow Impedance units ohms [Ω]
Electrical voltage (V) current (I) Z = −∇V/I [Ω]
Mechanics force (F) velocity (U) Z = −∇F/U mechanical [Ω]
Acoustics pressure (P) particle velocity (V) Z = −∇P/V specific [Ω]
Acoustics mean pressure ( P ) volume velocity (V ) Z = −∇P /V acoustic [Ω]
Thermal temperature (T) entropy ( S ) Z = −∇T/ S thermal [Ω]

Ohm’s law: In general, impedance is defined as the ratio of a force to a flow. For electrical circuits (Table
3.2), the voltage difference is the force and the current is the flow. Ohm’s law states that the voltage across and
the current through a circuit element are linearly related by the impedance of that element (which is typically a
complex function of the complex Laplace frequency s = σ + ω). For resistors, the voltage over the current is

26 In acoustics the pressure is a potential, like voltage. The force per unit area is given by f = −∇p; thus F = −
∫
∇p dS. Velocity is

analogous to a current. In terms of the velocity potential, the velocity per unit area is v = −∇φ.
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called the resistance and is a constant (e.g., the simplest case is V/I = R ∈ R). For inductors and capacitors, the
impedance depends on the Laplace frequency s (e.g., V/I = Z(s) ∈ C).

As shown in Table 3.2, the impedance concept also holds for mechanics and acoustics. In mechanics, the force
is equal to the mechanical force on an element (e.g., a mass, dashpot, or spring) and the flow is the velocity. In
acoustics, the force density is the negative of the gradient of the pressure, and the flow is the volume velocity (or
particle velocity) of air molecules.

In this section we shall derive the method of the linear composition of systems, also known as the ABCD
transmission matrix method, or in the mathematical literature, the Möbius (bilinear) transformation. With the
method of matrix composition, we can use a linear system of 2 × 2 matrices to represent a significant family of
networks. By the application of Ohm’s law to the circuit shown in Fig. 3.10, we can model a cascade of such cells,
which characterize transmission lines (Campbell, 1903).

L = ρ
A(x)

V2V1 +

−

+

−

I2I1

C = ηP
A(x)

Figure 3.10: A single LC cell of the LC transmission line. Every cell of any transmission line may be modeled by the ABCD method as
the product of two matrices. For the example shown here, the inductance L of the coil and the capacitance C of the capacitor are in units of
[henry/m] and [farad/m]; thus they depend on length ∆x [m] that the cell represents. Note the flows are always defined as into the + node.

Example of the use of the ABCD matrix composition: Figure 3.10 shows a network composed of a series
inductor (mass) that has an impedance Zl = sL and a shunt capacitor (compliance) that has an admittance
Yc = sC ∈ C. As determined by Ohm’s law, each equation describes a linear relationship between the current
and the voltage. For the inductive impedance, applying Ohm’s law gives

Zl(s) = (V1 − V2)/I1,

where Zl(s) = Ls ∈ C is the complex impedance of the inductor. For the capacitive impedance, applying Ohm’s
law gives

Yc(s) = (I1 + I2)/V2,

where Yc = sC ∈ C is the complex admittance of the capacitor.
Each of these linear impedance relationships may be written in a 2 × 2 matrix format. The series inductor

(C = 0) equation gives (I1 = −I2) [
V1
I1

]
=
[
1 Zl
0 1

] [
V2
−I2

]
, (3.8.10)

while the shunt capacitor (L = 0) equation yields (V1 = V2)[
V1
I1

]
=
[

1 0
Yc 1

] [
V2
−I2

]
. (3.8.11)

When the second matrix equation for the shunt admittance (Eq. 3.8.11) is substituted into the series impedance
equation (Eq. 3.8.10), we find that the ABCD matrix composition (T12 = T1 ◦ T2) for the cell is the product of
two matrices: [

V1
I1

]
=
[
1 Zl
0 1

] [
1 0
Yc 1

] [
V2
−I2

]
=
[
1 + ZlYc Zl

Yc 1

] [
V2
−I2

]
. (3.8.12)

Note that the determinant of the matrix ∆T = AD − BC = 1. This is not an accident, since the determinants of
the two matrices are each 1; thus the determinant of their product is 1. Every cascade of series and shunt elements
will always have ∆T = ±1.

For the case of Fig. 3.10, Eq. 3.8.12 has A (s) = 1 + s2LC, B (s) = sL, C (s) = sC, and D = 1. These
equations characterize the four possible relationships of the cell’s input and output voltage and current. For
example, the ratio of the output to input voltage, with the output unloaded, is

V2

V1

∣∣∣∣
I2=0

= 1
A (s) = 1

1 + ZlYc
= 1

1 + s2LC
.
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This is known as the voltage divider relationship. To derive the current divider relationship, we use the lower
equation with V2 = 0:

−I2
I1

∣∣∣∣
V2=0

= 1.

Exercise #4
What happens if the order of Z and Y are reversed?

Solution: [
V1
I1

]
=
[

1 0
Yc 1

] [
1 Zl
0 1

] [
V2
−I2

]
=
[

1 Zl
Yc 1 + ZlYc

] [
V2
−I2

]
(3.8.13)

This is the same network, reversed in direction. �

Exercise #5
What happens if the series element is a capacitor and the shunt an inductor?

Solution: [
V1
I1

]
=
[
1 1/Yc
0 1

] [
1 0

1/Zl 1

] [
V2
−I2

]
=
[
1 + 1/ZlYc 1/Yc

1/Zl 1

] [
V2
−I2

]
(3.8.14)

This circuit is a high-pass filter rather than a low-pass. �

Properties of the transmission matrix: The transmission matrix is always constructed from the product of
elemental matrices of the form [

1 Z(s)
0 1

]
or

[
1 0

Y (s) 1

]
.

Thus for the case of reciprocal systems (Postulate P6, p. 122),

∆T = det
[

A (s) B (s)
C (s) D (s)

]
= 1,

since the determinant of the product of each elemental matrix is 1 and the determinant of their product is 1. An
antireciprocal system may be synthesized by the use of a gyrator, and for such cases ∆T = −1.

The eigenvalue and vector equations for a T matrix are summarized in Appendix B (p. 227) and discussed
in Appendix B.3 (p. 230). The basic postulates of network theory also apply to the matrix elements A (s), B (s),
C (s), D (s), which place restrictions on their functional relationships. For example, Postulate P1 (p. 121) places
limits on the poles and/or zeros of each function, since the time response must be causal.

3.9 Signals: Fourier transforms
The two most fundamental tools for dealing with differential equations in engineering mathematics are the Fourier
and the Laplace transforms, which deal with time-frequency analysis (Papoulis, 1962).

The Fourier transform (F T ) takes a time-domain signal f(t) ∈ R and transforms it to the frequency domain
by taking the scalar product (also called dot product) of f(t) with the complex time vector e−ωt:

f(t)↔ F (ω) = f(t) · e−ωt,

where F (ω) and e−ωt ∈ C and ω, t ∈ R. Here f(t) and eωt are in a Hilbert space, as discussed in Sec. 3.1 (p. 88).
The scalar product between two vectors results in a scalar (number), as discussed in Appendix A.3 (p. 221).

Definition of the Fourier transform: The forward transform takes f(t) to F (ω), while the inverse transform
takes F (ω) to f̃(t). The tilde indicates that, in general, the recovered inverse transform signal can be slightly
different from f(t). Examples are presented in Table 3.6.

F (ω) =
∫ ∞
−∞

f(t)e− ωtdt f̃(t) = 1
2π

∫ ∞
−∞

F (ω)e ωtdω (3.9.1)

F (ω)↔ f(t) f̃(t)↔ F (ω).
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It is accepted in the engineering and physics literature to use the case of the variable to indicate the type of
argument. A time-domain function is f(t), where t has units of seconds [s] and is lowercase. Its Fourier transform
is uppercase F (ω) and is a function of frequency, having units of either hertz [Hz] or radians per second [2π Hz].
This case convention helps the reader parse the variable under consideration. This notation is a helpful but not
agree with the notation used in mathematics, where units are rarely cited.

Table 3.3: The general rule is that if a function is discrete in one domain (time or frequency) it is periodic in the other. Abbreviations: F T :
Fourier Transform; FS: Fourier Series; DTFT: Discrete time Fourier transform; DFT: Discrete Fourier transform (the FFT is a “fast” DFT);

FREQUENCY \ TIME continuous t discrete tk periodic ((t))To
continuous ω F T – –
discrete ωk – DFT (FFT) FS
periodic ((ω))Ωo – DTFT DFT (FFT)

Types of Fourier transforms: As summarized in Table 3.3, each F T type is determined by symmetries in time
and frequency. A time function f(t) may be continuous in time, with −∞ < t <∞, discrete in time, fn = f(tn)
with tk = kTs, where To is called the Nyquist sample period, or periodic in time, f((t))Tp = f(t+ kTp), where
Tp is called the period. Here k, n ∈ Z and To, Tp ∈ R. When time is discrete it is commonly represented as either
x[n] or x(tn).

A general rule is that if a function is discrete in one domain (time or frequency), it is periodic in the other
domain (frequency or time). For example, the discrete time function fn must have a periodic frequency response—
namely, fn ↔ F ((ω))Tp . This is the case of the discrete-time Fourier transform (DTFT). Alternatively, when the
time function is periodic, the frequencies must be discrete—namely, f((t))Tp ↔ F (ωk). This is the case of
the Fourier series (FS). When both the time and frequencies are discrete, both the time and frequencies must be
periodic. This is the case of the discrete Fourier transform (DFT). These four cases are summarized in Table 3.3.

3.9.1 Properties of the Fourier transform
1. Both time t and frequency ω are real.

2. When a function is periodic in one domain (t, f), it must be discrete in the other (Table 3.3).

3. For the forward transform (time to frequency), the sign of the exponential is negative.

4. The limits on the integrals in both the forward and reverse FTs are [−∞,∞].

5. When we take the inverse Fourier transform, the scale factor of 1/2π is required to cancel the 2π in the
frequency differential dω = 2πdf .

6. The Fourier step function is defined by the use of superposition of 1 and sgn(t) = t/|t| as

ũ(t) ≡ 1 + sgn(t)
2 =


1 t > 0
1/2 t = 0
0 t < 0

.

Taking the FT of a delayed step function, we get

ũ(t− To)↔
1
2

∫ ∞
−∞

[1− sgn(t− To)] e−jωtdt = πδ̃(ω) + e−jωTo

jω
.

Thus the FT of the step function has the term πδ(ω) due to the 1 in the definition of the Fourier step. This
term introduces a serious flaw with the FT of the step function: While it appears to be causal, it is not.
Compare this to the convolution u(t) ? u(t) in Table 3.9 on page 120.

7. The convolution ũ(t) ? ũ(t) is not defined because both 1 ? 1 and δ̃2(ω) are not defined.

8. The inverse F T has convergence issues whenever there is a discontinuity in the time response. We indicate
this with a hat over the reconstructed time response. The error between the target time function and the
reconstructed is zero in the root-mean sense, but not point-wise.
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Specifically, at the discontinuity point for the Fourier step function (t = 0) ũ(t) 6= u(t), yet
∫
|ũ(t) −

u(t)|2dt = 0. At the point of the discontinuity, the reconstructed function displays Gibbs ringing (it oscil-
lates around the step and hence does not converge at the jump). The LT does not exhibit Gibbs ringing and
is exact.

9. The F T is not always analytic in ω, as in this example of the step function. The step function cannot be
expanded in a Taylor series about ω = 0 because δ̃(ω) is not analytic in ω.

10. The Fourier δ function is denoted δ̃(t) to differentiate it from the Laplace delta function δ(t). They differ
because the step functions differ due to the convergence problem.

11. One may define

ũ(t) =
∫ t

−∞
δ̃(t)dt

and the somewhat questionable notation

δ̃(t) = d

dt
ũ(t),

since the Fourier step function is not analytic.

12. The rec(t) function is defined as

rec(t) = ũ(t)− ũ(t− To)
To

=


0 t < 0
1/To 0 < t < To

0 t > T0

.

It follows that δ̃(t) = limTo→0. Like δ̃(t), the rec(t) has unit area.
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Table 3.4: Functional relationships between signals and their F T ’s.

F T functional properties

d

dt
v(t)↔ ωV (ω) deriv∫ ∞

−∞
f(t− τ)g(τ)dτ = f(t) ? g(t)↔ F (ω)G(ω) conv

f(t)g(t)↔ 1
2πF (ω) ? G(ω) mult

f(at)↔ 1
a
F
(ω
a

)
scale

Periodic signals: As shown in Table 3.3 there are four variants of the F T that depend on the symmetry in time
and frequency. For example, when the time signal is sampled (discrete in time), the frequency response becomes
periodic, leading to the DTFT. When a time response is periodic, the frequency response is sampled (discrete in
frequency), leading to the FS. These two symmetries may be simply characterized only as periodic in time ⇒
discrete in frequency and periodic in frequency⇒ discrete in time. When a function is discrete in both time and
frequency, it is necessarily periodic in time and frequency, leading to the DFT. The DFT is typically computed
with an algorithm called the FFT, which can dramatically speed up the calculation when the data are a power of 2
in length.

Table 3.5: As summarized in this table of scalar products (dot products), the four types of Fourier transforms differ in their support in
time and frequency. These four are the (1) Fourier transform, (2) Fourier series, (3) discrete-time Fourier transform, and (4) discrete Fourier
transform. The support in time and frequency defines the form of the inner product. In this way all the various forms of Fourier transforms
may be reduced to differences in the scalar product, as dictated by the support of the signals in time and frequency. In the above tn = nTs,
fk = k/Ts represent discrete time and frequency samples, where Ts is one sample period. The signal period for the Fourier series (FS) is
T [s]. For the discrete Fourier transform (DFT) the signal period is NT , where N is the length of the DFT. Typically the transform length is
taken to be a power of 2, such as N = 1024 samples. This is done to improve the speed of the transform, known as the fast Fourier transform
(FFT). The term form provides the mathematical form of the scalar product which depends on the signal symmetry (finite-duration, periodic,
causal/one-sided, discrete-time/frequency, continuous-time/frequency, etc.). ON stands for ortho-normal. This column shows the signals that
are used when taking the transform. The signal is projected onto these vectors by the scalar product.

Name Domain scalar product form ON

(1) FT −∞ < t ∈ R <∞ x(t) · y(t)
∞∫
−∞

x(t)y(t)dt e−2πft

−∞ < f ∈ R <∞ X(f) · Y (f)
∞∫
−∞

X(f)Y (f)dω2π e2πft

(2) FS 0 ≤ t ∈ R ≤ T x((t)) · y((t)) 1
T

T∫
t=0

x(t)y(t)dt e−2πfkt

−∞ < fk = k
T ∈ N <∞ Xk · Yk

∞∑
k=−∞

XkYk e2πfkt

(3) DTFT −∞ < tn <∞ xn · yn
∞∑

n=−∞
xnyn e−2πtnΩ

−π < Ω < π X((Ω)) · Y ((Ω))
π∫
−π

X(eΩ)Y (eΩ)dΩ
2π e2πtnΩ

(4) DFT 0 ≤ tn = nT ≤ (N − 1)T xnyn
N−1∑
n=0

xnyn e−2πtnfk

0 ≤ fk = k
NT ≤

(N−1)
NT XkYk

1
N

N−1∑
n=0

XkYk e2πtnfk

Exercise #6
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Table 3.6: Basic (Level I) Fourier transforms. Note that a > 0 ∈ R has units [rad/s]. To flag this necessary condition, we use |a| to ensure
this condition will be met. The other constant To ∈ R [s] has no restrictions, other than being real. Complex constants may not appear as the
argument to a delta function, since complex numbers do not have the order property.

f(t)↔ F (ω) Name

δ̃(t)↔ 1(ω) ≡ 1 ∀ ω delta

1(t) ≡ 1 ∀ t↔ 2πδ̃(ω) step

sgn(t) = t

|t|
↔ 2

ω

ũ(t) = 1(t) + sgn(t)
2 ↔ πδ̃(ω) + 1

ω
≡ Ũ(ω) step

δ̃(t− To)↔ e−ωTo delay

δ̃(t− To) ? f(t)↔ F (ω)e−ωTo delay

ũ(t)e−|a|t ↔ 1
ω + |a| exp

rec(t) = 1
To

[ũ(t)− ũ(t− To)]↔
1
To

(
1− e−ωTo

)
pulse

ũ(t) ? ũ(t)↔ δ̃2(ω) Not defined NaN

Consider the Fourier series scalar (dot) product (Eq. 3.5.2, p. 87) between “vectors” f((t))To and e−ωkt:

F (ωk) = f((t))To · e−ωkt

≡ 1
To

∫ To

0
f(t)e−ωktdt,

where ω0 = 2π/To and f(t) has period To—that is, f(t) = f(t+nTo) = eωnt with n ∈ N and ωk = kωo. What
is the value of the Fourier series scalar product?

Solution: Evaluating the scalar product, we find

eωnt · e−ωkt = 1
To

∫ To

0
eωnte−ωktdt

= 1
To

∫ To

0
e2π(n−k)t/Todt =

{
1 n = k

0 n 6= k
.

The two signals (vectors) are orthogonal. �

Exercise #7
Consider the discrete-time F T (DTFT) as a scalar (dot) product (Eq. 3.5.2, between “vectors” fn = f(t)|tn and
e−ωtn , where tn = nTs and Ts = 1/2Fmax is the sample period.

Solution: The scalar product over n ∈ Z is

F ((ω))2π = fn · e−ωtn

≡
∞∑

n=−∞
fne
−ωtn ,

where ω0 = 2π/To and ωk = kωo is periodic (i.e., F (ω) = F (ω + kωo)). �
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3.10 Systems: Laplace transforms
The Laplace transform LT takes real causal signals f(t)u(t) ∈ R, as a function of real time t ∈ R, that are strictly
zero for negative time (f(t) = 0 for t < 0), and transforms them into complex analytic functions (F (s) ∈ C) of
complex frequency s = σ + ω. As we did for the Fourier transform, we use the same upper-lower case notation:
f(t)↔ F (s).

When a signal is zero for negative time f(t < 0) = 0, it is said to be causal, and the resulting transform F (s)
must be complex analytic over significant regions of the s plane. For a function of time to be causal, time must be
real (t ∈ R), since if it were complex, it would lose the order property (thus it could not be causal). It is helpful to
emphasize the causal nature of f(t)u(t) to force causality, with the Heaviside step function u(t).

Any restriction on a function (e.g., real, causal, periodic, positive real part, etc.) is called a symmetry property.
There are many forms of symmetry. The concept of symmetry is very general and widely used in both mathematics
and physics, where it is more generally known as group theory. One-sided periodic transforms also exist, such as
the system shown in Fig. 3.3 (p. 60).

Definition of the Laplace transform: The forward and inverse Laplace transforms are defined in Eq. 3.10.1.
Here s = σ + jω ∈ C [2πHz] is the complex Laplace frequency in radians and t ∈ R [s] is the time in seconds.

Forward and inverse Laplace transforms:

F (s) =
∫ ∞

0−
f(t)e−stdt f(t) = 1

2π

∫ σo+∞

σo−∞
F (s)estds (3.10.1)

F (s)↔ f(t) f(t)↔ F (s)

Tables of functional properties are shown in Table 3.8, while basic transforms are provided in Appendix C,
Table 3.9 (p. 120). Properties of more advanced LT s are in Table C.2 (p. 234).

When we deal with engineering problems, it is convenient to separate the signals we use from the systems
that process them. We do this by treating signals, such as speech and music, differently from a system, such as a
filter. In general, signals may start and end at any time. The concept of causality has no mathematical meaning in
signal space. Systems, on the other hand, obey rigid rules (to ensure that they remain physical). These physical
restrictions are described in terms of the system postulates, which we present on page 121. There is a question as
to why postulates are needed and which ones are the best choices. These questions are discussed in lectures by
Feynman (1968, 1970a). The original video is also available online in many places, including YouTube.27 There
may be no definitive answers to these questions, but having a set of postulates is a useful way of thinking about
physics.

Table 3.7: Laplace transforms are complementary to the class of Fourier transforms F T because the time function must be a causal
function. All LT s are complex analytic in the complex frequency s = σ + ω domain. As an example, a causal function that is continuous
but one-sided in time is the step function u(t), which has the LT u(t) ↔ 1/s. When a function is discrete in time but one-sided, it has a
Zeta-transform. The discrete-time step function is un = u[n]↔ 1/(1− z−n).

FREQUENCY \ TIME continuous t discrete t[k] causal-periodic ((t))To
continuous s LT – –
discrete ω[k] – – unknown
periodic |z|eθ – z-Transform –

Types of Laplace transforms: As shown in Table 3.7 there are three types of LT s. The function may be
continuous in time, in which it is also continuous in the Laplace frequency s. It may be discrete in time and
therefore periodic in frequency θ, which is called the z-transform. Or it may be causal-periodic in time and
therefore discrete in frequency. This transform has no name (“unknown,” as best I know). An example is the
Riemann-zeta function (Fig. C.1).

3.10.1 Properties of the Laplace transform
The following is a summary description of the LT :

27https://www.youtube.com/watch?v=JXAfEBbaz_4, https://www.youtube.com/watch?v=YaUlqXRPMmY,
https://www.youtube.com/watch?v=xnzB_IHGyjg
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1. Time t ∈ R [s] and the Laplace frequency [rad] are defined as s = σ + ω ∈ C.

2. Given a Laplace transform (LT ) pair f(t)↔ F (s), in the engineering literature, the time domain is always
lowercase [f(t)] and causal [i.e., f(t < 0) = 0], and the frequency domain is uppercase [F (s)]. Maxwell’s
venerable equations are the unfortunate exception to this otherwise universal rule.

3. The target time function f(t < 0) = 0 (i.e., it must be causal). The time limits are 0− < t < ∞. Thus
the integral must start from slightly below t = 0 to integrate over a delta function at t = 0. For example, if
f(t) = δ(t), the integral must include both sides of the impulse. If we want to include noncausal functions
such as δ(t + 1), we must extend the lower time limit. In such cases we simply set the lower limit of the
integral to −∞ and let the integrand (f(t)) determine the limits.

4. When we take the forward transform (t → s), the sign of the exponential is negative. This is necessary to
ensure that the integral converges when the integrand f(t)→∞ as t→∞. For example, if f(t) = etu(t)
(i.e., without the negative σ exponent), the integral does not converge.

5. The limits on the integrals of the reverse LT s are [σo−∞, σo+∞] ∈ C. These limits are further discussed
in Sec. 4.7.4 (p. 164).

6. When we take the inverse Laplace transform, the normalization factor of 1/2π is required to cancel the 2π
in the differential ds of the integral.

7. The frequencies for the LT must be complex, and in general F (s) is complex analytic for σ > σo. It follows
that the real and imaginary parts of F (s) are related by the Cauchy-Riemann conditions. Given <{F (s)},
it is possible to find ={F (s)} (Boas, 1987). Read more on this in Sec. 4.2.3 (p. 136).

8. To take the inverse Laplace transform, we must learn how to integrate in the complex s plane. This is
explained on pages 150–164.

9. The Laplace Heaviside step function is defined as

u(t) =
∫ t

−∞
δ(t)dt =


1 if t > 0
NaN if t = 0
0 if t < 0

.

Alternatively, we can define δ(t) = du(t)/dt.

10. It is easily shown that u(t)↔ 1/s by direct integration,

F (s) =
∫ ∞

0
u(t) e−stdt = −e

−st

s

∣∣∣∣∞
o

= 1
s
.

With the LT step (u(t)), there is no Gibbs ringing effect.

11. The Laplace transform of a Brune impedance takes the form of a ratio of two polynomials. In such cases,
the roots of the numerator polynomial are called the zeros while the roots of the denominator polynomial
are called the poles. For example, the LT of u(t)↔ 1/s has a pole at s = 0, which represents integration,
since

u(t) ? f(t) =
∫ r

−∞
f(τ)dτ ↔ F (s)

s
.

12. The LT is quite different from the F T in terms of its analytic properties. For example, the step function
u(t) ↔ 1/s is complex analytic everywhere except at s = 0. The F T of 1 ↔ 2πδ̃(ω) is not analytic
anywhere.

13. The dilated step function (a ∈ R) is

u(at)↔
∫ ∞
−∞

u(at)e−stdt = 1
a

∫ ∞
−∞

u(τ)e−(s/a)τdτ = a

|a|
1
s

= ±1
s
,

where we have made the change of variables τ = at. The only effect that a has on u(at) is the sign of t,
since u(t) = u(2t). However, u(−t) 6= u(t), since u(t) · u(−t) = 0, and u(t) + u(−t) = 1, except at
t = 0, where it is not defined.
Once complex integration in the complex plane has been defined (see Sec. 4.2.3, p. 136), we can justify the
definition of the inverse LT (Eq. 3.10.1).28

28https://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms
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Table 3.8: Functional relationships between systems and their LT s.

LT functional properties

d

dt
f(t) = δ′(t) ? f(t)↔ sF (s) deriv

f(t) ? g(t) =
∫ t

t=0
f(t− τ)g(τ)dτ ↔ F (s)G(s) causal convolution

u(t) ? f(t) =
∫ t

0−
f(t)dt↔ F (s)

s
convolution with step

f(at)u(at)↔ 1
a
F
( s
a

)
a ∈ R 6= 0 scaling

f(t)e−atu(t)↔ F (s+ a) damped

f(t− T )e−a(t−T )u(t− T )↔ e−sTF (s+ a) damped and delayed
f(−t)u(−t)↔ F (−s) reverse time

f(−t)e−atu(−t)↔ F (a− s) time-reversed and damped

sin(t)u(t)
t

↔ tan−1(1/s) half-sync

Causal-periodic signals: This is a special symmetry that occurs due to functions that are causal and periodic in
frequency. The best example is the z-transform, which applies to causal (one-sided in time) discrete-time signals.
The harmonic series (Eq. 3.2.10, p. 70) is the z-transform of the discrete-time step function and is thus, due to
symmetry, analytic within the RoC in the complex frequency (z) domain.

The double brackets on f((t))To indicate that f(t) is periodic in t with period To—that is, f(t) = f(t+ kTo)
for all k ∈ N. Averaging over one period and dividing by To give the average value.

Inverse LT

As we will discuss on page 151, to invert the LT one must use the Cauchy residue theorem (CT-3), which requires
closure of the contour C at ω→ ±j∞, ∮

C
=
∫ σ0+j∞

σ0−j∞
+
∫
⊂∞

,

where the path represented by ⊂∞ is a semicircle of infinite radius. For a causal, stable (e.g., doesn’t “blow up”
in time) signal, all of the poles of F (s) must be inside of the Laplace contour, in the left half s-plane.

Example: Hooke’s law for a spring states that the force f(t) is proportional to the displacement x(t)—that
is, f(t) = Kx(t). The formula for a dashpot is f(t) = Rv(t), and Newton’s famous formula for mass is
f(t) = d[Mv(t)]/dt, which for a constant mass Mo is f(t) = Modv/dt.

R
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al
l

Mass M

Dashpot (resistance) R

Spring compliance C
Displacement x(t)

Force f (t)

Figure 3.11: Three-element mechanical resonant circuit consisting of a spring, mass, and dashpot (e.g., viscous fluid).
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Table 3.9: Laplace transforms of f(t), δ(t), u(t), rect(t), to, p, e ∈ R and F (s), G(s), s, a ∈ C. Given a Laplace transform (LT ) pair
f(t)↔ F (s), the frequency domain is always uppercase [e.g., F (s)] and the time domain lowercase [f(t)] and causal (i.e., f(t < 0) = 0).
An extended table of transforms is given in Table C.2.

f(t)↔ F (s) t ∈ R; s, F (s) ∈ C Name

δ(t)↔ 1 Dirac

δ(|a|t)↔ 1
|a|

a 6= 0 time-scaled Dirac

δ(t− t0)↔ e−st0 delayed Dirac

δ(t− t0) ? f(t)↔ F (s)e−st0 —
∞∑
n=0

δ(t− nt0) = 1
1− δ(t− t0) ↔

1
1− e−st0 =

∞∑
n=0

e−snt0 one-sided impulse train

u(t)↔ 1
s

Heaviside step

u(−t)↔ −1
s

anticausal step

u(at)↔ a

s
a 6= 0 ∈ R dilated or reversed step

eatu(−t)↔ 1
−s+ a

anticausal damped step

e−atu(t)↔ 1
s+ a

a > 0 ∈ R damped step

cos(at)u(t)↔ 1
2

(
1

s− a
+ 1
s+ a

)
a ∈ R cos

sin(at)u(t)↔ 1
2

(
1

s− a
− 1
s+ a

)
a ∈ C damped sin

u(t− t0)↔ 1
s
e−st0 t0 > 0 ∈ R time delay

rect(t) = 1
t0

[u(t)− u(t− t0)]↔ 1
t0

(
1− e−st0

)
rect-pulse

u(t) ? u(t) = tu(t)↔ 1/s2 ramp

u(t) ? u(t) ? u(t) = 1
2 t

2u(t)↔ 1/s3 double ramp

1√
t
u(t)↔

√
π

s

tpu(t)↔ Γ(p+ 1)
sp+1 <p > −1, q ∈ C
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The equation of motion for the mechanical oscillator in Fig. 3.11 is given by Newton’s second law; the sum of
the forces must balance to zero:

Mo
d2

dt2
x(t) +Ro

d

dt
x(t) +Kox(t) = f(t)↔ (Mos

2 +Ros+Ko)X(s) = F (s). (3.10.2)

These three constants—mass Mo, resistance Ro, and stiffness Ko (∈ R ≥ 0)—are real and nonnegative. The
dynamical variables are the driving force f(t) ↔ F (s), the position of the mass x(t) ↔ X(s), and its velocity
v(t)↔ V (s), with v(t) = dx(t)/dt↔ V (s) = sX(s).

Newton’s second law (ca.1650) is the mechanical equivalent of Kirchhoff’s (ca.1850) voltage law (KVL),
which states that the sum of the voltages around a loop must be zero. The gradient of the voltage results in a force
on a charge (i.e., F = qoE). The current may be thought of as the flow of charge.

Equation 3.10.2 may be re-expressed in the frequency domain in terms of an impedance (i.e., Ohm’s law),
defined as the ratio of the force F (s) to velocity V (s) = sX(s), and the sum of three impedances:

Z(s) = F (s)
V (s) = Ms2 +Rs+K

s
= Ms+R+ K

s
. (3.10.3)

Example: The divergent series

etu(t) =
∞∑
0

1
n! t

n ↔ 1
s− 1

is a valid description of etu(t), with an unstable pole at s = 1. For values of |x − xo| < 1 (x ∈ R), the analytic
function P (x) is said to have a region of convergence (RoC). For cases where the argument is complex (s ∈ C),
this is called the radius of convergence (RoC). We will call the region |s− so| > 1 the region of divergence (RoD)
and |s − so| = 0 the singular circle. Typically the underlying function P (s), defined by the series, has a pole on
the singular circle.

Summary: While the definitions of the F T and LT may appear similar, they are not. The key difference is
that the time response of the Laplace transform is causal, leading to a complex analytic frequency response. The
frequency response of the Fourier transform is complex but not complex analytic, since the frequency ω is real.
Fourier transforms do not have poles.

The concept of symmetry is helpful in understanding the many different types of time-frequency transforms.
The two most fundamental types of symmetry are causality and periodicity.

The F T characterizes the steady-state response, while the LT characterizes both the transient and steady-state
responses. Given a causal system force response (Eq. 3.10.3), F (s)↔ f(t) with input velocity V (s)↔ v(t), the
response is

f(t) = z(t) ? v(t)↔ Z(ω) = F (s)
∣∣∣
s=ω

V (ω),

which says that the force is the convolution of the mechanical impedance z(t) with the input velocity v(t).

3.10.2 System postulates
Solutions of differential equations, such as the wave equation, are conveniently described in terms of mathematical
properties, which we present here in 11 system postulates (see Appendix G, p. 253, for greater detail):

(P1) Causality (noncausal/acausal): Causal systems respond when acted upon. All physical systems obey causal-
ity. An example of a causal system is an integrator, which has a response of a step function. Filters are also
examples of causal systems. Signals represent acausal responses. They do not have a clear beginning or
end, such as the sound of the wind or traffic noise. A causal linear system is typically complex analytic and
is naturally represented in the complex s plane via Laplace transforms. A nonlinear system may be causal
but not complex analytic.

(P2) Linearity (nonlinear): Linear systems obey superposition. Let two signals x(t) and y(t) be the inputs to a
linear system, producing outputs x′(t) and y′(t). When the inputs are presented together as ax(t) + by(t)
with constant weights a, b ∈ C, the output is ax′(t) + by′(t). If either a or b is zero, the corresponding
signal is removed from the output.

Nonlinear systems mix the two inputs, thereby producing signals that are not present in the input. For
example, if the inputs to a nonlinear system are two sine waves, the output contains distortion components
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that have frequencies not present at the input. One example of a nonlinear system is one that multiplies the
two inputs. A second is a diode, which rectifies a signal, letting current flow in only one direction. Most
physical systems have some degree of nonlinear response, but this is not always desired. Other systems are
designed to be nonlinear, such as the diode example.

(P3) Passive (active): An active system has a power source, such as a battery, while a passive system has no
power source. Although you may consider a transistor amplifier to be active, it is so only when connected
to a power source. Brune impedances satisfy the positive-real condition (Eq. 3.2.19, p. 73).

(P4) Real (complex) time response: All physical systems are Real in = Real out. They do not naturally have
complex responses (real and imaginary parts). While a Fourier transform takes real inputs and produces
complex outputs, this is not an example of a complex time response. This postulate is a characterization of
the input signal, not its Fourier transform.

(P5) Time-invariant (time varying): For a system to be a time-varying system, the output must depend on when
the input signal starts or stops. If the output, relative to the input, is independent of the starting time, then
the system is said to be time-invariant.

(P6) Reciprocal (non- or antireciprocal): In many ways this is the most difficult postulate to understand. It is best
characterized by the ABCD matrix (see p. 107). If ∆T = 1, the system is said to be reciprocal. If ∆T = −1,
it is said to be antireciprocal. The impedance matrix is reciprocal when z12 = z21 and antireciprocal when
z12 = −z21. Dynamic loudspeakers are antireciprocal and must be modeled by a gyrator, which may be
thought of as a transformer that swaps the force and flow variables (Kim and Allen, 2013). For example,
the input impedance of a gyrator terminated by an inductor is a capacitor. This property is best explained
by Fig. 3.9 (p. 109). For an extended discussion on reciprocity, see page 256.

(P7) Reversibility (nonreversible): If swapping the input and output of a system leaves the system invariant, it is
said to be reversible. When A = D, the system is reversible. Note the distinction between reversible and
reciprocal.

(P8) Space-invariant (space-variant): If a system operates independently as a function of where it physically is
in space, then it is space-invariant. When the parameters that characterize the system depend on position, it
is space-variant.

(P9) Deterministic (random): Given the wave equation along with the boundary conditions, the system’s solution
may be deterministic, or not, depending on its extent. Consider a radar or sonar wave propagating out into
uncharted territory. When the wave hits an object, the reflection can return waves that are not predicted due
to unknown objects. This is an example where the boundary condition is not known in advance.

(P-10) Quasistatic (ka < 1): Quasistatics follows the Nyquist sampling theorem for systems that have dimensions
that are small compared to the local wavelength (Nyquist, 1924). This assumption fails when the frequency
is raised (the wavelength becomes short). Thus this is also known as the long-wavelength approximation.
Quasistatics is typically stated as ka < 1, where k = 2π/λ = ω/co and a is the smallest dimension of the
system. See page 194 for a method on how to integrate the transmission matrix and Nyquist sampling.

Postulate P10 is closely related to the Feynman lecture The “underlying unity” of nature, where Feynman
asks (Feynman, 1970b, Ch. 12-7): “Why do we need to treat the fields as smooth?” His answer is related to
the wavelength of the probing signal relative to the dimensions of the object being probed. This raises the
fundamental question: Are Maxwell’s equations a band-limited approximation to reality? Today we have
no definite answer to this question.

The following quote seems relevant:29

The Lorentz force formula and Maxwell’s equations are two distinct physical laws, yet the two
methods yield the same results.
Why the two results coincide was not known. In other words, the flux rule consists of two
physically different laws in classical theories. Interestingly, this problem was also a motivation
behind the development of the theory of relativity by Albert Einstein. In 1905, Einstein wrote
in the opening paragraph of his first paper on relativity theory, “It is known that Maxwell’s
electrodynamics—as usually understood at the present time—when applied to moving bodies,
leads to asymmetries which do not appear to be inherent in the phenomena.” But Einstein’s

29https://www.sciencedaily.com/releases/2017/09/170926085958.htm



3.10. SYSTEMS: LAPLACE TRANSFORMS 123

argument moved away from this problem and formulated special theory of relativity, thus the
problem was not solved.
Richard Feynman once described this situation in his famous lecture (The Feynman Lectures on
Physics, Vol. II, 1964), “we know of no other place in physics where such a simple and accurate
general principle requires for its real understanding an analysis in terms of two different phe-
nomena. Usually such a beautiful generalization is found to stem from a single deep underlying
principle. . . . We have to understand the “rule” as the combined effects of two quite separate
phenomena.”

(P11) Periodic↔ discrete: When a function is discrete in one domain (e.g., time or frequency), it is periodic in
the other (frequency or time).

Summary of the 11 system postulates: Each postulate has at least two categories. For example, (P1) is causal,
noncausal, or acausal, while (P2) is linear or nonlinear. (P6) and (P9) apply to only two-port algebraic networks
(those that have an input and an output). The others apply to both two- and one-port networks (e.g., an impedance
is a one-port). An important example of a two-port is the antireciprocal transmission matrix of a dynamic (EM)
loudspeaker (see p. 253).

Related forms of these postulates may be found in the network theory literature (Van Valkenburg, 1964a,b;
Ramo et al., 1965). Postulates P1–P6 were introduced by Carlin and Giordano (1964), and Postulates P7–P9
were added by Kim et al. (2016). While linearity (P2), passivity (P3), realness (P4), and time-invariant (P5) are
independent, causality (P1) is a consequence of linearity (P2) and passivity (P3) (Carlin and Giordano, 1964, p. 5).

3.10.3 Probability

Many things in life follow rules we don’t understand, and thus are unpredictable, yet they have structure due to
some underlying poorly understood physics (e.g., quantum mechanics). Unlike mathematicians, engineers are
taught to deal with uncertainty in terms of random processes using probability theory. For many this starts out
as a large set of boring incomprehensible definitions, but once you begin to understand, it becomes interesting
mathematics. It needs to be in your skin. If you don’t have an intuition for it, either keep working on it or else find
another job. Don’t memorize a bunch of formulas, because that won’t work over the long run.

A friend was once told “You’re amazing in how you think outside the box.” He responded “There is no box.”
Some view probability as combinatorics and permutations. In my view probability is much more. Proba-

bility is about the signal processing of noise and signals (i.e., not combinatorics), with units of [certainty] (Fry,
1928, p. 4) An important goal in using probability is to find correlations in observations, such as the relative fre-
quency of observations in sequential observations of events. Hamming (2004) presents an insightful discussion
on probability.

Definitions:

1. An event is an unpredictable outcome (Papoulis and Pillai, 2002). For example, measuring the temperature
T (x, t) ∈ R with x ∈ R3 at time t [s] is an event. Measuring the temperature every hour gives 24 events
per day [degrees/h]. Also, the single toss of a coin, resulting in {H,T}, is an event.

Exercise #8
What are the units of a temperature event?

Solution: Although we might think the answer is degrees, that unit is not the data that are being observed.
Rather, the relative frequency of temperatures is the observable. For example, how many times was the
event between 20° and 21° or between 22° and 27°? Events are dimensionless numbers with no units. �

2. A trial is N events.

3. An experiment {M,N} is M trials of N events.

4. We must always keep track of the number of events so that we can compute the mean (i.e., average) and the
uncertainty of an observable outcome.

5. The mean of many trials is the average.
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6. A random variable X is the outcome from an experiment. A random variable rarely has stated units. For
example, flipping a coin N = 8 times defines the number of trials.

Exercise #9
What are the units of coin flips?

X ≡ {H,H,H, T,H, T, T, T}

Solution: The random variable {H,T} has units of [certainty], best measured in terms of odds, as the ratio
of tails to heads.�

Exercise #10
How do you identify the meaning of a variable that is dimensionless (has no units)?

Solution: One must get creative. We can let H = 1 and T = −1 so that the mean can be zero.�

Exercise #11
What are the mean and standard deviation of the coin toss?

Solution: To compute the mean (or standard deviation) we assign numbers toH and T . For example, we let
H = 1 and T = 0. Then we use the usual formula to compute the numerical values. An important measure
is the odds ratio. �

7. The expected value is the mean of N events.

Exercise #12
What is the difference between the mean, the expected value, and the average?

Solution: These terms all mean the same thing. Having several terms that mean the same thing is one of the
many things that make probability theory so arbitrary. It is sloppy to have unclear terminology.�

Exercise #13
How do you assign a numerical mean to random outcomes {H,T}?

Solution: If we let H = 1 and T = 0, then the mean is

µ = (1 + 1 + 1 + 0 + 1 + 0 + 1 + 0)/8 = 5/8.

The odds are defined as the ratio of PH/PT . �

It is critically important to keep track of the number of events (N = 8 in the Exercise 52). In some sense N is
more important than the actual measured sequence. It is helpful to think of N as the independent variable and X
as the dependent variable; that is, think of X(N), not N(X).

Example: We define a trial by flipping a coin N = 10 times. We form an experiment by M repeated trials
(M = 1000).

Exercise #14
A measure of the quantization in the estimate of the probability density due to the sample size N is defined as the
magnitude of sampling noise.

Solution: When we compute the average (the mean µN ) of N samples the error is bounded by 1/N ; thus the
variance σ2

N from the mean is quantized to 1/N . It follows that the root-mean-square (RMS) sample error must be
bounded by σN <

√
2/N , independent of frequency (i.e., the F T of the N -sample probability density function).

�
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3.11 Complex analytic mappings (domain-coloring)
One of the most difficult aspects of complex functions of a complex variable is visualizing the mappings from the
z = x+ y to w(z) = u+ v planes. For example, w(z) = sin(x) is trivial;

sin(y) = e−y − ey

2 = − sinh(y)

is pure imaginary. However, the more general case

w(z) = sin(z) ∈ C

when z = x+y is real (i.e., y = 0) because sin(x) is real. Likewise, the case where x = 0 is not easily visualized.
And when u(x, y) and v(x, y) are less well-known functions, w(z) can be even more difficult to visualize. For
example, if w(z) = J0(z), then u(x, y) and v(x, y) are the real and imaginary parts of the Bessel function.
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Figure 3.12: Left: Domain-colorized map showing the complex mapping from
the s = σ + ω plane to the w(s) = u(σ, ω) + v(σ, ω) plane. This mapping
may be visualized by the use of intensity (light/dark) to indicate magnitude, and
color (hue) to indicate angle (phase) of the mapping. Right: The w(s) = s −√
plane shifted to the right and up by

√
2/2 = 0.707. The white and black lines are

the iso-real and iso-imaginary contours of u(σ, ω) and v(σ, ω).

Visualizing complex functions: The map-
ping from s = σ + ω to w(s) = u(σ, ω) +
ıv(σ, ω) is difficult to visualize because for
each point in the domain s = σ + ω, we
would like to represent both the magnitude
and phase (or real and imaginary parts) of
w(s). The accepted way to visualize these
mappings is to use color (hue) to represent
the phase and intensity (dark to light) to rep-
resent the magnitude.

Fortunately with computer software to-
day, this mapping problem can be solved by
adding color to the chart. An Octave/Matlab
script30 zviz.m has been devised to make
the charts shown in Fig. 3.12. Such charts are
known as domain-coloring.

In Fig. 3.12, rather than plotting u(x, y) and v(x, y) separately, domain-coloring allows us to display the
entire function on one color chart (i.e., colorized plot). For this visualization we see the complex polar form of
w(s) = |w|e∠w rather than the 2 × 2 (four-dimensional) Cartesian graph w(x + y) = u(x, y) + v(x, y). On
the left is the reference condition, the identity mapping (w = s), and on the right the origin has been shifted to the
right and up by

√
2.

Mathematicians typically use the abstract (i.e., nonphysical) notation w(z), where w = u+vı and z = x+yı.
Engineers typically work in terms of a physical complex impedance Z(s) = R(s) + X(s) that has resistance
R(s) and reactanceX(s) [ohms] as a function of the complex Laplace radian frequency s = σ+ω [rad], as used,
for example, with the Laplace transform (see p. 117).

In Fig. 3.12 we use a mixed notation, with Z(s) = s on the left and w(s) = s − √ on the right, where
we show this color code as a 2 × 2 dimensional domain-coloring graph. Intensity (dark to light) represents the
magnitude of the function, while hue (color) represents the phase, where red is 0◦, sea-green is 90◦, blue-green is
135◦, blue is 180◦, and violet is −90◦ (or 270◦).31

The function w = s = |s|eθ has a dark spot (zero) at s = 0 and becomes brighter away from the origin. On
the right is w(s) = s−√, which shifts the zero (dark spot) to s = √. Thus domain-coloring gives the full 2× 2
complex analytic function mapping w(x, y) = u(x, y) + v(x, y) in colorized polar coordinates.

Example: Figure 3.13 shows a colorized plot of w(z) = sin(π(s − )/2) resulting from the Matlab/Octave
command zviz sin(pi*(s-j)/2). The abscissa (horizontal axis) is the real σ-axis and the ordinate (vertical
axis) is the complex ω-axis. The graph is offset along the ordinate axis by 1j, since the argument s−  causes a
shift of the sine function by 1 in the positive imaginary direction.
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Figure 3.13: Plot of sin(0.5π(z − )).

The visible zeros of w(s) appear as dark regions at
(−2, 1), (0, 1), (2, 1). As a function of σ,w(σ+1) os-
cillates between red (phase is zero degrees), meaning

30https://jontalle.web.engr.illinois.edu/uploads/298/zviz.zip
31Hue depends on both the display medium and the eye.
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the function is positive and real, and sea-green (phase
is 180◦), meaning the function is negative and real.

To use the program, we use the syntax, for exam-
ple, zviz s.ˆ2). Note the period between s and
ˆ2. This will render a domain-coloring (colorized)
version of the function. Examples you can render
with zviz are given in the comments at the top of
the zviz.m program. A good example for testing is
zviz z-sqrt(j), which has a dark spot (zero) at
(1 + 1)/

√
2 = 0.707(1 + 1).

Along the vertical axis, the displayed function is
either cosh(y) or sinh(y), depending on the value of

x. The intensity becomes lighter as |w| increases.

What is being plotted? The axes are either s = σ and ω, or z = x and y. Superimposed on the s-axis is the
function w(s) = u(σ, ω) + v(σ, ω), represented in polar coordinates by the intensity and color of w(s). The
density (dark vs. light) displays the magnitude |w(s)|, while the color (hue) displays the angle (∠w(s)) as a
function of s. Thus the intensity becomes darker as |w| decreases and lighter as |w(s)| increases. The angle ∠(w)
to color map is defined by Fig. 3.12. For example, 0° is red, 90° is green, −90° is purple, and 180° is blue-green.

Example: Additional examples are given in Fig. 3.14 using the notation w(s) = u(σ, ω) + v(σ, ω). We see
the two complex mappings w = es (left) and its inverse s = ln(w). The exponential is relatively to understand
because w(s) = |eσeω| = eσ .
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 2

 1
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Figure 3.14: This domain-color map allows us to visualize complex mappings by the use of intensity (light/dark) to indicate magnitude
and color (hue) to indicate angle (phase). The white and black lines are the iso-real and iso-imaginary contours of the complex mapping. Left:
The domain-color map for the complex mapping from the s = σ + ω plane to the w(s) = u+ v = eσ+ω = eσeω plane, which goes to
zero as σ → −∞, causing the domain-color map to become dark for σ < −2. The white and black lines are always perpendicular because
es is complex analytic everywhere. Right: The principal value of the inverse function s(z) = u(x, y) + v(x, y) = log(z), which has a
zero (dark) at x = 1, since there log(1) = 0 and the imaginary part is zero. Note the branch cut, where the color is discontinuous, from
x = [0,−∞). On branches other than the one shown, there are no zeros, since the phase (∠s = 2πn ∈ Z) is not zero. n is called the branch
index. See Sec. 4.4.3 (p. 146) for a discussion of branch cuts and multivalued functions.

The red region is where ω ≈ 0, in which case w ≈ eσ . As σ becomes large and negative, w → 0; thus the
entire field becomes dark on the left. The field is becoming light on the right where w = eσ →∞. If we let σ = 0
and look along the ω-axis, we see that the function is changing phase: sea-green (90◦) at the top and violet (−90◦)
at the bottom.

In the right panel note the zero for s(z) = ln(z) = ln |z| + ω at z = 1. The root of the log(z) function
is log(zr) = 0, wr = 1,∠z = φ = 0, since log(1) = 0. More generally, the log(z) of z = |z|eφ is s(z) =
ln |z|+ φ. Thus s(w) can be zero only when the angle of w is zero.

The ln(z) function has a branch cut along the φ(z) = ∠z = 180◦ axis. As one crosses over the cut, the phase
goes above 180◦ and the plane changes to the next sheet of the log function. The only sheet with a zero is the
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principal value, as shown. For all others, the log function is either increasing or decreasing monotonically, and
there is no zero.

3.11.1 The Riemann sphere

Once algebra was formulated, in about 830 CE, mathematicians were able to expand beyond the limits set by
geometry on the real plane and the verbose descriptions of each problem in prose (Stillwell, 2010, p. 93). The
geometry of Euclid’s Elements had paved the way, but after 2000 years, the addition of the language of algebra
changed everything. The analytic function was a key development, heavily used by both Newton and Euler. Also
Cauchy made important headway with his investigation of complex variables. Of special note were integration
and differentiation in the complex plane of complex analytic functions, which is the topic of Chapter 4.

It was Riemann, working with Gauss in the final years of Gauss’s life, who made the breakthrough with the
concept of the extended complex plane.32 This concept was based on the composition of a line with the sphere,
similar in concept to the derivation of Euclid’s formula for Pythagorean triplets (see p. 41). While the importance
of the extended complex plane was unforeseen, it changed analytic mathematics forever, along with the physics it
supported. It unified and thus simplified many important integrals to the extreme. The basic idea is captured by
the fundamental theorem of complex integral calculus (see Table 4.1, p. 133).

Figure 3.15: The left panel shows how the real line may be composed with the circle. Each real x value maps to a corresponding point x′
on the unit circle. The point x→∞ maps to the north pole N . This simple idea may be extended with the composition of the complex plane
with the unit sphere, thus mapping the plane onto the sphere. As with the circle, the point on the complex plane z →∞ maps onto the north
pole N . This construction is important because, while the plane is open (does not include z → ∞), the sphere is analytic at the north pole.
Thus the sphere defines the closed extended plane. Figure adapted from Stillwell (2010, pp. 299–300).

The idea is outlined in Fig. 3.15. On the left is a circle and a line. The difference between this case and the
derivation of the Pythagorean triplets is that the line starts at the north pole and ends on the real x ∈ R axis at
point x. At point x′, the line cuts through the circle. Thus the mapping from x to x′ takes every point on R to a
point on the circle. For example, the point x = 0 maps to the south pole (not indicated). To express x′ in terms of
x one must compose the line and the circle, similar to the composition used in the derivation of Euclid’s formula
(see p. 41). The points on the circle, indicated here by x′, require a traditional polar coordinate system, with
a unit radius and an angle defined between the radius and a vertical line passing through the north pole. When
|x| → ∞, the point x′ → N , known as the point at infinity. But this idea goes much further, as shown on the right
of Fig. 3.15.

Here the real tangent line is replaced by a tangent complex plane z ∈ C and the complex puncture point
z′ ∈ C—in this case on the complex sphere, called the extended complex plane. This is a natural extension of the
chord/tangent method on the left, but with significant consequences. The main difference between the complex
plane z and the extended complex plane, other than the coordinate system, is what happens at the north pole. The
point at |z| = ∞ is not defined on the plane, whereas on the sphere, the point at the north pole is simply another
point, like every other point on the sphere.

Open vs. closed sets: Mathematically the plane is said to be an open set, since the limit z → ∞ is not defined,
whereas on the sphere, the point z′ is a member of a closed set, since the north pole is defined. The distinction
between an open and closed sets is important because the closed set allows the function to be complex analytic at
the north pole, which it cannot be on the plane (since the point at infinity is not defined).

32“Gauss did lecture to Riemann but he was only giving elementary courses and there is no evidence that at this time he recognized
Riemann’s genius.” Then “In 1849 he [Riemann] returned to Göttingen and his Ph.D. thesis, supervised by Gauss, was submitted in 1851.”
See https://www-groups.dcs.st-and.ac.uk/˜history/Biographies/Riemann.html.
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The z plane may be replaced with another tangent plane—say, the w = F (z) ∈ C plane, where w is some
function F of z ∈ C. For the moment we shall limit ourselves to complex analytic functions of z—namely,
w = F (z) = u(x, y) + v(x, y) =

∑∞
n=0 cnz

n.
In summary, given a point z = x+ y on the open complex plane, we map it to w = F (z) ∈ C, the complex

w = u + v plane, and from there to the closed extended complex plane w′(z). The point of doing this is that it
allows the function w′(z) to be analytic at the north pole, meaning it can have a convergent Taylor series at the
point at infinity z →∞.

Since we have not yet defined dw(z)/dz, the concept of a complex Taylor series remains undefined.

3.11.2 Bilinear transformation
In mathematics the bilinear transformation has special importance because it is linear in its action on both the
input and output variables. Since we are engineers, we shall stick with the engineering terminology. But if you
wish to read about this on the internet, be sure to also search for the mathematical term Möbius transformation.

When a point on the complex plane z = x+ y is composed with the bilinear transformation (a, b, c, d ∈ C),
the result is w(z) = u(x, y) + v(x, y) (this is related to the Möbius transformation, p. 16):

w = az + b

cz + d
. (3.11.1)

The transformation z → w is a cascade of four independent compositions:

1. Translation (w = z + b: a = 1, b ∈ C, c = 0, d = 1)

2. Scaling (w = |a|z: a ∈ R, b = 0, c = 0, d = 1)

3. Rotation (w = a
|a|z: a ∈ C, b = 0, c = 0, d = |a|)

4. Inversion (w = 1
z : a = 0, b = 1, c = 1, d = 0)

Each of these transformations is a special case of Eq. 3.11.1, with inversion being the most complicated. I highly
recommend a video showing the effect of the bilinear (Möbius) transformation on the plane (Arnold, D. and
Rogness, J., 2019).33

The bilinear transformation is the most general way to move the expansion point in a complex analytic expan-
sion. For example, when we start from the harmonic series, the bilinear transformation gives

1
1− w = 1

1− az+b
cz+d

= cz + d

(c− a)z + (d− b)

= 1
1− a

c

·
z + d

c

z − a−b
c−a

.

The RoC is transformed from |w| < 1 to |(az − b)/(cz − d)| < 1. An interesting application might be to move
the expansion point until it is on top of the nearest pole, so that the RoC goes to zero. This might be a useful way
of finding a pole, for example.

When the extended plane (Riemann sphere) is analytic at z = ∞, we can take the derivatives there, defining
the Taylor series with the expansion point at ∞. When the bilinear transformation rotates the Riemann sphere,
the point at infinity is translated to a finite point on the complex plane, revealing the analytic nature at infinity. A
second way to transform the point at infinity is by the bilinear transformation ζ = 1/z, mapping a zero (or pole)
at z = ∞ to a pole (or zero) at ζ = 0. Thus this construction of the Riemann sphere and the Möbius (bilinear)
transformation allows us to understand the point at infinity and treat it like any other point. If you felt that you
never understood the meaning of the point at∞ (likely), this should help.

33https://www.youtube.com/watch?v=0z1fIsUNhO4
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3.12 Problems AE-3

Topics of this homework:

Visualizing complex functions, bilinear/Möbius transformation, Riemann sphere.
Deliverables: Answers to problems

Two-port network analysis

Problem # 1: Perform an analysis of electrical two-port networks, shown in Fig. 3.8 (page
107). This can be a mechanical system if the capacitors are taken to be springs and inductors
taken as mass, as in the suspension of the wheels of a car. In an acoustical circuit, the low-pass
filter could be a car muffler. While the physical representations will be different, the equations
and the analysis are exactly the same.

The definition of the ABCD transmission matrix (T ) is[
V1
I1

]
=
[

A B
C D

] [
V2
−I2

]
. (AE-3.1)

The impedance matrix, where the determinant ∆T = AD −BC, is given by[
V1
V2

]
= 1

C

[
A ∆T
1 D

] [
I1
I2

]
. (AE-3.2)

– 1.1: Derive the formula for the impedance matrix (Eq. AE-3.2) given the transmission
matrix definition (Eq. AE-3.1). Show your work.

Problem # 2: Consider a single circuit element with impedance Z(s).

– 2.1: What is the ABCD matrix for this element if it is in series?

– 2.2: What is the ABCD matrix for this element if it is in shunt?

Problem # 3: Find the ABCD matrix for each of the circuits of Fig. 3.8.
For each circuit, (i) show the cascade of transmission matrices in terms of the complex frequency s ∈ C, then

(ii) substitute s = 1 and calculate the total transmission matrix at this single frequency.

– 3.1: Left circuit (let R1 = R2 = 10 kilo-ohms and C = 10 nano-farads)

– 3.2: Right circuit (use L and C values given in the figure), where the pressure P is
analogous to the voltage V , and the velocity U is analogous to the current I .

– 3.3: Convert both transmission (ABCD) matrices to impedance matrices using Eq. AE-3.2.
Do this for the specific frequency s = 1 as in the previous part (feel free to use Matlab/Octave
for your computation).

– 3.4: Right circuit: Repeat the analysis as in question 3.3.
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Algebra
Problem # 4: Fundamental theorem of algebra (FTA).

– 4.1: State the fundamental theorem of algebra (FTA).

Algebra with complex variables
Problem # 5: Order and complex numbers:

One can always say that 3 < 4—namely, that real numbers have order. One way to view this is to take the
difference and compare it to zero, as in 4− 3 > 0. Here we will explore how complex variables may be ordered.
Define the complex variable z = x+ y ∈ C.

– 5.1: Explain the meaning of |z1| > |z2|.

– 5.2: If x1, x2 ∈ R (are real numbers), define the meaning of x1 > x2. Hint: Take the
difference.

– 5.3: Explain the meaning of z1 > z2.

– 5.4: If time were complex, how might the world be different?

Problem # 6: It is sometimes necessary to consider a function w(z) = u + v in terms of the
real functions u(x, y) and v(x, y) (e.g. separate the real and imaginary parts). Similarly, we
can consider the inverse z(w) = x+ y, where x(u, v) and y(u, v) are real functions.

– 6.1: Find u(x, y) and v(x, y) for w(z) = 1/z.

Problem # 7: Find u(x, y) and v(x, y) for w(z) = cz with complex constant c ∈ C for
questions 7.1, 7.2, and 7.3:

– 7.1: c = e

– 7.2: c = 1 (recall that 1 = ek2πk for k = 0, 1, 2, . . .)

– 7.3: c = . Hint:  = eπ/2+2πm, m ∈ Z.

– 7.4: Find u(x, y) for w(z) =
√
z.

Problem # 8: Convolution of an impedance z(t) and its inverse y(t):
In the frequency domain a Brune impedance is defined as the ratio of a numerator polynomial N(s) to a denomi-
nator polynomial D(s).

– 8.1: Consider a Brune impedance defined by the ratio of numerator and denominator
polynomials, Z(s) = N(s)/D(s). Since the admittance Y (s) is defined as the reciprocal of
the impedance, the product must be 1. If z(t) ↔ Z(s) and y(t) ↔ Y (s), it follows that
z(t)?y(t) = δ(t). What property must n(t)↔ N(s) and d(t)↔ D(s) obey for this to be true?

– 8.2: The definition of a minimum phase function is that it must have a causal inverse.
Show that every impedance is minimum phase.
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V + α∗U

|V ·U|/||V||

U
α∗U

E
(α
∗ )

=
V
−
α
∗
U

E(α) =
V
−
αU

V

αU

Figure 3.16: This figure shows how to derive the Schwarz inequality, by finding the value of α = α∗ corresponding to min
α

[E(α)]. It is

identical to Fig. 3.5 on page 92.

Schwarz inequality
Problem # 9: The above figure shows three vectors for an arbitrary value of α ∈ R and a
specific value of α = α∗.

– 9.1: Find the value of α ∈ R such that the length (norm) of ~E (i.e., || ~E|| ≥ 0) is minimum.
Show your derivation, not the answer (α = α∗).

– 9.2: Find the formula for ||E(α∗)||2 ≥ 0. Hint: Substitute α∗ into Eq. 3.5.9 (p. 93) and
show that this results in the Schwarz inequality

|~U · ~V | ≤ ||~U ||||~V ||.

Problem # 10: Geometry and scaler products

– 10.1: What is the geometrical meaning of the dot product of two vectors?
]

– 10.2: Give the formula for the dot product of two vectors. Explain the meaning based on
Fig. 3.4 (page 88).

– 10.3: Write the formula for the dot product of two vectors ~U · ~V in Rn in polar form (e.g.,
assume the angle between the vectors is θ).

– 10.4: How is the Schwarz inequality related to the Pythagorean theorem?

– 10.5: Starting from ||U + V ||, derive the triangle inequality

||~U + ~V || ≤ ||~U ||+ ||~V ||.

– 10.6: The triangle inequality ||~U+~V || ≤ ||~U ||+||~V || is true for two and three dimensions:
Does it hold for five-dimensional vectors?

– 10.7: Show that the wedge product ~U ∧ ~V ⊥ ~U · ~V .

Probability
Problem # 11: Basic terminology of experiments
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– 11.1: What is the mean of a trial, and what is the average over all trials?

– 11.2: What is the expected value of a random variable X?

– 11.3: What is the standard deviation about the mean?

– 11.4: What is the definition of information of a random variable?

– 11.5: How do you combine events? Hint: If the event is the flip of a biased coin, the
events are H = p, T = 1 − p, so the event is {p, 1 − p}. To solve the problem, you must find
the probabilities of two independent events.

– 11.6: What does the term independent mean in the context of question 11.5? Give an
example.

– 11.7: Define odds.



Chapter 4

Stream 3A: Scalar Calculus

Stream 3 is ∞, a concept that typically means unbounded (immeasurably large), but in the case of calculus, ∞
means infinitesimal (immeasurably small), since taking a limit requires small numbers. Taking a limit means you
may never reach the target, a concept that the Greeks called Zeno’s paradox (Stillwell, 2010, p. 76).

When we speak of the class of ordinary (versus vector) differential equations, the term scalar is preferable,
since the term ordinary is vague, if not meaningless. For scalar calculus, a special subset of fundamental theorems
about integration are summarized in Table 4.1 (p. 135), starting with Leibniz’s theorem.

Table 4.1: The fundamental theorems of integral calculus, each of which deals with integration. At least two main theorems relate to scalar
calculus, and three more to vector calculus.

Name Mapping p. Description

Leibniz (FTC) R1 → R0 135 Area under a real curve
Cauchy (FTCC) C1 → R0 135 Area under a complex curve
Cauchy’s theorem C1 → C0 151 Close integral over analytic region is zero
Cauchy’s integral formula C1 → C0 151 Fundamental theorem of complex integral calculus
residue theorem C1 → C0 151 Residue integration
Helmholtz’s theorem

Following our discussion of the integral theorems on scalar calculus are those on vector calculus, without
which there can be no understanding of Maxwell’s equations. Of these, the fundamental theorem of vector cal-
culus (also known as Helmholtz decomposition), Gauss’s law, and Stokes’s theorem form the three cornerstones
of modern vector field analysis. These theorems allow us to connect the differential (point) and macroscopic (in-
tegral) relationships. For example, we can write Maxwell’s equations either as vector differential equations, as
shown by Heaviside (along with Gibbs and Hertz), or in integral form. It is helpful to place these two forms side
by side to fully appreciate their significance. To understand the differential (microscopic) view, one must fully
understand the integral (macroscopic) view (see Figs. 5.5 and 5.6 on pp. 197 and 198).

4.1 The beginning of modern mathematics

As shown in Fig. 1.2 (p. 5), mathematics as we know it today began in the 16th to 18th centuries, arguably starting
with Galileo, Descartes, Fermat, Newton, the Bernoulli family, and most important Euler. Galileo was formidable
because of his fame, fortune, and “successful” stance against the powerful Catholic establishment. His creativity
in scientific circles was certainly well known due to his many skills and accomplishments. Descartes and Fermat
were at the forefront of merging algebra and geometry. While Fermat kept meticulous notebooks, he did not
publish and tended to be secretive. Thus Descartes’s contributions were more widely acknowledged, though not
necessarily deeper.

Regarding the development of calculus, much was yet to be developed by Newton and Leibniz using term-by-
term integration of functions based on Taylor series representation. This was a powerful technique but, as stated
earlier, incomplete because the Taylor series can represent only single-valued functions within the RoC. More
important, Newton (and others) failed to recognize (i.e., rejected) the powerful generalization to complex analytic
functions. The first major breakthrough was Newton’s publication of Principia (1687), and the second was by
Riemann (1851), advised by Gauss but possibly more influenced by Cauchy.

133
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Following both Galileo’s and Newton’s lead, the secretive and introverted behavior of the typical mathemati-
cian dramatically changed with the Bernoulli family (Fig. 3.1, p. 52). The oldest brother Jacob taught his much
younger brother Johann, who then taught his son Daniel. But Johann’s star pupil was Leonhard Euler. Euler first
mastered all the tools and then published with a prolifically previously unknown.

Euler and the circular functions: Euler’s first major task was to understand the family of analytic circular
functions (ex, sin(x), cos(x), and log(x)), a task begun by the Bernoulli family. Euler sought relationships among
these many functions, some of which may not be thought of as being related, such as the log and sin functions.
The connection that may “easily” be made is through their complex Taylor series representation (Eq. 3.2.9, p. 68).
By the manipulation of the analytic series representations, the relationship between ex and sin(x) and cos(x) was
precisely captured with the equation

ejω = cos(ω) +  sin(ω) (4.1.1)

and its analytic inverse (Greenberg, 1988, p. 1135)

tan−1(z) = 1
2 ln

(
1− z
1+ z

)
= 

2 ln
(

1− z
1 + z

)
. (4.1.2)

z(s) = tan−1(s) s(z) = 
2 ln

(
1−z
1+z

)
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Figure 4.1: Colorized plots of z(s) = tan−1(s) and s(z) = 
2 ln(1− z)/(1 + z), verifying that they are the same complex analytic

function.

Exercise #1
Starting from Eq. 4.1.1, derive Eq. 4.1.2.

Solution: We let z(ω) = tanω; then

z(ω) = tan(ω) = sinω
cosω = −e

ω − e−ω

eω + e−ω
= −e

2ω − 1
e2ω + 1 . (4.1.3)

Solving for e−2ω, we get

e−2ω = 1− z
1 + z

. (4.1.4)

Taking ln() of both sides and using the definition of z(ω) give Eq. 4.1.2:

ω = tan−1(z) = 

2 ln 1− z
1 + z

,

as shown in Fig. 4.1.
These equations are the basis of transmission lines (TL). Here z(ω) of Eq. 4.1.3 is the TL’s input impedance

and Eq. 4.1.4 is the reflectance. �

Although many high school students memorize Euler’s relationship, it seems unlikely that they appreciate the
utility of the complex analytic function.
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History of complex analytic functions: Newton (ca.1650) famously ignored imaginary numbers and called
them imaginary in a disparaging (pejorative) way. Given Newton’s prominence, his view must have keenly at-
tenuated interest in complex algebra, even though it had been described by Bombelli in 1526, likely based on his
serendipitous finding of Diophantus’s book Arithmetic in the Vatican library.

Euler did not appreciate the role of complex analytic functions. They were first fully appreciated well after his
death in 1785 by Augustin-Louis Cauchy (1789–1857), and then extended by Riemann in 1851.

Euler derived his relationships using real power series (i.e., real analytic functions). While Euler was fluent
with  =

√
−1, he did not consider functions to be complex analytic. That concept was first explored by Cauchy

almost a century later. The missing link to the concept of complex analytic functions is the definition of the
derivative with respect to the complex argument

F ′(s) = dF (s)
ds

, (4.1.5)

where s = σ + ω, without which the complex analytic Taylor coefficients are not defined.

4.2 Fundamental Theorems of Scalar Calculus
History of scalar calculus: It some sense the story of calculus begins with the fundamental theorem of calculus
(Table 4.1), also known generically as Leibniz’s formula. The simplest integral is the length of a line L =

∫ L
0 dx.

If we label a point on a line as x = 0 and wish to measure the distance to any other point x, we form the line
integral between the two points. If the line is straight, this integral is the Euclidean length given by the difference
between the two ends (Eq. 3.5.3, p. 88).

If F (χ) ∈ R describes a height above the line χ ∈ R, then

f(x)− f(0) =
∫ x

x=0
F (χ)dχ (4.2.1)

may be viewed as the antiderivative of F (χ). Here χ is a dummy variable of integration. Thus the area under
F (χ) depends on only the difference in the area evaluated at the end points.

This property of the area as an integral over an interval, depending on only the end points, has important
consequences in physics in terms of conservation of energy, allowing for important generalizations. For example,
as long as χ ∈ R, we can let F (χ) ∈ C with no loss of generality, due to the linear Postulate P1 of the integral
(see p. 121).

4.2.1 The fundamental theorem of real calculus
If f(x) is analytic (Eq. 3.2.8, p. 67), then

F (x) = d

dx
f(x) (4.2.2)

is an exact real differential. It follows that F (x) is analytic. This is known as the fundamental theorem of (real)
calculus (FTC). Thus Eq. 4.2.2 may be viewed as an exact real differential. This is easily shown by evaluating

d

dx
f(x) = lim

δ→0

f(x+ δ)− f(x)
δ

= F (x)

starting from the antiderivative, Eq. 4.2.1. If f(x) is not analytic then the limit may not exist, so this is a necessary
condition.

There are many important variations on this very basic theorem (see Table 4.1). For example, the limits could
depend on time. Also when we take Fourier transforms, the integrand depends on both time t ∈ R and frequency
ω ∈ R via a complex exponential “kernel” function e±ωt ∈ C, which is analytic in both t and ω.

4.2.2 The fundamental theorem of complex calculus
The fundamental theorem of complex calculus (FTCC) states (Greenberg, 1988, p. 1197) that for any complex
analytic function F (s) ∈ C with s = σ + ω ∈ C,

f(s)− f(so) =
∫ s

so

F (ζ)dζ. (4.2.3)
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Equations 4.2.1 and 4.2.3 differ because the path of the integral is complex. Thus the line integral is over
s ∈ C rather than a real integral over χ ∈ R. The FTCC states that the integral depends on only the end points,
since

F (s) = d

ds
f(s). (4.2.4)

Comparing exact differentials, Eq. 4.1.5 (FTCC) and Eq. 4.2.2 (FTC), we see that f(s) ∈ C must be complex
analytic and have a Taylor series in powers in s ∈ C. It follows that F (s) is also complex analytic.

Complex analytic functions: The definition of a complex analytic function F (s) of s ∈ C is that the function
may be expanded in a Taylor series (Eq. 3.2.20, p. 74) about an expansion point so ∈ C. This definition follows
the same logic as the FTC. Thus we need a definition for the coefficients cn ∈ C, which most naturally follow
from Taylor’s formula

cn = 1
n!

dn

dsn
F (s)

∣∣∣∣
s=so

. (4.2.5)

The requirement that F (s) have a Taylor series naturally follows by taking derivatives with respect to s at so.
The problem is that both integration and differentiation of functions of complex Laplace frequency s = σ + ω
have not yet been defined.

Thus the question: What does it mean to take the derivative of a function F (s) ∈ C, s = σ + ω ∈ C, with
respect to s, where s defines a plane rather than a real line? We learned how to form the derivative on the real line.
Can the same derivative concept be extended to the complex plane?

The answer is affirmative. The question may be resolved by applying the rules of the real derivative when
defining the derivative in the complex plane. However, for the complex case, there is an issue regarding direction.
Given any analytic function F (s), is the partial derivative with respect to σ different from the partial derivative
with respect to ω? For complex analytic functions, the FTCC states that the integral is independent of the path in
the s plane. Based on the chain rule, the derivative must also be independent of the direction at so. This directly
follows from the FTCC. If the integral of a function of a complex variable is to be independent of the path, then
the derivative of a function with respect to a complex variable must be independent of the direction. This follows
from Taylor’s formula for the coefficients of the complex analytic formula (Eq. 4.2.5).

The Cauchy-Riemann conditions: The FTC defines the area as an integral over a real differential (dx ∈ R),
while the FTCC relates an integral over a complex function F (s) ∈ C along a complex interval (i.e., path)
(ds ∈ C). For the FTC the area under the curve depends on only the end points of the antiderivative f(x). But
what is the meaning of an “area” along a complex path? The Cauchy-Riemann conditions provide the answer.

4.2.3 Cauchy-Riemann conditions
For the integral of Z(s) = R(σ, ω) + X(σ, ω) to be independent of the path, the derivative of Z(s) must also be
independent of the path. This requirement leads to a pair of equations known as the Cauchy-Riemann conditions,
described next.

To define
d

ds
Z(s) = d

ds
[R(σ, ω) + X(σ, ω)] ,

we take partial derivatives of Z(s) with respect to σ and ω, and equate them:

∂Z

∂σ
= ∂R

∂σ
+ 

∂X

∂σ
≡ ∂Z

∂ω
= ∂R

∂ω
+ 

∂X

∂ω
.

This says that a horizontal derivative, with respect to σ, is equivalent to a vertical derivative, with respect to ω.
Taking the real and imaginary parts gives the two equations

∂R(σ, ω)
∂σ

= �
∂X(σ, ω)
∂ω �

(CR-1) and
∂R(σ, ω)
∂ω �

= −�
∂X(σ, ω)

∂σ
(CR-2), (4.2.6)

known as the Cauchy-Riemann (CR) conditions. The  cancels in CR-1 but introduces a 2 = −1 in CR-2. They
may also be written in polar coordinates (s = reθ) as

∂R

∂r
= 1
r

∂X

∂θ
and

∂X

∂r
= −1

r

∂R

∂θ
.
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The FTCC (Eq. 4.2.3) follows from CR-1 and CR-2 (Eq. 4.2.6).
You may wonder what would happen if we took a derivative at 45°. To do this we only need to multiply the

function by eπ/4. But doing so will not change the derivative. Thus we may take the derivative in any direction
by multiplying by eθ, and the CR conditions will not change.

The CR conditions are necessary so that the integral of Z(s), and thus its derivative, is independent of the path,
expressed in terms of conditions on the real and imaginary parts of Z. This is a very strong condition on Z(s),
which follows assuming that Z(s) may be written as a Taylor series in s:

Z(s) = Z0 + Z1s+ 1
2Z2s

2 + · · · , (4.2.7)

where Zn ∈ C are complex constants given by the Taylor series formula (Eq. 4.2.5). As with the real Taylor
series, there is the convergence condition that |s| < 1, called the radius of convergence (RoC). This is an important
generalization of the region of convergence (RoC) for real s = x.

Every function that may be expressed as a Taylor series in s − so about point so ∈ C is said to be complex
analytic at so. This series, which is single-valued, is said to converge within a radius of convergence (RoC). This
highly restrictive condition has significant physical consequences. For example, every impedance function Z(s)
obeys the CR conditions over large regions of the s plane, including the entire right half s plane (RHP) (σ > 0).
This condition is summarized by the Brune condition <{Z(σ > 0)} ≥ 0, or alternatively ∠Z(s) < ∠s

When the CR conditions are generalized to volume integrals, this is called either Gauss’s Law or Green’s
theorem, which is used in the solution of boundary value problems in engineering and physics (Kusse and Westwig,
2010).

We may merge these equations into a pair of second-order equations by taking a second round of partials.
Specifically, eliminating the real part R(σ, ω) of Eq. 4.2.6 gives

∂2R(σ, ω)
∂σ∂ω

= ∂2X(σ, ω)
∂2ω

= −∂
2X(σ, ω)
∂2σ

, (CR-3) (4.2.8)

which may be written compactly as∇2X(σ, ω) = 0. Eliminating the imaginary part gives

∂2X(σ, ω)
∂ω∂σ

= ∂2R(σ, ω)
∂2σ

= −∂
2R(σ, ω)
∂2ω

, (CR-4) (4.2.9)

which may be written as∇2R(σ, ω) = 0.
In summary, for a function Z(s) to be complex analytic, the derivative dZ/dsmust be independent of direction

(path), which requires that the real and imaginary parts of the function obey Laplace’s equation; that is,

∇2R(σ, ω) = 0 and ∇2X(σ, ω) = 0. (4.2.10)

Equations CR-1 and CR-2 are easy to work with because they are first-order, but the intuition behind them best
follows from the properties of Laplace’s equation (Eq. 4.2.10). Note two facts: (1) the derivative of a complex
analytic function is independent of its direction, and (2) the real and imaginary parts of the function obey Laplace’s
equation. Such relationships are known as harmonic functions.

As we shall see in the next few sections, complex analytic functions must be smooth, since every analytic
function may be differentiated an infinite number of times within the RoC. The magnitude must attain its maximum
and minimum on the boundary. For example, when you stretch a rubber sheet over a jagged frame, the height of
the rubber sheet obeys Laplace’s equation. Nowhere can the height of the sheet rise above or below its value at
the boundary.

Harmonic functions define conservative fields, which means that energy (like a volume or area) is conserved.
The work done in moving a mass from a to b in such a field is conserved. If you return the mass from b back to a,
the stored energy is retrieved, thus zero net work is consumed.
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4.3 Problems DE-1

4.3.1 Topics of this homework:
Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus
(real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

4.3.2 Complex Power Series
Problem # 1: In each case derive (e.g., using Taylor’s formula) the power series of w(s) about
s = 0 and give the RoC of your series. If the power series doesn’t exist, state why! Hint: In
some cases, you can derive the series by relating the function to another function for which you
already know the power series at s = 0.

– 1.1: 1/(1− s)

– 1.2: 1/(1− s2)

– 1.3: 1/(1 + s2).

– 1.4: 1/s

– 1.5: 1/(1− |s|2)

Problem # 2: Consider the function w(s) = 1/s

– 2.1: Expand this function as a power series about s = 1. Hint: Let 1/s = 1/(1−1+s) =
1/(1− (1− s)).

– 2.2: What is the RoC?

– 2.3: Expand w(s) = 1/s as a power series in s−1 = 1/s about s−1 = 1.

– 2.4: What is the RoC?

– 2.5: What is the residue of the pole?

Problem # 3: Consider the function w(s) = 1/(2− s)

– 3.1: Expand w(s) as a power series in s−1 = 1/s. State the RoC as a condition on |s−1|.
Hint: Multiply top and bottom by s−1.

– 3.2: Find the inverse function s(w). Where are the poles and zeros of s(w), and where is
it analytic?
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Problem # 4:Summing the series
The Taylor series of functions have more than one region of convergence.

– 4.1: Given some function f(x), if a = 0.1, what is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

Show your work.

– 4.2: Let a = 10. What is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

4.3.3 Cauchy-Riemann Equations

Problem # 5: For this problem  =
√
−1, s = σ + ω, and F (s) = u(σ, ω)+ v(σ, ω). Ac-

cording to the fundamental theorem of complex calculus (FTCC), the integration of a complex
analytic function is independent of the path. It follows that the derivative of F (s) is defined as

dF

ds
= d

ds
[u(σ, ω) + v(σ, ω)] . (DE-1.1)

If the integral is independent of the path, then the derivative must also be independent of the direction:

dF

ds
= ∂F

∂σ
= ∂F

∂ω
. (DE-1.2)

The Cauchy-Riemann (CR) conditions

∂u(σ, ω)
∂σ

= ∂v(σ, ω)
∂ω

and
∂u(σ, ω)
∂ω

= −∂v(σ, ω)
∂σ

may be used to show where Equation DE-1.2 holds.

– 5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

– 5.2: Merge the CR equations to show that u and v obey Laplace’s equations

∇2u(σ, ω) = 0 and ∇2v(σ, ω) = 0.

What can you conclude?

Problem # 6: Apply the CR equations to the following functions. State for which values of
s = σ + iω the CR conditions do or do not hold (e.g., where the function F (s) is or is not
analytic). Hint: Review where CR-1 and CR-2 hold.

– 6.1: F (s) = es

– 6.2: F (s) = 1/s

4.3.4 Branch cuts and Riemann sheets
Problem # 7: Consider the function w2(z) = z. This function can also be written as w±(z) =√
z±. Assume z = reφ and w(z) = ρeθ =

√
reφ/2.

– 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully
represent this function as single-valued?
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– 7.2: Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the sheet(s) in
the range.

– 7.3: Use zviz.m to plot the positive and negative square roots +
√
z and−

√
z. Describe

what you see.

– 7.4: Where does zviz.m place the branch cut for this function?

– 7.5: Must the branch cut necessarily be in this location?

Problem # 8: Consider the function w(z) = log(z). As in Problem 7, let z = reφ and
w(z) = ρeθ.

– 8.1: Describe with a sketch and then discuss the branch cut for f(z).

– 8.2: What is the inverse of the function z(f)? Does this function have a branch cut? If
so, where is it?

– 8.3: Using zviz.m, show that

tan−1(z) = − 2 log − z
+ z

. (DE-1.3)

In Fig. 4.1 (p. 134) these two functions are shown to be identical.

– 8.4: Algebraically justify Eq. DE-1.3. Hint: Letw(z) = tan−1(z) and z(w) = tanw = sinw/ cosw;
then solve for ewj .

4.3.5 A Cauer synthesis of any Brune impedance
Problem # 9: One may synthesize a transmission line (ladder network) from a positive real
impedance Z(s) by using the continued fraction method. To obtain the series and shunt imped-
ance values, we can use a residue expansion. Here we shall explore this method.

– 9.1: Starting from the Brune impedance Z(s) = 1
s+1 , find the impedance network as a

ladder network.

– 9.2: Use a residue expansion in place of the CFA floor function (Sec. 2.4.4, p. 31) for
polynomial expansions. Find the residue expansion of H(s) = s2/(s + 1) and express it as a
ladder network.

– 9.3: Discuss how the series impedance Z(s, x) and shunt admittance Y (s, x) determine
the wave velocity κ(s, x) and the characteristic impedance zo(s, x) when (1) Z(s) and Y (s)
are both independent of x; (2) Y (s) is independent of x, Z(s, x) depends on x; (3) Z(s) is
independent of x, Y (s, x) depends on x; and (4) both Y (s, x), Z(s, x) depend on x.
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4.4 Complex analytic Brune admittance
It is rarely stated that the variable that we are integrating over, either x (space) or t (time), is real (x, t ∈ R), since
that fact is implicit, due to the physical nature of the formulation of the integral. But this intuition must be refined
once complex numbers are included with s ∈ C, where s = σ + ω.

That time and space are real variables is more than an assumption: it is a requirement that follows from the
order property. Real numbers have order. For example, if t = 0 is now (the present), then t < 0 is the past and
t > 0 is the future. Since time and space are real (t,x ∈ R), they obey this order property. To have time travel,
time and space would need to be complex (they are not), since if the space axis were complex the order property
would be invalid.

Interestingly, it was shown by d’Alembert (1747) that time and space are related by the pure delay. To obtain
a solution to the governing wave equation, which d’Alembert first proposed for sound waves, x, t ∈ R may be
functionally combined as

ζ± = t± x/co,

where co ∈ R [m/s] is the wave phase velocity. The d’Alembert solution to the wave equation, describing waves
on a string under tension, is

u(x, t) = f(t− x/co) + g(t+ x/co), (4.4.1)

which describes the transverse velocity (or displacement) of two independent waves f(ζ−), g(ζ+) ∈ R on the
string, which represent forward and backward traveling waves.1 For example, starting with a string at rest, if one
displaces the left end, at x = 0, by a step function u(t), then that step displacement will propagate to the right
as u(t − x/co), arriving at location xo [m], at time xo/co [s]. Before this time, the string will not move to the
right of the wave-front, at xo [m], and after to [s] it will have a non-zero displacement. Since the wave equation
obeys superposition (postulate P2, p. 121), it follows that the “plane-wave” eigenfunction of the wave equation
for x,k ∈ R3 are given by

ψ±(x, t) = δ(t∓ k · x)↔ est±k·x, (4.4.2)

where |k| = 2π/|λ| = ω/co is the wave number, |λ| is the wavelength, and s = σ + ω, the Laplace frequency.

Complex propagation function κ(s): When propagation dispersion and losses are considered, we must replace
the wave number k ∈ C having a complex analytic vector wave number κ(s) = kr(s) + k(s). This is known
by several names: (1) the complex propagation function, (2) the dispersion relation, (3) the propagation function.
Function κ(s) is a subtle and important generalization of the scalar wave number k = 2π/λ.2

An interesting example is the exact solution to the acoustic wave equation, including viscous and thermal
losses, as discussed in Appendix D, where it is show that the eigenvalues are

κ±(s) = s± 2βo
√
s

co
= (βo ±

√
s)2 − (βo)2

co
,

with βo ∈ R ≥ 0.
Forms of energy loss, which include viscosity and radiation, require κ(s) ∈ C. Physical examples include

acoustic plane waves, electromagnetic wave propagation, antenna theory, and one of the most difficult cases, that
of 3D electron wave propagating in crystals (e.g., silicon), where electrons and electro-magnetic (EM) waves are
in a state of quantum mechanical equilibrium.

Even when we cannot solve these more difficult problems, we can still appreciate their qualitative solutions.
One of the principles that allows us to do that is the causal nature of κ(s). Namely the LT −1 of κ(s) must be
causal, thus Eq. 4.4.2 must be causal. The group delay then describes the nature of the frequency dependent causal
delay. For example, if the group delay is large at some frequency, then the solutions will have the largest causal
delay at that frequency (Brillouin, 1953; Papoulis, 1962). Qualitatively this gives a deep insight into the solutions,
even when if we cannot compute them.

Electrons and photons are simply different EM states, and κ(x, s) describes the crystal’s dispersion relations
as functions of both frequency and direction, famously known as Brillouin zones. Dispersion is a property of
the medium such that the wave velocity is a function of frequency and direction, as in silicon.3 Highly readable
discussions on the history of this topic may be found in Brillouin (1953).

1d’Alembert’s solution is valid for functions that are not differentiable, such as δ(t− x/co).
2Recall that for lossless plane waves λf = co, and k = 2π/λ.
3In case you missed it, what I’m suggesting is that photons (propagating waves) and electrons (evanescent waves) are different EM wave

“states” (Jaynes, 1991). This difference depends on the medium, which determines the dispersion relation (Papasimakis et al., 2018).
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4.4.1 Generalized admittance/impedance
The most elementary examples of Brune admittance and impedance are those made of resistors, capacitors, and
inductors. Such discrete element circuits arise not only in electrical networks but in mechanical, acoustical, and
thermal networks as well (Table 3.2, p. 110). These lumped-element networks can always be represented by ratios
of polynomials in s. This gives them a similar structure, with easily classified properties. Such circuits are called
Brune admittances (or impedances).4 An example of a special symmetry is when the degrees of the numerator and
denominator polynomials cannot differ by more than one. This restriction on the degrees comes about because the
real part of the admittance/impedance must be positive, due to physical constraints.

But there is a much broader class of admittances that come from transmission lines and other physical struc-
tures, which we refer to as generalized admittances. An interesting example is an admittance of the form 1/

√
s,

called a semicapacitor, and
√
s, called a semiinductor. Generalized admittance/impedance is not the ratio of two

polynomials. As a result, they are more difficult to characterize.
When a generalized admittance Y (s) or its impedance Z(s) = 1/Y (s) is transformed into the time domain,

it must have a real and positive surge admittance Yr ∈ R or surge impedance Zr ∈ R, followed by the residual
response υ(t), ζ(t). We define the following notation for the admittance (both frequency and time responses),

Y (s) = Yr + Υ(s)↔ y(t) = Yrδ(t) + υ(t), (4.4.3)

and the impedance,
Z(s) = Zr + Z i(s)↔ z(t) = Zrδ(t) + ζ(t). (4.4.4)

The complexity of the notation is necessary and follows from the fact that z(t) ↔ Z(s) and y(t) ↔ Y (s) are
positive-real and thus minimum phase.

When we are dealing with a transmission line (i.e., wave guides), the generalized admittance is defined as the
ratio of the flow to the force. For an electrical system (voltage Φ, current I), the input admittance looking to the
right from location x is

Y +
in(x > 0, s) = I+(x, ω)

Φ+(x, ω) ,

and looking to the left is

Y −in (x < 0, s) = I−(x, ω)
Φ−(x, ω) .

In general these two admittances Y ±in (x, s) are different.

Generalized reflectance: A function related to the generalized impedance is the reflectance Γ(s), defined as the
ratio of a reflected wave to the incident wave. For the case of acoustics (pressure P , volume velocity V ),

Yin(x, s) ≡ V (ω)
P (ω) = V + − V −

P + + P−
(4.4.5)

= V +

P +
1− V −/V +

1 + P−/P + (4.4.6)

= Y +
r

1− Γ(x, s)
1 + Γ(x, s) . (4.4.7)

When the physical system is continuous at the measurement point x, Y +
r (x) = Y −r (x) ∈ R. The reflectance

Γ(x, s) depends on the area function, the boundary conditions, or both.
There is a direct relationship between a transmission line’s area function A(x) ∈ R, its characteristic im-

pedance Yr(x) ∈ R, and its eigenfunctions. We shall provide specific examples as they arise in our analysis of
transmission lines (e.g., Fig. 5.3, p. 190).

A few papers that deal with the relationship between Yin(s) and the area function A(x) are Youla (1964);
Sondhi and Gopinath (1971); Rasetshwane et al. (2012). However, the general theory of this important and
interesting problem is beyond the scope of this text (See homework DE-3, Problem # 2), as well as Appendix D.

Complex analytic Γ(s) and Yin(s) = Z−1
in (s)

When we define the complex reflectance Γ(s), we make a key assumption: Even though Γ(s) is defined by the
ratio of two functions of real (radian) frequency ω, like the impedance, the reflectance must be causal (Postulate
P1, p. 121). That γ(t)↔ Γ(s) and ζ(t)↔ Zin(s) = 1/Yin(s) are causal is required by the physics.

4Some texts prefer the term immittance to include both admittance and impedance.
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4.4.2 Complex analytic impedance
Conservation of energy (or power) is a cornerstone of modern physics. It may first have been under consideration
by Galileo Galilei (1564–1642) and Marin Mersenne (1588–1648). Today the question is not whether it is true, but
why. Specifically, what is the physics behind conservation of energy? Surprisingly, the answer is straightforward,
based on its definition and the properties of impedance. Recall that the power is the product of the force and the
flow, and impedance is their ratio.

The power is given by the product of two variables, sometimes called conjugate variables, the force and the
flow. In electrical terms, these are voltage (force) (v(t) ↔ V (ω)) and current (flow) (i(t) ↔ I(ω)); thus, the
electrical power at any instant of time is5

P (t) = v(t)i(t). (4.4.8)

The total energy E (t) is the integral of the power, since P (t) = dE/dt. Thus if we start with all the elements at
rest (no currents or voltages), then the energy as a function of time is always positive

E (t) =
∫ t

0
P (t)dt ≥ 0 (4.4.9)

and is simply the total energy applied to the network (Van Valkenburg, 1964a, p. 376). Since the voltage and
current are related by either an impedance or an admittance, conservation of energy depends on the property of
impedance. From Ohm’s law and Postulate P1 (every impedance is causal), and we have

v(t) = z(t) ? i(t)

=
∫ t

τ=0
z(τ)i(t− τ)dτ

↔ V (s) = Z(s)I(s).

Example: Let i(t) = δ(t) (a perfect impulse). Then

Ixx(t) =
∫ t

τ=0
z(t− τ)δ(τ)dτ =

∫ t

0
z(−τ)dτ.

Every Brune impedance always has the form z(t) = roδ(t) + ζ(t). The characteristic impedance ro (also called
surge impedance) may be defined as (Lundberg et al., 2007)

ro =
∫ ∞

0−
z(t)dt.

This definition requires that the integral of ζ(t) is zero, a conclusion that warrants further investigation.
These ideas are perhaps easier to visualize if we work in the Laplace frequency domain. Then the total energy,

equal to the integral of the real part of the power, is

1
s
<V I = 1

2s (V ∗I + V I∗) = 1
2s (Z∗I∗I + ZII∗) = 1

s
<Z(s)|I|2 ≥ 0.

Mathematically this is called a positive definite operator, since the positive and real resistance is sandwiched
between the current, forcing the “definiteness.”

In conclusion, conservation of energy is totally dependent on the properties of the impedance. Thus one of the
most important and obvious applications of complex analytic functions of a complex variable is the impedance
function. This seems to be the ultimate example of the FTCC applied to z(t).

Every impedance must obey conservation of energy (Postulate P3): The impedance function Z(s) has re-
sistance R and reactance X as a function of complex frequency s = σ + ω. From the causality postulate P1,
z(t < 0) = 0. Every impedance is defined by a Laplace transform pair

z(t)↔ Z(s) = R(σ, ω) + X(σ, ω),

with R,X ∈ R.
5The voltage is sometimes called the Electromotive force (EMF). However v(t) is relative to a reference ground. The actual EMF is

−∇v(t).
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According to postulate P3 a system is passive if it does not contain a power source. Drawing power from an
impedance violates conservation of energy. This property is also called positive-real, which was defined by Brune
(1931b,a)

<{Z(s ≥ 0)} ≥ 0. (4.4.10)

Positive-real systems cannot draw more power than is stored in the impedance. The region σ ≤ 0 is called the
left half s plane (LHP), and the complementary region σ > 0 is called the right half s plane (RHP). According to
the Brune condition, the real part of every impedance must be nonnegative (the RHP).

It is easy to construct examples of second-order poles or zeros in the RHP such that Postulate P3 is violated.
Thus Postulate P3 implies that the impedance may not have more than simple (first-order) poles and zeros, strictly
in the LHP. But there is more: These poles and zeros in the LHP must meet a minimum phase condition, a condition
that is easily stated:

∠Z(s) < ∠s (4.4.11)

but difficult to prove. There seems to be no proof that second-order poles and zeros (e.g., second-order roots) are
not allowed.6 However, such roots must violate a requirement that the poles and zeros must alternate on the σ = 0
axis, which follows from Postulate P3. In the complex plane the concept of “alternate” is not defined (complex
numbers cannot be ordered). What has been proved (i.e., Foster’s reactance theorem), that says that if the poles
are on the real or imaginary axis, they must alternate, leading to simple poles and zeros (Van Valkenburg, 1964a).
The restriction on poles is sufficient but not necessary, as Z(s) = 1/

√
s is a positive-real impedance but is less

than a first-degree pole (Kim and Allen, 2013). The corresponding condition in the LHP, and its proof, remains
elusive (Van Valkenburg, 1964a).

For example, a series resistor Ro and capacitor Co have an impedance given by (Table 3.9, p. 120)

Z(s) = Ro + 1/sCo ↔ Roδ(t) + 1
Co
u(t) = z(t), (4.4.12)

with constants Ro, Co ∈ R ≥ 0. In mechanics, an impedance composed of a dashpot (damper) and a spring has
the same mathematical form.

A full 2d order resonant system has an inductor, resistor, and capacitor, with an impedance given by

Z(s) = sCo
1 + sCoRo + s2CoMo

↔ Co
d

dt

(
c+e

s+t + c−e
s−t
)

= z(t), (4.4.13)

which is a second-degree polynomial with two complex resonant frequencies s±. When Ro > 0, these roots are
in the LHP, with z(t)↔ Z(s).

Systems (networks) that contain many elements and transmission lines can be much more complicated, yet
still have a simple frequency-domain representation. This is the key to understanding how these physical systems
work, as we describe next.

Poles and zeros of positive-real functions must be first-degree: The definition of positive-real (PR) functions
requires that the poles and zeros of the impedance function be simple (only first-degree). Second-degree poles
would have a reactive “secular” response of the form h(t) = t sin(ωkt+φ)u(t), and these terms would not average
to zero, depending on the phase, as is required of an impedance. As a result, only single-degree poles are possible.7

I believe that no one has ever reported an impedance that has second-degree poles and zeros. Network analysis
books never report second-degree poles and zeros in their impedance functions. Nor has there ever been any
guidance about where the poles and zeros might lie in the LHP. Understanding the exact relationships between
pairs of poles and zeros, to assure that the real part of the impedance is real, would resolve this longstanding
unsolved problem (Van Valkenburg, 1964b). It is the residues that determine the LHP simple pole degree.

Calculus on Complex analytic functions: To solve a differential equation or integrate a function, Newton used
the Taylor series to integrate one term at a time. However, he used only real functions of a real variable due to his
fundamental lack of appreciation of the complex analysis. This same method is how one finds solutions to scalar
differential equations today, but using an approach that makes the solution method less obvious. Rather than
working directly with the Taylor series, today we use the complex exponential, since the complex exponential is
an eigenfunction of the derivative

d

dt
est = sest.

6As best I know, this is an open problem in network theory (Brune, 1931a; Van Valkenburg, 1964a).
7Secular terms result from second-degree poles, since u(t) ? u(t) = tu(t)↔ 1/s2.



4.4. COMPLEX ANALYTIC BRUNE ADMITTANCE 145

Since est may be expressed as a Taylor series that has coefficients cn = 1/n!, in some real sense the modern
approach is a compact way of doing what Newton did. Thus every linear constant coefficient differential equation
in time may be simply transformed into a polynomial in complex Laplace frequency s, by looking for solutions of
the form F (s)est and transforming the differential equation into polynomial F (s) in complex frequency.

For example
d

dt
f(t) + af(t) = δ(t)↔ (s+ a)F (s) = 1.

The pole of F (sr) is sr + a = 0 is the eigenvalue of the differential equation. Thus a powerful tool for under-
standing the solutions of differential equations, both scalar and vector, is to work in the Laplace frequency domain
using their eigenvalues (i.e., sr = −a) and their eigenfunctions.

The Taylor series may be replaced by est, which transforms Newton’s real Taylor series into the complex
exponential eigenfunction. In some sense, these are the same methods, since

esrt =
∞∑
n=0

(srt)n

n! . (4.4.14)

Taking the derivative with respect to time gives

d

dt
est = sest = s

∞∑
n=0

(st)n

n! , (4.4.15)

which is also complex analytic. Thus if the series for F (s) is valid (i.e., it converges), then its derivative is also
valid. This was a very powerful concept, exploited by Newton for real functions of a real variable, and later by
Cauchy and Riemann for complex functions of a complex variable. The key question is “Where does the series
fail to converge?” This is the main concept behind the FTCC (Eq. 4.2.3).

The FTCC (Eq. 4.2.3) is formally the same as the FTC (Eq. 4.2.2) (Leibniz’s formula), the key (and significant)
difference being that the argument of the integrand s ∈ C. Thus this integration is a line integral in the complex
plane. One would naturally assume that the value of the integral depends on the path of integration. And it does,
but in a subtle way, as quantified by Cauchy’s various theorems. If the path stays in the same RoC region, then
the integral is independent of that path. If a path includes a different pole, then the integral depends on the path,
as quantified by the Cauchy residue theorem. The test is to deform the path from the first to the second. If in that
deformation the path crosses a pole, then the integral will change (namely it will depend on the path). All of this
is follows from causality.

The FTC and FTCC are clearly distinguishable yet the reasoning is the same. If F (s) = df(s)/ds is complex
analytic [i.e., has a power series f(s) =

∑
k cks

k, with f(s), ck, s ∈ C], then it may be integrated, term by term,
and yet the integral does not depend on the path. At first blush, this is sort of amazing. The key is that F (s)
and f(s) must be complex analytic, which means they are differentiable. This all follows from the Taylor series
formula Eq. 4.2.5 (p. 136) for the coefficients of the complex analytic series. For Eq. 4.2.3 to hold, the derivatives
must be independent of the direction (the path), as discussed on page 136. The concept of a complex analytic
function therefore has eminent consequences in the form of several key theorems on complex integration, as first
discovered by Cauchy in about 1820.

Role of the Complex Taylor series: The complex Taylor series generalizes the functions it describes, with
unpredictable consequences, as nicely shown by the domain-coloring diagrams in Fig. 3.12 (p. 125), where a
simple translation of the s plane by a complex number can void the positive-real property (s −

√
j) cannot be a

physical impedance).
Cauchy’s of complex integration tools were first exploited in physics by Sommerfeld (1952), to explain the

onset (e.g., causal) transients in waves, as he explained in detail in Brillouin (1960, Chap. 3).

The importance of causality: Up to 1910, when Sommerfeld first published his results using complex analytic
signals and saddle point integration in the complex plane, the implications of the causal wave-front were poorly
understood. It would be reasonable to say that Sommerfeld’s insight changed our understanding of wave propa-
gation for both light and sound. Unfortunately, in my view, his insight has never been fully appreciated, perhaps
even to this day. If you question this summary, please read Brillouin (1960, Chap. 1).

The full power of the complex analytic function was first appreciated by Bernard Riemann (1826–1866) in his
University of Göttingen PhD thesis of 1851, under the tutelage of Gauss (1777–1855), which drew heavily on the
work of Cauchy (Fig. 3.1, page 52).
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The key definition of a complex analytic function is that it has a Taylor series representation, over a region
of the complex frequency plane s = σ + jω, that converges in its RoC about the expansion point, with a radius
determined by the nearest pole of the function. A further surprising feature of all analytic functions is that within
the RoC, the inverse of that function also has a complex analytic expansion. Thus given w(s), in theory, we can
determine s(w) to any desired accuracy, critically depending on the RoC. As an example if w(s) = es then its
inverse is s(w) = log(w). Given the right software (e.g., zviz.m), this relationship may be made precise for
every complex analytic function.

4.4.3 Multivalued functions

In the field of mathematics there seems to have been a tug-of-war regarding the basic definition of a function. The
accepted definition today is a single-valued (i.e., complex analytic) mapping from the domain to the codomain
(or range). This makes the discussion of complex analytic multivalued functions somewhat awkward. In 1851
Riemann (working with Gauss) resolved this problem for the complex analytic set of multivalued functions by
introducing the geometric concept of single-valued sheets, delineated by branch cuts.

Figure 4.2: The mapping for the square root function z = ±
√
x, the inverse of

x = z2. This function has two single-valued sheets of the x plane corresponding
to the two signs of the square root. The best way to view this function is in polar
coordinates, with x = |x|eφ and z =

√
|x|eφ/2. The color code in this figure

is unrelated to that of the colorized plots. Note that the axes are not labeled. Figure
from: https://en.wikipedia.org/wiki/Riemann surface

Two simple yet important examples of
multivalued functions are the circle z2 =
x2 + y2 and w = log(z). For example, if
we assume ρ = |z| is the radius of the cir-
cle, then solving for y(x) gives the double-
valued function

y(x) = ±
√
ρ2 − x2.

The related function z = ±
√
x, with

x ∈ C, is shown in Fig. 4.2 as a three-
dimensional display in polar coordinates,
with z(r) as the vertical axis, as a function
of the angle and radius of x ∈ C.

If we accept the modern injective def-
inition of a function, as the mapping from
one set to a second set, then y(x) is not a
function, or even two functions. For ex-
ample, what if x > z? Or worse, what if
z = 2 with |x| < 1? Riemann’s construc-
tion, using branch cuts for multivalued function, resolves all these difficulties (as best I know).

To proceed, we need definitions and classifications of the various types of complex singularities:

1. Poles of degree 1 are called simple poles. Their amplitude is called the residue (e.g., α/s has residue α).
Simple poles are special (see Eq. 4.5.3, p. 151); they play a key role in mathematical physics, since their
inverse Laplace transform defines a causal eigenfunction.

2. When the numerator and denominator of a rational function (i.e., ratio of two polynomials) have a common
root (i.e., factor), that root is said to be removable.

3. A singularity that is not removable, a pole, or a branch point is called essential.

4. A complex analytic function (except for isolated poles) is called meromorphic (Boas, 1987). Meromorphic
functions can have any number of poles, even an infinite number. The poles need not be simple.

5. When the first derivative of a function Z(s) has a simple pole at a, then a is said to be a branch point of
Z(s). An important example is the logarithmic derivative:

d ln(s− a)α/ds = α/(s− a), α ∈ I.

However, the converse does not necessarily hold.

6. I am not clear about the interesting case of an irrational pole (α ∈ I). In some cases (e.g., α ∈ F) this may
be simplified with the logarithmic derivative operation, as mentioned on page 59.
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More complex topologies are being researched today, and progress is expected to accelerate due to modern
computing technology.8 It is helpful to identify the physical meaning of these more complex surfaces, to guide us
in their interpretation and possible applications.9

Branch cuts: Up to this point we have considered only poles of degree α ∈ N of the form 1/sα. The concept
of a branch cut allows us to manipulate (and visualize) multivalued functions for which α ∈ F. This is done by
breaking each region into single-valued sheets, as shown in Fig. 4.3 (right). The branch cut is a curve ∈ C that
separates the various single-valued sheets of a multivalued function. The concepts of branch cuts, sheets, and the
extended plane were first devised by Riemann, as described in his thesis of 1851. It was these three mathematical
and geometrical constructions that provided deep insight into complex analytic functions, greatly extending the
important earlier work of Cauchy (1789–1857) on the calculus of complex analytic functions. For an alternative
helpful discussion of Riemann sheets and branch cuts, see Boas (1987, pp. 221–25), Kusse and Westwig (2010),
and Greenberg (1988).
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Figure 4.3: Here we use Cartesian coordinates in the domain s = σ + ω and
polar coordinates for the range w(σ, ω) = |w|eψ. The color intensity indicates
the magnitude |s|, with black being |s = 0| and bright (eventually white) indicating
|s| → ∞. Left: Mapping: w(s) = s2. Right: Mapping of the principal branch
from−s tow(s) = −

√
−s (i.e., the rotated inverse of s2). This sheet was generated

by rotating w by 180°. The branch cut is on the ψ = 0 axis, with branch points at
|w| = 0 and∞. Neither of these functions are Brune impedances, since they violate
the positive-real condition (Eq. 3.2.19, p. 73).

To study the properties of multival-
ued functions and branch cuts, we look at
w(s) =

√
s and w(s) = log(s), along

with their inverse functions w(s) = s2 and
w(s) = es. For uniformity we refer to
the complex abscissa (s = σ + ω) and
the complex ordinate (w(s) = u + v).
When the complex domain and range are
swapped, by taking the inverse of a func-
tion, multivalued functions are a common
consequence. For example, f(t) = sin(t)
is single-valued and analytic in t and thus
has a Taylor series. The inverse function
t(f) is multivalued.

The best way to explore the complex
mapping from the complex planes s →
w(s) is to master the single-valued func-
tion s = w2(s) and its double-valued in-
verse w(s) =

√
s.

Figure 4.3 (left) shows the single-valued function w(s) = s2, and (right) one sheet of its inverse, the double-
valued mapping of w(s) = −

√
−s. Single-valued functions such as w(s) = s2 are relatively straightforward.

Multivalued functions require the concept of a branch cut, defined in the image plane (also called the codomain or
range). This is a technique to render the multiple values as single-valued on each of several sheets. Each sheet is
labeled in the domain (s) plane by a sheet index k ∈ Z, while branch points and cuts are defined in the image (w)
plane.

The sheets are indexed by a sheet index, and separated by the branch cut. It is important to understand that
the path of every branch cut is not unique and may be moved. However, branch points are unique and thus not
movable.

A function may be multivalued in both the domain and image planes. As an example consider w(s) = s3/2.
The multivalued nature of w(s) =

√
s is best understood by working with the function in polar coordinates.

We let

sk = reθe2πk, (4.4.16)

where r = |s|, θ = ∠s,∈ R, and k ∈ Z is the sheet index.
This concept of analytic inverses becomes important only when the function is multivalued. For example,

since w(s) = s2 has a period of 2, s(w) = ±
√
w is multivalued. Riemann dealt with such extensions using the

concept of a branch cut with multiple sheets labeled by sheet numbers. Each sheet describes an analytic function
(Taylor series) that converges within some RoC that has a radius out to the nearest pole. Thus Riemann’s branch
cuts and sheets explicitly deal with the need to define unique single-valued inverses of multivalued functions.
Since the square root function has two overlapping regions corresponding to the ± due to the radical, there must
be two connected region—sort of like mathematical Siamese twins: distinct, yet the same.

8https://www.maths.ox.ac.uk/about-us/departmental-art/theory
9https://www.quantamagazine.org/secret-link-uncovered-between-pure-math-and-physics-20171201
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Figure 4.4: Colorized plots of sk = |s|eθe2πk and wk(s) = √sk =
√
|s|eθ/2eπk, as defined in polar coordinates by Eqs. 4.4.16

and 4.4.17. Left: Color map hue reference plane s = |s|eθe2πk. This function is a Brune impedance (it represents an inductor). Center:
Sheet index k = 0, w(s) =

√
|s|eθ/2 for −π < θ < +π and ψ = ∠w(s) = θ/2 between ±π/2 [rad]. This function is positive-real

(Eq. 3.2.19, p. 73) but is not a Brune impedance, since it is not the ratio of polynomials in s. Thus it is the generalized impedance, known
as a semiinductor. Right: Sheet index k = 1, w(s) = eθ/2eπ

√
|s| for π < θ < 3π and π/2 < ψ < 3π/2 [rad]. The branch cut is at

θ = ∠s = ±180◦ (π [rad]) where the hue of w changes abruptly from green to purple (center) and from purple back to green (right). Note
how the hue matches between the center and right panels at the branch cut: in the center panel purple runs along -180° and along +180° on the
right. Likewise, green runs along +180° in the center and along -180° on the right. Thus w(s) =

√
s is analytic on the branch cut connecting

the two sheets (k = 0→ k = 1). This function is not an impedance, since it is negative in the RHP.

Hue: By studying Fig. 4.4, we can appreciate domain-coloring. The angle-to-hue map is shown in the left panel
of Fig. 4.4. The domain angles ∠s go from −90◦ < θ < 90◦ (purple to red to green). For w(s) =

√
s, the ∠s is

compressed by a factor of 2 (ψ = θ/2) with purple being −180◦, and green being +180◦.
Thus for Fig. 4.4 the principal (k = 0) angle ∠s (−180◦ < θ < 180◦) maps to w(s) =

√
s (middle panel) to

half the w plane (−90◦ < ψ < 90◦ (from purple to red to green).
The k = 1 branch, of ∠s (+180◦ < θ < 180 + 360 = 520◦) maps to ∠w (on the right) to green to blue to

purple (ψ = θ/2). Note how the panel on the left matches the right half of s (green = +90°, purple = −90°). The
center panel ∠w is green where ∠s = 180°. Thus ∠w = 1

2∠s. Going around the s plane one more time gives the
right most figure. w(s) is analytic everywhere except at the branch points s = 0 and s =∞.

Moving the branch cut: Furthermore we can change ∠s by 180◦ to move the branch cut

w = ρeψ =
√
reθ/2eπk, (4.4.17)

where ρ = |w|, ψ∠w,∈ R. The generic Cartesian coordinates are s = σ + ω and w(s) = u(σ, ω) + v(σ, ω).
For single-valued functions such as w(s) = s2 on the left in Fig. 4.3 there is no branch cut, since ψ = 2θ. Note
how the red color (θ = 0◦) appears twice in this mapping. For multivalued functions, a branch cut is required,
typically along the negative v(σ, ω) axis (i.e, ψ = π), but it may be freely distorted, as seen by comparing the
right panel of Fig. 4.3 with the right panel of Fig. 4.4.

Properties of the branch cut: It is important to understand that the function is analytic on the branch cut but
not at the branch points. One is free to move the branch cut (at will). It does not need to be on a line: it could be
cut in almost any connected manner, such as a spiral. The only rule is that it must start and stop at the matching
branch points, or at∞, which must have the same degree.

The location of the branch cut may be moved by rotating the s coordinate system of Fig. 4.2. For example,
w(s) = ±

√
s and w(s) = ±

√
−s have different branch cuts, as may be verified using the Matlab/Octave

commands j*zviz(s) and zviz(-s). Every function is analytic on the branch cut (since moving it does not
change the function). If a Taylor series is formed on the branch cut, it will describe the function on the two
different sheets. Thus the complex analytic series (i.e., the Taylor formula, Eq. 4.2.5) does not depend on the
location of a branch cut, as it only describes the function uniquely (as a single-valued function), valid in its local
region of convergence.

The second sheet (k = 1) in Fig. 4.4 picks up at θ = π [rads] and continues on to π + 2π = 3π. The first
sheet maps the angle of w (i.e., φ = ∠w = θ/2) from −π/2 < φ < π/2 (w =

√
reθ/2). This corresponds to

u = <{w(s)} > 0. The second sheet maps π/2 < ψ < 3π/2 (i.e., 90◦ to 270◦), which is <{w} = u < 0. In
summary, twice around the s plane is once around the w(s) plane because the angle is half due to the

√
s.



4.4. COMPLEX ANALYTIC BRUNE ADMITTANCE 149

Branch cuts emanate and terminate at branch points, defined as singularities (poles) that can even have frac-
tional degree, as for example 1/

√
s, and terminate at one of the matching roots, which includes the possibility of

∞.10 For example, suppose that in the neighborhood of the pole, at so the function is

f(s) = w(s)
(s− so)k

, (4.4.18)

where w, s, so ∈ C and k ∈ Q. When k = 1, so = σo + ωo is a first-degree “simple pole,” having degree 1 in
the s plane, with residue w(so). Typically the order and degree are positive integers, but fractional degrees and
orders are common in modern engineering applications (Kirchhoff, 1868; Lighthill, 1978). Here we allow both
the degree and the order to be fractional (∈ F). When k ∈ F ⊂ R, k = n/m is a real reduced fraction—namely,
when GCD(n,m)=1, n ⊥ m). This defines the degree of a fractional pole. In such cases there must be two sets
of branch cuts of degrees n and m. For example, if k = 1/2, the singularity (branch cut) is of degree 1/2 and there
are two Riemann sheets, as shown in Fig. 4.3.
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Figure 4.5: Colorized plots of two LT pairs: Left:
√
π/s↔ u(t)/

√
t. Right:

√
s2 + 1↔ δ(t) + 1

t
J1(t)u(t).

Fractional-order Bessel function: An important example is the Bessel function and its Laplace transform (LT )

δ(t) + 1
t
J1(t)u(t)↔

√
s2 + 1,

as shown in Fig. 4.5, which is related to the solution to the wave equation in two-dimensional cylindrical coordi-
nates (see Table C.2, p. 234). Bessel functions are the solutions (i.e., eigenfunctions) of guided acoustic waves in
round pipes, or surface waves on the earth (seismic waves), or waves on the surface of a pond (Table 5.2, p. 190).

There are a limited number of possibilities for the degree, k ∈ Z or ∈ F of Eq. 4.4.18. If the degree is drawn
from R 6∈ F, the pole can not have a residue. According to the definition of the residue, k ∈ F has no residue. But
there remains open the possibility of generalizing the concept of the Riemann integral theorem to include k ∈ F.
One way to do this is to use the logarithmic derivative, which transforms fractional poles to simple poles with
fractional residues. (See Ex.# 9, page 59).

If the singularity has an irrational degree (k ∈ I), the branch point has the same irrational degree. Accordingly
there are an infinite number of Riemann sheets, as in the case of the log function. An example is k = π, for which

F (s) = 1
sπ

= e− log(sπ) = e−π log(s) = e−π log(ρ)e−πθ,

where the domain is expressed in polar coordinates s = ρeθ. When k ∈ F, it may be close (e.g., k = π152/π153 =
π152/(π152 + 2) = 881/883 ≈ 0.99883, or its reciprocal ≈ 1.0023). The branch cut could be subtle (it could
even go unnoticed), but it would have a significant impact on the function and on its inverse Laplace transform.

Exercise #2
Find the poles, zeros, and residues of F (s).

10This presumes that poles and zeros appear in pairs, one of which may be at∞.
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1.

F (s) = d

ds
ln s+ e

s+ π

Solution:
F (s) = d

ds
[ln(s+ e)− ln(s+ π)] =

(
1

s+ e
− 1
s+ π

)
The poles are at s1 = −e and s2 = −π with respective residues of ±1. �

2.

F (s) = d

ds
ln (s+ 3)e

(s+ )−π

Solution:
F (s) = d

ds
(e ln(s+ 3) + π ln(s+ )) = e

s+ 3 + π

s+ 
.

There is a very important take-home message here regarding the utility of the logarithmic derivative, which
“linearizes” the fractional pole. �

3.
F (s) = eπ ln s

Solution: To simplify this expression take the log

lnF (s) = ln eπ ln s = π ln s = ln sπ

Thus F (s) = sπ . The only pole is s→∞. Thus the definition of the residue is to multiply by the pole and
take the limit as s→∞

c−1 = lim
s→∞

sπ

s
= 0π−1 = 0.

�

4.
F (s) = π−s

Solution: Converting to exponential format: F (s) = e−s lnπ ↔ δ(t − ln π). I don’t think the pure time
delay has poles. I’m not sure what this tells us about the residue.�

Log function: Next we discuss the multivalued nature of the log function. In this case there are an infinite
number of Riemann sheets, not captured by Fig. 3.14 (p. 126), which displays only the principal sheet. However,
if we look at the formula for the log function, the nature is easily discerned. The abscissa s may be defined as
multivalued, since

sk = re2πkeθ.

Here we have extended the angle of s by 2πk, where k is the sheet index ∈ Z. Now we take the log:

log(s) = log(r) + (θ + 2πk).

When k = 0, we have the principal value sheet, which is zero when s = 1. For any other value of k, w(s) 6= 0,
even when r = 1, since the angle is not zero, except for the k = 0 sheet.

4.5 Three Cauchy integral theorems

4.5.1 Cauchy’s theorems for integration in the complex plane
There are three basic definitions related to Cauchy’s integral formula. They are closely related and can greatly
simplify integration in the complex plane. The choice of names is unfortunate, if not totally confusing. Hence I
call them CT-1, CT-2 and CT-3.
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1. Cauchy’s (integral) theorem (CT-1): ∮
C
F (s)ds = 0 (4.5.1)

if and only if F (s) is complex analytic inside of a simple closed curve C (Stillwell, 2010; Boas, 1987, p. 45).
The FTCC (Eq. 4.2.3) says that the integral depends on only the end points if F (s) is complex analytic. With
the path (contour C ) closed, the end points are the same and thus the integral must be zero as long as F (s)
is complex analytic.

2. Cauchy’s integral formula (CT-2):

1
2πj

∮
B

F (s)
s− so

ds =
{
F (so), so ∈ C < B (inside)

0 , so ∈ C > B (outside).
(4.5.2)

Here F (s) is required to be analytic everywhere within (and on) the boundary B of integration (Greenberg,
1988, p. 1200); (Boas, 1987, p. 51); (Stillwell, 2010, p. 220). When the point so ∈ C is within the boundary,
the value F (so) ∈ C is the residue of the pole so of F (s)/(s − so). When the point so lies outside the
boundary, the integral is zero.

3. The (Cauchy) residue theorem (CT-3): (Greenberg, 1988, p. 1241); (Boas, 1987, p. 73)

∮
C
f(s)ds = 2πj

K∑
k=1

ck =
K∑
k=1

∮
F (s)
s− sk

ds, (4.5.3)

where the residues ck ∈ C correspond to the kth pole of f(s) enclosed by the contour C [(Greenberg, 1988,
p. 1241); (Boas, 1987, p. 73)]. Cauchy’s integral formula (CT-2) is a special case of the residue theorem
(CT-3).

How to calculate the residue: The case of first-degree poles has special significance because the Brune
impedance allows only simple poles and zeros, thus increasing its utility. The residues for simple poles are F (sk),
which is complex analytic in the neighborhood of the pole, but not at the pole.

Consider the function f(s) = F (s)/(s − sk), where we have factored f(s) to isolate the first-order pole at
s = sk, with F (s) analytic at sk. Then the residue of the poles at ck = F (sk). This coefficient is computed by
removing the singularity, placing a zero at the pole frequency, and taking the limit as s→ sk—namely,

ck = lim
s→sk

[(s− sk)f(s)] (4.5.4)

(Greenberg, 1988; Boas, 1987, p. 72).
When the pole is an N th degree, the procedure is much more complicated and requires taking N − 1 order

derivatives of f(s) followed by the limit process (Greenberg, 1988, p. 1242). Higher-degree poles are rarely
encountered; thus it is good to know that this formula exists, but perhaps it is not worth the effort to learn (i.e.,
memorize) it.

Some open questions: Without the use of CT-3 it is hard to evaluate the inverse Laplace transform of 1/s
directly. For example, how do we show that the integral (Eq. 4.5.2) is zero for negative time (or 1 for positive
time)? CT-3 resolves this difficult problem by the convergence of the integral for negative and positive times.
Clearly the convergence of the integral at ω →∞ plays an important role.

4.5.2 Cauchy Integral Formula and Residue Theorem

CT-2 is an important extension of CT-1, in that a pole has been explicitly represented in the integrand at s = so.
If the pole location is outside the curve C , the result of the integral is zero, in keeping with CT-1. When the pole
is inside C , the integrand is no longer complex analytic at the enclosed pole. When this pole is simple, the residue
theorem applies. For the related CT-3 the same result holds, except it is assumed that there are K simple poles in
the function F (s). This requires K repeated applications of CT-2. Thus it represents a minor extension of CT-2.
When the integrand is f(s)/PK(s) where f(s) is analytic in C and PK(s) is a polynomial of degree K, with all
of its roots sk ∈ C , then CT-3 applies.
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Nonintegral degree singularities: A key point is that this theorem applies when k ∈ I, including fractionals
k ∈ F, but for these cases the residue is always zero, since by definition the residue is the amplitude of the 1/s
term (Boas, 1987, p. 73). Below are examples:

1. When k ∈ F (e.g., k = 2/3), the residue of sk is zero, by definition.

2. The function 1/
√
s has a zero residue (we apply the definition of the residue, Eq. 4.5.4).

3. When k 6= 1 ∈ I, the residue is, by definition, zero.

4. When k = 1, the residue is given by Eq. 4.5.4.

5. CT-1, CT-2, and CT-3 are essential when computing the inverse Laplace transform.

Summary and examples: These three CT theorems, all attributed to Cauchy, collectively are related to the
fundamental theorems of complex calculus. The general principles are:

1. In general it makes no sense (nor is there any need) to integrate through a pole; thus the poles (or other
singularities) must not lie on C .

2. CT-1 (Eq. 4.5.1) follows trivially from the fundamental theorem of complex calculus (Eq. 4.2.3, p. 135),
since if the integral is independent of the path and the path returns to the starting point, the closed integral
must be zero. Thus Eq. 4.5.1 holds when F (s) is complex analytic within C.

3. Since the real and imaginary parts of every complex analytic function obey Laplace’s equation (Eq. 4.2.8,
p. 137), it follows that every closed integral over a Laplace field—that is, those defined by Laplace’s
equation—must be zero. In fact, this is the property of a conservative system, corresponding to many
physical systems. If a closed box has fixed potentials on the walls, with any distribution whatsoever, and a
point charge (i.e., an electron) is placed in the box, then a force equal to F = qE is required to move that
charge, and thus work is done. However, if the point is returned to its starting location, the net work done is
zero.

4. Work is done in charging a capacitor, and energy is stored. However, when the capacitor is discharged, all
of the energy is returned to the load.

5. Soap bubbles and rubber sheets on a wire frame obey Laplace’s equation.

6. These are all cases where the fields are Laplacian, thus closed line integrals must be zero. Laplacian fields
are commonly seen because they are so basic.

7. We have presented the impedance as the primary example of a complex analytic function. Physically,
every impedance has an associated stored energy, and every system having stored energy has an associated
impedance. This impedance is usually defined in the frequency s domain, as a force over a flow (i.e., voltage
over current). The power P (t) is defined as the force times the flow and the energy E (t) as the time integral
of the power

E (t) =
∫ t

−∞
P (t)dt, (4.5.5)

which is similar to Eq. 4.2.1 (p. 135) [see Sec. 3.8.3, Eq. 3.8.9 (p. 110)]. In summary, impedance and power
and energy are all fundamentally related.
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4.6 Problems DE-2

4.6.1 Topics of this homework:
Integration of complex functions, Cauchy’s theorem, integral formula, residue theorem, power series, Riemann
sheets and branch cuts, inverse Laplace transforms, Quadratic forms.

4.6.2 Two fundamental theorems of calculus

4.6.3 Fundamental Theorem of Calculus (Leibniz):
According to the fundamental theorem of (real) calculus (FTC),

f(x) = f(a) +
∫ x

a

F (ξ)dξ, (DE-2.1)

where x, a, ξ, F, f ∈ R. This is an indefinite integral (since the upper limit is unspecified). It follows that

df(x)
dx

= d

dx

∫ x

a

F (x)dx = F (x).

This justifies also calling the indefinite integral the antiderivative.
For a closed interval [a, b], the FTC is ∫ b

a

F (x)dx = f(b)− f(a), (DE-2.2)

thus the integral is independent of the path from x = a to x = b.

4.6.4 Fundamental Theorem of Complex Calculus:
According to the fundamental theorem of complex calculus (FTCC),

f(z) = f(z0) +
∫ z

z0

F (ζ)dζ, (DE-2.3)

where z0, z, ζ, f, F ∈ C. It follows that

df(z)
dz

= d

dz

∫ z

z0

F (ζ)dζ = F (z). (DE-2.4)

For a closed interval [s, so], the FTCC is∫ s

so

F (ζ)dζ = f(s)− f(so), (DE-2.5)

thus the integral is independent of the path from x = a to x = b.

Problem # 1

– 1.1: Consider Equation DE-2.1. What is the condition on F (x) for which this formula is
true?

– 1.2: Consider Equation DE-2.3. What is the condition on F (z) for which this formula is
true?
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– 1.3: Let F (z) = ∑∞
k=0 ckz

k.

– 1.4: Let

F (z) =
∑∞
k=0 ckz

k

z − 
.

Problem # 2: In the following problems, solve the integral

I =
∫

C
F (z)dz

for a given path C ∈ C.

– 2.1: Perform the following integrals (z = x+ iy ∈ C):

1. I =
∫ 1+

0 zdz

2. I =
∫ 1+j

0 zdz, but this time make the path explicit: from 0 to 1, with y = 0, and then to y = 1, with x = 1.

3. Discuss whether your results agree with Eq. DE-2.4?

– 2.2: Perform the following integrals on the closed path C , which we define to be the unit
circle. You should substitute z = eiθ and dz = ieiθdθ, and integrate from {−π, π} to go once
around the unit circle.

Discuss whether your results agree with Eq. DE-2.4?

1.
∫

C zdz

2.
∫

C
1
zdz

3.
∫

C
1
z2 dz

4. I =
∫

C
1

(z+2)2 dz.

Recall that the path of integration is the unit circle, starting and ending at -1.

Problem # 3: FTCC and integration in the complex plane
Let the function F (z) = cz , where c ∈ C is given for each question. Hint: Can you apply the FTCC?

– 3.1: For the function f(z) = cz, where c ∈ C is an arbitrary complex constant, use the
Cauchy-Riemann (CR) equations to show that f(z) is analytic for all z ∈ C.

– 3.2: Find the antiderivative of F (z).

– 3.3: c = 1/e = 1/2.7183, . . . where C is ζ = 0→ i→ z

– 3.4: c = 2, where C is ζ = 0→ (1 + i)→ z

– 3.5: c = i, where the path C is an inward spiral described by z(t) = 0.99tei2πt for
t = 0→ t0 →∞

– 3.6: c = et−τ0 , where τ0 > 0 is a real number and C is z = (1− i∞)→ (1 + i∞). Hint:
Do you recognize this integral? If you do not, please do not spend a lot of time trying to solve
it via the “brute force” method.
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4.6.5 Cauchy’s theorems CT-1, CT-2, CT-3
Problem # 4: Cauchy’s theorems for integration in the complex plane

There are three basic definitions related to Cauchy’s integral formula. They are all related and can greatly simplify
integration in the complex plane. When a function depends on a complex variable, we use uppercase notation,
consistent with the engineering literature for the Laplace transform.

1. Cauchy’s (Integral) Theorem CT-1 (Stillwell, 2010, p. 319; Boas, 1987, p. 45)∮
C
F (z)dz = 0

if and only if F (z) is complex analytic inside of C . This is related to the FTCC,

f(z) = f(a) +
∫ z

a

F (z)dz,

where f(z) is the antiderivative of F (z)—namely, F (z) = df/dz. The FTCC requires F (z) to be complex
analytic for all z ∈ C. By closing the path (contour C ), Cauchy’s theorem (and the following theorems)
allows us to integrate functions that may not be complex analytic for all z ∈ C.

2. Cauchy’s Integral Formula CT-2 (Boas (1987), p. 51; Stillwell, 2010, p. 220)

1
2πj

∮
C

F (z)
z − z0

dz =
{
F (z0), z0 ∈ C (inside)
0, z0 6∈ C (outside)

Here F (z) is required to be analytic everywhere within (and on) the contour C . F (z0) is called the residue
of the pole.

3. (Cauchy’s) Residue Theorem CT-3 (Boas (1987), p. 72)∮
C
F (z)dz = 2πj

K∑
k=1

Resk,

where Resk are the residues of all poles of F (z) enclosed by the contour C .

How to calculate the residues: The residues can be rigorously defined as

Resk = lim
z→zk

[(z − zk)f(z)].

This can be related to Cauchy’s integral formula: Consider the function F (z) = w(z)/(z − zk), where we
have factored F (z) to isolate the first-order pole at z = zk. If the remaining factor w(z) is analytic at zk,
then the residue of the pole at z = zk is w(zk).

– 4.1: Describe the relationships between the theorems:

1. CT-1 and CT-2

2. CT-1 and CT-3

3. CT-2 and CT-3

– 4.2: Consider the function with poles at z = ±j,

F (z) = 1
1 + z2 = 1

(z − j)(z + j) .

Find the residue expansion.

– 4.3: Apply Cauchy’s theorems to solve the following integrals. State which theorem(s)
you used and show your work.

1.
∮

C F (z)dz, where C is a circle centered at z = 0 with a radius of 1
2

2.
∮

C F (z)dz, where C is a circle centered at z = j with a radius of 1

3.
∮

C F (z)dz, where C is a circle centered at z = 0 with a radius of 2
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4.6.6 Integration of analytic functions
Problem # 5: Integration in the complex plane

In the following questions, you’ll be asked to integrate F (s) = u(σ, ω) + iv(σ, ω) around the contour C for
complex s = σ + iω, ∮

C
F (s)ds.

Follow the directions carefully for each question. When asked to state where the function is and is not analytic,
you are not required to use the Cauchy-Riemann equations (but you should if you can’t answer the question “by
inspection”).

– 5.1: F (s) = sin(s)

– 5.2: Given function F (s) = 1
s

1. State where the function is and is not analytic.

2. Explicitly evaluate the integral when C is the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 2π.

3. Evaluate the same integral using Cauchy’s theorem and/or the residue theorem.

– 5.3: F (s) = 1
s2

1. State where the function is and is not analytic.

2. Explicitly evaluate the integral when C is the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 2π.

3. What does your result imply about the residue of the second-order pole at s = 0?

– 5.4: F (s) = est

1. State where the function is and is not analytic.

2. Explicitly evaluate the integral when C is the square (σ, ω) = (1, 1)→ (−1, 1)→ (−1,−1)→ (1,−1)→
(1, 1).

3. Evaluate the same integral using Cauchy’s theorem and/or the residue theorem.

– 5.5: F (s) = 1
s+2

1. State where the function is and is not analytic.

2. Let C be the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral using Cauchy’s theorem
and/or the residue theorem.

3. Let C be a circle of radius 3, defined as s = 3eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral using Cauchy’s theorem
and/or the residue theorem.

– 5.6: F (s) = 1
2πi

est

(s+4)

1. State where the function is and is not analytic.

2. Let C be a circle of radius 3, defined as s = 3eiθ, 0 ≤ θ ≤ 2π. Evaluate the integral using Cauchy’s theorem
and/or the residue theorem.

3. Let C contain the entire left half s plane. Evaluate the integral using Cauchy’s theorem and/or the residue
theorem. Do you recognize this integral?

– 5.7: F (s) = ± 1√
s

(e.g., F 2 = 1
s
)
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1. State where the function is and is not analytic.

2. This function is multivalued. How many Riemann sheets do you need in the domain (s) and the range (f )
to fully represent this function? Indicate (e.g., using a sketch) how the sheet(s) in the domain map to the
sheet(s) in the range.

3. Explicitly evaluate the integral ∫
C

1√
z
dz

when C is the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 2π. Is this contour closed? State why or why not.

4. Explicitly evaluate the integral ∫
C

1√
z
dz

when C is twice around the unit circle, defined as s = eiθ, 0 ≤ θ ≤ 4π. Is this contour closed? State why
or why not. Hint: Note that] √

ei(θ+2π) =
√
ei2πeiθ = eiπ

√
eiθ = −1

√
eiθ.

5. What does your result imply about the residue of the (twice-around 1
2 order) pole at s = 0?

6. Show that the residue is zero. Hint: Apply the definition of the residue.

4.6.7 Laplace transform applications
Problem # 6: A two-port network application for the Laplace transform

+

−

+

−

R R

I1

V1 V2

C I2

Figure 4.6: This three-element electrical circuit is a system that acts to low-pass filter the signal voltage V1(ω), to produce signal V2(ω).
It is convenient to define the dimensionless ratio s/sc = RCs in terms of a time constant τ = RC and cutoff frequency sc = 1/τ .

– 6.1: Find the 2× 2 ABCD matrix representation of Fig. 4.6. Express the results in terms
of the dimensionless ratio s/sc, where sc = 1/τ is the cutoff frequency and τ = RC is the time
constant.

– 6.2: Find the eigenvalues of the 2× 2 ABCD matrix. Hint: See Appendix B.3, page 230.

– 6.3: Assuming that I2 = 0, find the transfer function H(s) ≡ V2/V1. From the results of
the ABCD matrix you determined in questions 6.1 and 6.2, show that

H(s) = sc
s+ sc

. (DE-2.6)

– 6.4: The transfer function H(s) has one pole. Where is the pole and residue?

– 6.5: Find h(t), the inverse Laplace transform of H(s).

– 6.6: Assuming that V2 = 0, find Y12(s) ≡ I2/V1.
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– 6.7: Find the input impedance to the right-hand side of the system Z22(s) ≡ V2/I2 for
two cases: (1) I1 = 0 and (2) V1 = 0.

– 6.8: Compute the determinant of the ABCD matrix. Hint: It is always ±1.

– 6.9: Given the result of the previous problem Eq. DE-2.6, compute the derivative of
H(s) = V2

V1

∣∣∣
I2=0

.

4.6.8 Computer exercises with Matlab/Octave

Problem # 7: With the help of a computer
Now we look at a few important concepts using Matlab/Octave’s syms commands or Wolfram Alpha’s symbolic
math toolbox.11

For example, to find the Taylor series expansion about s = 0 of

F (s) = − log(1− s),

we first consider the derivative and its Taylor series (about s = 0)

F ′(s) = 1
1− s =

∞∑
n=0

sn.

Then, we integrate this series term by term:

F (s) = − log(1− s) =
∫ s

F ′(s)ds =
∞∑
n=0

sn

n
.

Alternatively we can use Matlab/Octave commands:

syms s
taylor(-log(1-s),’order’,7)

– 7.1: Use Octave’s taylor(-log(1-s)) to the seventh order, as in the example above.

1. Try the above Matlab/Octave commands. Give the first seven terms of the Taylor series (confirm that
Matlab/Octave agrees with the formula derived above).

2. What is the inverse Laplace transform of this series? Consider the series term by term.

– 7.2: The function 1/
√
z has a branch point at z = 0; thus it is singular there.

1. Can you apply Cauchy’s integral theorem when integrating around the unit circle?

2. This Matlab/Octave code computes
∫ 4π

0
dz√
z

using Matlab’s/Octave’s symbolic analysis package:

syms z
I=int(1/sqrt(z))
J = int(1/sqrt(z),exp(-j*pi),exp(j*pi))
eval(J)

Run this script. What answers do you get for I and J?

3. Modify this code to integrate f(z) = 1/z2 once around the unit circle. What answers do you get for I and
J?

11https://www.wolframalpha.com/
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– 7.3: Bessel functions can describe waves in a cylindrical geometry.
The Bessel function has a Laplace transform with a branch cut

J0(t)u(t)↔ 1√
1 + s2

.

Draw a hand sketch showing the nature of the branch cut. Hint: Use zviz.

– 7.4: Try the following Matlab/Octave commands, and then comment on your findings.

%Take the inverse LT of 1/sqrt(1+sˆ2)
syms s
I=ilaplace(1/(sqrt((1+sˆ2))));
disp(I)

%Find the Taylor series of the LT
T = taylor(1/sqrt(1+sˆ2),10); disp(T);

%Verify this
syms t
J=laplace(besselj(0,t));
disp(J);

%plot the Bessel function
t=0:0.1:10*pi;
b=besselj(0,t);
plot(t/pi,b);
grid on;

– 7.5: When did Friedrich Bessel live?

– 7.6: What did he use Bessel functions for?

– 7.7: Use zviz for each of the following:

1. Describe the plot generated by zviz S=Z.

2. Are the functions that follow legal Brune impedances? [Do they obey <Z(σ > 0) ≥ 0?] Hint: Consider
the phase (color). Plot zviz Z for a reminder of the color map.

1. zviz 1./sqrt(1+S.ˆ2)

2. zviz 1./sqrt(1-S.ˆ2)

3. zviz 1./(1+sqrt(S))

4.6.9 Inverse of Riemann ζ(s) function
Problem # 8: Inverse zeta function (This problem is for extra credit).

– 8.1: Find the LT −1 of one factor of the Riemann zeta function ζp(s), where ζp(s)↔ zp(t).
Describe your results in words. Hint: See Eq. AE-1.7, p. 80. Hint: Consider the geometric
series representation

ζp(s) = 1
1− e−sTp =

∞∑
k=0

e−skTp , (DE-2.7)

for which you can look up the LT −1 of each term.

Problem # 9: Inverse transform of products:
The time-domain version of Eq. DE-2.7 may be written as the convolution of all the zk(t) factors:

z(t) ≡ z2(t) ? z3(t) ? z5(t) ? z7(t) ? · · · ? zp(t) ? · · · , (DE-2.8)

where ? represents time convolution.
Explain what this means in physical terms. Start with two terms (e.g., z1(t) ? z2). Hint: The input admittance

of this cascade may be interpreted as the analytic continuation of ζ(s) by defining a cascade of eigenfunctions
with eigenvalues derived from the primes. For a discussion of this idea see Sec. 3.2.3 and C.1.1.
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++

Tp

i(t) = q(t)− (1/α)q(t− Tp)
q(t) = αq(n− Tp) + v(t)

q(t− Tp)

q(t)v(t) i(t)

α −1/α

Figure 4.7: This feedback network, described by a time-domain difference equation with delay Tp, has an all-pole transfer function
ζp(s) ≡ Q(s)/I(s) given by Eq. DE-2.9, which physically corresponds to a stub of a transmission line, with the input at one end and the
output at the other. To describe the ζ(s) function we must take α = −1. A transfer function Y (s) = V (s)/I(s) that has the same poles as
ζp(s), but with zeros as given by Eq. DE-2.11, is the input admittance Y (s) = I(s)/V (s) of the transmission line, defined as the ratio of the
Laplace transform of the current i(t)↔ I(s) to the voltage v(t)↔ V (s).

Physical interpretation: Such functions may be generated in the time domain, as shown in Fig. 4.7 (p. 160),
using a feedback delay of Tp seconds, described by the two equations in the Fig. 4.7 with a unity feedback gain
α = −1. Taking the Laplace transform of the system equation, we see that the transfer function between the state
variable q(t) and the input x(t) is given by ζp(s), which is an all-pole function, since

Q(s) = e−sTnQ(s) + V (s), or ζp(s) ≡
Q(s)
V (s) = 1

1− e−sTp . (DE-2.9)

Closing the feed-forward path gives a second transfer function Y (s) = I(s)/V (s)—namely,

Y (s) ≡ I(s)
V (s) = 1− e−sTp

1 + e−sTp
. (DE-2.10)

If we take i(t) as the current and v(t) as the voltage at the input to the transmission line, then yp(t) ↔ ζp(s)
represents the input impedance at the input to the line. The poles and zeros of the impedance interleave along the
jω axis. By a slight modification, ζp(s) may alternatively be written as

Yp(s) = esTp/2 + e−sTp/2

esTp/2 − e−sTp/2
= j tan(sTp/2). (DE-2.11)

Every impedance Z(s) has a corresponding reflectance function given by a Möbius transformation, which may
be read off of Eq. DE-2.11 as

Γ(s) ≡ 1 + Z(s)
1− Z(s) = e−sTp , (DE-2.12)

since impedance is also related to the round-trip delay Tp on the line. The inverse Laplace transform of Γ(s) is
the round-trip delay Tp on the line

γ(t) = δ(t− Tp)↔ e−sTp . (DE-2.13)

Working in the time domain provides a key insight, as it allows us to parse out the best analytic continuation
of the infinity of possible continuations that are not obvious in the frequency domain (See p. 69). Transforming to
the time domain is a form of analytic continuation of ζ(s) that depends on the assumption that Zeta(t)↔ ζ(s) is
one-sided in time (causal).

4.6.10 Quadratic forms
A matrix that has positive eigenvalues is said to be positive-definite. The eigenvalues are real if the matrix is
symmetric, so this is a necessary condition for the matrix to be positive-definite. This condition is related to
conservation of energy, since the power is the voltage times the current. Given an impedance matrix

V = Z I,
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the power P is
P = I ·V = I · Z I,

which must be positive-definite for the system to obey conservation of energy.

Problem # 10: In this problem, consider the 2× 2 impedance matrix

Z =
[
2 1
1 4

]
.

– 10.1: Solve for the power P (i1, i2) by multiplying out this matrix equation (which is a
quadratic form):

P (i1, i2) = IT
[
2 1
1 4

]
I.

– 10.2: Is the impedance matrix positive-definite? Show your work by finding the eigenval-
ues of the matrix Z.

– 10.3: Should an impedance matrix always be positive-definite? Explain.
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4.7 The Laplace transform and its inverse
The Laplace transform LT take causal time functions into the complex analytic frequency domain s. The inverse
Laplace transform LT −1 (Eq. 3.10.1, p. 117) transforms a function of complex frequency F (s) and returns a
causal function of time f(t),

f(t)u(t)↔ F (s),

where u(t) = 0 for t < 0. Examples are provided in Table 3.9 (p. 120). The forward transform is typically
a relatively simple set of integrals to find F (s). However the inverse transform is the key to understanding this
powerful tool. Here we discuss the details of finding the inverse transform by using CT-3, and we see how the
causal requirement f(t < 0) = 0 comes about.

As shown in Fig. 4.8, the integrand of the inverse transform is F (s)est and the limits of integration are σo∓ω
with σo > 0. To find the inverse using CT-3 we must close the curve at ω → ∞, and specify that the integral
converges. There are two ways to close the integral: to the right σ > 0 (RHP), and to the left σ ≤ 0 (LHP).
But there must be some logical reason for this choice. That logic is determined by the sign of t. For the integral
to converge, the term |est| = eσt must go to zero as ω → ∞. Note that both t and ω go to ∞. Thus it is the
interaction between these two limits that determines how we pick the closure, RHP or LHP.

→∞→∞

No Poles in RHPPoles on LHP

For t > 0 close in the LHP For t < 0 close in the RHP
t < 0; σt < 0t > 0; σt < 0

C
on

to
ur

Figure 4.8: When computing the LT −1 we must take advantage of the powerful Cauchy residue integral theorem (CT-3). To use CT-3
we must close the integral at s → ∞. Furthermore this closure integral must go to zero as {t, σ} → ∞. For t < 0, the convergence of the
residue e−σt depends on σt < 0, since the product st must have a negative real part. For convergence for t < 0, σ > 0 so that σt < 0. Thus
the integral must be close in in the RHP. Likewise, for t > 0, σ < 0, so that σt < 0. Thus the integral must be close in the LHP. Following
these guidelines based on CT-3, poles in the LHP lead to causal stable solutions, since there σ < 0 and t → ∞, while poles in the RHP will
lead to causal unstable solutions, each the form eσtu(t).

4.7.1 Case for negative time (t < 0) and causality:
Let us first consider negative time, including t→ −∞. If we were to close C in the LHP (σ < 0), then the product
σt is positive (σ < 0, t < 0, thus σt > 0). In this case, as ω → ∞, the closure integral |s| → ∞ will diverge. If
we close in the RHP (σ > 0), then the product σt < 0 and est will go to zero as ω →∞. Thus we may not close
in the LHP for negative time. This then justifies closing the contour, allowing for the use of Cauchy CT-3.

4.7.2 Case for zero time (t = 0):
When the time is zero, the integral does not, in general, converge, which leaves f(t) undefined. This is most
obvious in the case of the step function u(t)↔ 1/s, where the integral may not be closed because the convergence
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factor est = 1 fails for t = 0.
The fact that u(t) does not exist at t = 0 helps to explain the-Gibbs phenomenon in the inverse Fourier

transform. At the time where a jump occurs, the derivative of the function does not exist, and thus the time
response function is not analytic. The Fourier expansion does not pointwise converge where the function is not
analytic. A low-pass filter may be used to smooth the function, but at the cost of temporal resolution.

4.7.3 Case for positive time (t > 0)
Next we investigate the convergence of the integral for positive time t > 0. In this case we must close the integral
in the LHP (σ < 0) for convergence, so that st < 0 (σ ≤ 0 and t > 0). When there are poles on the ω = 0
axis, σo > 0 assures convergence by keeping the on-axis poles inside the contour. At this point, CT-3 is relevant.
If we restrict ourselves to simple poles (as required for a Brune impedance), the residue theorem may be directly
applied.

Unstable poles: An important but subtle point arises: If F (s) has a pole in the RHP, then the above argument
still applies if we pick σo to be to the right of the RHP pole. This means that the inverse transform may still be
applied to unstable poles (those in the RHP). This then explains the need for the σo in the limits. If F (s) has no
RHP poles in the extended RHP (σ ≥ 0), we may take σo = 0.

The simplest example is the step function, for which F (s) = 1/s, thus

u(t) =
∮

LHP

est

s

ds

2π ↔
1
s
,

which is a direct application of CT-3. The forward transform of u(t) is straightforward, as discussed in Appendix
C. This is true of most of the elementary forward Laplace transforms. In these cases, causality may be built into
the integral by the limits. An interesting problem is how to prove that u(t) is not defined at t = 0.
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Figure 4.9: Left: Colorized plot of w(z) = sin(z). Right: Colorized plot of w(z) = Jo(πz). Note the similarity of the two functions.
The first Bessel zero is at 2.405 and thus appears at 0.7655 = 2.405/π, about 1.53 times larger than the root of cos(πz) at 1/2. Other than
this minor distortion of the first few roots, the two functions are basically identical. It follows that their LT s must have similar characteristics,
as documented in Table C.2 (p. 234). These colorized plots show that these two functions become the same for x = <z > 0. The black lines
indicate where the function has a constant real part.

The inverse Laplace transform of F (s) = 1/(s + 1) has a residue of 1 at s = −1, thus that is the only
contribution to the integral. More demanding cases are Laplace transform pairs

1√
t
u(t)↔

√
π

s
and Jo(t)u(t)↔ 1√

s2 + 1
,

as shown in Fig 4.9 (right), and more in Table C.2 (p. 234). Many of these are easily proved in the forward
direction but are much more difficult in the inverse direction due to the properties at t = 0, unless CT-3 is invoked.

Along the x-axis of Fig. 4.9, cos(πx) is periodic with a period of π. The dark spots are at the zeros at
±π/2,±3π/2, . . .. Along the y-axis, the function goes to either zero (black) or∞ (white). This behavior carries
the same π periodicity as on the x = 0 line.
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Figure 4.10: Left: The Bessel function J0(πz), which is similar to cos(πz), except the zeros are distorted away from s = 0 by a small
amount, due to the cylindrical geometry. Right: The related Hankel function H(1)

0 (πz/2). The Hankel function H(1)
0 (πz/2) has a branch

cut and a complex zero at z0,12/π = −1.5− 0.1, as may be seen in the plot.

The last LT example of Fig. 4.10 gives an important insight into the properties of the Hankel function
H

(1)
0 (πz/2), which has a branch cut along the negative real axis. On the right is the Hankel function H(1)

0 (πz/2),
which is a mixed and distorted version of cos(πz) with the zeros pushed downward, and eπz . Note how the white
and black contour lines of the colorized maps are always perpendicular where they cross.

4.7.4 Properties of the LT

As shown in Table 3.8 of Laplace transforms, there are integral (i.e., integration, not integer) relationships, or
properties, that are helpful to identify. The first of these is a definition, not a property:

f(t)↔ F (s).

Causality: When we take the LT , the time-domain response is in lowercase (e.g., f(t)) and the frequency-
domain transform is in uppercase (e.g., F (s)). It is required, but not always explicitly specified, that f(t < 0) = 0;
that is, the time function must be causal, as stated by Postulate P1 (121).

Linearity: The most basic property is the linearity (superposition) property of the LT , stated by Postulate P2
(p. 121).

Convolution property: The product of two LT s in frequency results in convolution in time:

F (s)G(s)↔ f(t) ? g(t) =
∫ t

0
f(τ)g(t− τ)dτ,

where we use ? to indicate the convolution of two time functions.
A key application of convolution is filtering, which takes many forms. The most basic filter is the moving

average, the moving sum of data samples, normalized by the number of samples. Such a filter has very poor per-
formance. It also introduces a delay of half the length of the average, which may or may not constitute a problem,
depending on the application. Other important examples are a low-pass filter that removes high-frequency noise
and a notch filter that removes line noise (i.e., 60 [Hz] in the United States, and its second and third harmonics,
120 and 180 [Hz]). Such noise is typically a result of poor grounding and ground loops. It is better to solve the
problem at its root than to remove it with a notch filter. Still, filters are very important in engineering.
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By taking the LT of the convolution we can derive this relationship:∫ ∞
0

[f(t) ? g(t)]e−stdt =
∫ ∞
t=0

[∫ t

0
f(τ)g(t− τ)dτ

]
e−stdt

=
∫ t

0
f(τ)

(∫ ∞
t=0

g(t− τ)e−stdt
)
dτ

=
∫ t

0
f(τ)

(
e−sτ

∫ ∞
t′=0

g(t′)e−st
′
dt′
)
dτ

= G(s)
∫ t

0
f(τ)e−sτdτ

= G(s)F (s).

We first encountered this relationship on page 82 in the context of multiplying polynomials, which is the same
as convolving their coefficients. The parallel should be obvious. In the case of polynomials, the convolution is
discrete in the coefficients, and here it is continuous in time. But the relationships are the same.

Time-shift property: When a function is time-shifted by time To, the LT is modified by e−sTo , leading to the
property

f(t− To)↔ e−sTo F (s).

This is easily shown by applying the definition of the LT to a delayed time function.

Time derivative: The key to the eigenfunction analysis provided by the LT is the transformation of a time
derivative on a time function—that is,

d

dt
f(t)↔ sF (s).

Here s is the eigenvalue corresponding to the time derivative of est. Given the definition of the derivative of est

with respect to time, this definition seems trivial. Yet that definition was not obvious to Euler. It needed to be
extended to the space of the complex analytic function est, which did not happen before Cauchy’s key results.

Given a differential equation of order K, the LT results in a polynomial in s of degree K. It follows that
this LT property is the cornerstone of why the LT is so important to scalar differential equations, as it was
to the early analysis of Pell’s equation and the Fibonacci sequence, presented in chapter 2. While the relation
eθ = cos θ +  sin θ was first uncovered by Euler. By the time of his death the formula’s significance would have
been clear to him. Who first coined the terms eigenvalue and eigenfunction? The word eigen is a German word
meaning of one.

Initial and final value theorems: There are much more subtle relationships between f(t) and F (s) that char-
acterize f(0+) and f(t → ∞), which are known as initial value theorems. If the system under investigation has
potential energy at t = 0, then the voltage (velocity) need not be zero for negative time. An example is a charged
capacitor or a moving mass. These are important concepts, but best explored in a more in-depth treatment. They
are not violations of causality.

4.7.5 Solving differential equations:

Many differential equations may be solved by assuming a power series (i.e., Taylor series) solution of the form

y(x) = xr
∞∑
n=0

cnx
n, (4.7.1)

with r ∈ Z and coefficients cn ∈ C. This method of Frobenius is quite general (Greenberg, 1988, p. 193).

Example: When a solution of this form is substituted into the differential equation, a recursion relationship in the
coefficients results. For example, if the equation is

y′′(x) = λ2y(x),
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the recursion is cn = cn−1/n. The resulting equation is

y(x) = eλx = x0
∞∑
n=0

1
n!x

n,

namely, cn = 1/n!, thus ncn = 1/(n− 1)! = cn−1.

Exercise #3
Find the recursion relationship for y(x) = Jν(x) of order ν that satisfies Bessel’s equation

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0.

Solution: If we assume a complex analytic solution of the form of Eq. 4.7.1, we find the Bessel recursion
relationship for coefficients ck (Greenberg, 1988, p. 231):

ck = − 1
k(k + 2ν)ck−2.

�
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4.8 Problems DE-3

4.8.1 Topics of this homework: Brune impedance
lattice transmission line analysis

4.8.2 Brune Impedance
Problem # 1: Residue form

A Brune impedance is defined as the ratio of the force F (s) to the flow V (s) and may be expressed in residue
form as

Z(s) = c0 +
K∑
k=1

ck
s− sk

= N(s)
D(s) (DE-3.1)

with

D(s) =
K∏
k=1

(s− sk) and ck = lim
s→sk

(s− sk)D(s) =
K−1∏
n′=1

(s− sn).

The prime on the index n′ means that n = k is not included in the product.

– 1.1: Find the Laplace transform (LT ) of a (1) spring, (2) dashpot, and (3) mass.
Express these in terms of the force F (s) and the velocity V (s), along with the electrical equivalent impedance:
(1) Hooke’s law f(t) = Kx(t), (2) dashpot resistance f(t) = Rv(t), and (3) Newton’s law for mass f(t) =
Mdv(t)/dt.

– 1.2: Take the Laplace transform (LT ) of Eq. DE-3.2 and find the total impedance Z(s)
of the mechanical circuit.

M
d2

dt2
x(t) +R

d

dt
x(t) +Kx(t) = f(t)↔ (Ms2 +Rs+K)X(s) = F (s). (DE-3.2)

– 1.3: What are N(s) and D(s) (see Eq. DE-3.1)?

– 1.4: Assume that M = R = K = 1 and find the residue form of the admittance
Y (s) = 1/Z(s) (see Eq. DE-3.1) in terms of the roots s±. Hint: Check your answer with
Octave’s/Matlab’s residue command.

– 1.5: By applying Eq. 4.5.3 (page 151), find the inverse Laplace transform (LT −1). Use
the residue form of the expression that you derived in question 1.4.

4.8.3 Transmission-line analysis
Problem # 2: Train-mission-line We wish to model the dynamics of a freight train that has N
such cars and study the velocity transfer function under various load conditions.

As shown in Fig. 4.11, the train model consists of masses connected by springs.
Use the ABCD method (see the discussion in Appendix B.3, p. 230) to find the matrix representation of the

system of Fig. 4.11. Define the force on the nth train car fn(t)↔ Fn(ω) and the velocity vn(t)↔ Vn(ω).
Break the model into cells consisting of three elements: a series inductor representing half the mass (M/2),

a shunt capacitor representing the spring (C = 1/K), and another series inductor representing half the mass
(L = M/2), transforming the model into a cascade of symmetric (A = D ) identical cell matrices T (s).

– 2.1: Find the elements of the ABCD matrix T for the single cell that relate the input node
1 to output node 2 [

F
V

]
1

= T
[
F (ω)
−V (ω)

]
2
. (DE-3.3)
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Figure 4.11: Depiction of a train consisting of cars treated as masses M and linkages treated as springs of stiffness K or compliance
C = 1/K. Below it is the electrical equivalent circuit for comparison. The masses are modeled as inductors and the springs as capacitors to
ground. The velocity is analogous to a current and the force fn(t) to the voltage φn(t). The length of each cell is ∆ [m]. The train may be
accurately modeled as a transmission line (TL), since the equivalent electrical circuit is a lumped model of a TL. This method, called a Cauer
synthesis, is based on the ABCD transmission line method of Sec. 3.8 (p. 107).

– 2.2: Express each element of T (s) in terms of the complex Nyquist ratio s/sc < 1
(s = 2πjf , sc = 2πjfc). The Nyquist wavelength sampling condition is λc > 2∆. It says
the critical wavelength λc > 2∆. Namely it is defined in terms the minimum number of cells
2∆, per minimum wavelength λc.
The Nyquist wavelength sampling theorem says that there are at least two cars per wavelength.

Proof: From the figure, the distance between cars ∆ = coTo [m], where

co = 1√
MC

[m/s].

The cutoff frequency obeys fcλc = co. The Nyquist critical wavelength is λc = co/fc > 2∆. Therefore the
Nyquist sampling condition is

f < fc ≡
co
λc

= co
2∆ = 1

2∆
√
MC

[Hz]. (DE-3.4)

Finally, sc = 2πfc.

– 2.3: Use the property of the Nyquist sampling frequency ω < ωc (Eq. DE-3.4) to remove
higher order powers of frequency

1 +
�
�
���

0(
s

sc

)2
≈ 1 (DE-3.5)

to determine a band-limited approximation of T (s).

Problem # 3: Now consider the cascade of N such T (s) matrices and perform an eigenanal-
ysis.

– 3.1: Find the eigenvalues and eigenvectors of T (s) as functions of s/sc.

Problem # 4: Find the velocity transferfunction H12(s) = V2/V1|F2=0.

– 4.1: Assuming that N = 2 and F2 = 0 (two half-mass problem), find the transfer function
H(s) ≡ V2/V1. From the results of the T matrix, find

H21(s) = V2

V1

∣∣∣∣
F2=0

Express H12 in terms of a residue expansion.

– 4.2: Find h21(t)↔ H21(s).
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– 4.3: What is the input impedance Z2 = F2/V2, assuming F3 = −r0V3?

– 4.4: Simplify the expression for Z2 as follows:
1. Assuming the characteristic impedance r0 =

√
M/C,

2. terminate the system in r0: F2 = −r0V2 (i.e., −V2 cancels).

3. Assume higher-order frequency terms are less than 1 (|s/sc| < 1).

4. Let the number of cells N →∞. Thus |s/sc|N = 0.

When a transmission line is terminated in its characteristic impedance r0, the input impedance Z1(s) = r0. Thus,
when we simplify the expression for T (s), it should be equal to r0. Show that this is true for this setup.

– 4.5: State the ABCD matrix relationship between the first and N th nodes in terms of the
cell matrix. Write out the transfer function for one cell, H21.

– 4.6: What is the velocity transfer function HN1 = VN
V1

?
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Chapter 5

Stream 3B: Vector Calculus

5.1 Properties of fields and potentials
Before we can define the vector operations ∇(),∇·(),∇×(), and ∇2(), we must define the objects they operate
on: scalar and vector fields. The word field has two very different meanings: a mathematical one, which defines
an algebraic structure, and a physical one, discussed next.

Ultimately we wish to integrate in ∈ R3,Rn and Cn. Integration is quantified by several fundamental theorems
of calculus, each about integration (see pp. 135–136).

5.1.1 Scalar and vector fields
Scalar fields:

We use the term scalar field interchangeably with analytic in a connected region of the spatial vector x =
[x, y, z]T ∈ R3. In mathematics, functions that are piecewise differentiable are called smooth, which is different
from analytic. A smooth function has at least one or more derivatives. Every analytic function is single-valued
and is an infinitely differentiable power series (Sec. 3.2.4, p. 72).

x

z

y

n̂ ⊥ dS = 0

Tangent plane
S (x) Surface (open)

Figure 5.1: Definition of the unit vector n̂ defined by the gradient
∇S ⊥ to the tangent plane. A bifurcated volume defines surface S (x).
At one point a tangent plane (shaded) touches the surface. At that point
the gradient ∇S (x) is normalized to unit length, defining n̂, which is
perpendicular (⊥) to the shaded tangent plane.

Vector fields: A vector field is composed of three scalar fields. For example, the electric field used in Maxwell’s
equations, E(x, t) = [Ex, Ey, Ez]T [V/m], has three components, each a scalar field. When the magnetic flux
vectorB(x) is static (Postulate P5, p. 122), the potential φ(x) [V] uniquely defines E(x, t) via the gradient,

E(x, t) = −∇φ(x, t) [V/m]. (5.1.1)

The electric force on a charge q is F = qE; thus E is proportional to the force, and when the medium is
conductive, the current density (a flow) is Jm = σoE [A/m2]. The ratio of the potential to the flow is an
impedance, so σo is a conductance.

Example: Suppose we are given the vector field in R3

A(x) = [φ(x), ψ(x), θ(x)]T [Wb/m],

where each of the three functions is a scalar field. Then A(x) = [x, xy, xyz]T is a legal vector field that has
components analytic in x.

Example: From Maxwell’s equations, the magnetic flux vector is given by

B(x, t) = ∇×A(x, t) [Wb/m2]. (5.1.2)

171
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We shall see that this is always true because the magnetic charge ∇·B(x, t) must be 0, which is always true
in-vacuo. Feynman (1970b, pp. 14-1 to 14-3) provides an extended and helpful tutorial on the vector potential,
with many examples.

To verify that a field is a potential, we may check the units. However, a proper mathematical definition is that
the potential must be an analytic function of x and t, so that we can operate on it with ∇() and ∇×(). Note that
the divergence of a scalar field is not a legal vector operation.

Scalar potentials: The above discussion describes the utility of potentials for defining vector fields (e.g., Eqs. 5.1.1
and 5.1.2). The key distinction between a potential and a scalar field is that potentials have units and thus have
a physical meaning. Scalar potentials (i.e., voltage φ(x, t) [V], temperature T (x, t) [°C], and pressure %(x, t)
[pascals]) are physical scalar fields. All potentials are composed of scalar fields, but not all scalar fields are
potentials.

For example, the ŷ component of E, Ey(x, t) = ŷ ·E(x, t) [V/m], is not a potential. While ∇Ey is mathe-
matically defined as the gradient of one component of a vector field, it has no physical meaning (as best I know).

Vector potentials: Vector potentials, like scalar potentials, are vector fields with physically meaningful units.
They are more complicated than scalar potentials because they are composed of three scalar fields. Vector fields
are composed of laminar and rotational flow, which are mathematically described by the fundamental theorem of
vector calculus (also called Helmholtz’s decomposition theorem). One superficial but helpful comparison is the
momentum of a mass, which may be decomposed into its forward (linear) and rotational momentum.

Since we find it useful to analyze problems using potentials (e.g., voltage) and then take the gradient (i.e.,
voltage difference) to find the flow (i.e., current density J = σE(x, t)), the same logic and utility apply when
we use the vector potential to describe the magnetic flux (flow) B(x, t) (Feynman, 1970c). When operating on a
scalar potential, we use a gradient, whereas for the vector potential, we operate with the curl (Eq. 5.1.2).

In Eq. 5.1.1 we assumed that the magnetic flux vectorB(x) was static, and thus E(x, t) is the gradient of the
time-dependent voltage φ(x, t). However, when the magnetic field is dynamic (not static), Eq. 5.1.1 is not valid,
due to magnetic induction: A voltage induced into a loop of wire is proportional to the time-varying flux cutting
across that loop of wire. This is known as the Ampere-Maxwell law. In the static case the induced voltage is zero.

Thus the electric field strength includes both scalar potential φ(x, t) and magnetic flux vector potentialA(x, t)
components, while the magnetic field strength depends only on the magnetic potential.

5.1.2 Gradient∇, divergence∇·, curl∇×, and Laplacian∇2

Three key vector differential operators are used in linear partial differential equations, such as the wave and
diffusion equations. All of these begin with the∇ operator:

∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z
.

As outlined in Table 5.1, the official name of this operator is nabla. It has three basic uses: (1) the gradient
of a scalar field, (2) the divergence of a vector field, and (3) the curl of a vector field. The shorthand notation
∇φ(x, t) = (x̂∂x + ŷ∂x + ẑ∂x)φ(x, t) is convenient.1

Gradient∇():

As shown in Fig. 5.1, the gradient transforms a complex scalar field Φ(x, s) ∈ C into a vector field (C3)

∇Φ(x, s) =
(

x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

)
Φ(x, s)

= x̂∂Φ
∂x

+ ŷ∂Φ
∂y

+ ẑ∂Φ
∂z

.

The gradient may also be factored into a unit vector n̂, as defined in Fig. 5.1, that gives the direction of the gradient,
and the gradient’s length ||∇()||, defined in terms of the norm of the gradient. Thus the gradient of Φ(x) may be
written in “polar coordinates” as∇Φ(x) = ||∇Φ|| n̂, which leads to the unit vector

n̂ = ∇(Φ(x))
||∇Φ|| .

1https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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Table 5.1: The three vector operators manipulate scalar and vector fields. The gradient converts scalar fields into vector fields. The
divergence maps vector fields to scalar fields. The curl maps vector fields to vector fields. Four second-order operators (for example DoG and
gOd) are defined in Sec. 5.6.6 (p. 201). Bold mnemonics are reserved for vector-in, vector-out operators, with the curl being an exception.

Name Input Output Operator Mnemonic
Gradient Scalar Vector ∇ ( ) grad
Divergence Vector Scalar ∇ · ( ) div
Laplacian Scalar Scalar ∇·∇ = ∇2 ( ) DoG
Wedgie Vector Scalar ∇∧ ( ) wedge
Curl Vector Vector ∇× ( ) curl
God Vector Vector ∇2 ( ) = ∇(∇· ( )) gOd
Bull-DoG Vector Vector ∇2( ) = ∇·∇( ) DoG
Curl of Curl Vector Vector ∇×∇× = ∇2 ( )−∇2( ) CoC
Div of Curl Vector 0 ∇·∇×() DoC
Curl of Grad Scalar 0 ∇×∇() CoG

Consider the paraboloid z = 1− (x2 + y2) as the potential, with isopotential circles of constant z that have a
radius of zero at z = 1 and unit radius at z = 0. The negative gradient

E(x) = −∇z(x, y) = 2(xx̂ + yŷ + 0ẑ)

is ⊥ to the circles of constant radius (constant z) and thus points in the direction of the radius.
A skier in free fall on this surface would be the first one down the hill. Normally skiers try to stay close to the

isoclines (not in the direction of the gradient) so they can stay in control. If you ski on an isocline, you must walk,
since there is no pull due to gravity. The gravitational potential at the surface of the earth is

φ = G
mM

r
.

Divergence∇·():

The divergence of a vector field results in a scalar field. For example, the divergence of the electric field flux
vectorD(x) [C/m2] equals the scalar field charge density ρ(x) [C/m3]:

∇·D(x) ≡
(

x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

)
·D(x) = ∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z
= ρ(x). (5.1.3)

Thus the divergence is analogous to the scalar (dot) product (e.g.,A ·B) between two vectors.
Recall that the voltage is the line integral of the electric field,

V (a)− V (b) =
∫ b

a

E(x) · dx = −
∫ b

a

∇V (x) · dx = −
∫ b

a

dV

dx
dx, (5.1.4)

which is simply the fundamental theorem of calculus (see p. 135). In a charge-free region, this integral is inde-
pendent of the path from a to b, which is a property of a conservative system.

When we work with guided waves (narrow tubes of flux) having rigid walls that block the flow, such that the
diameter is small compared with the wavelength (Postulate P10, p. 122), the divergence simplifies to

∇ ·D(x) = ∇rDr = 1
A(r)

∂

∂r
A(r)Dr(r), (5.1.5)

where r is the distance down the horn (range variable), A(r) is the area of the isoresponse surface as a function of
the range r, and Dr(r) is the radial component of vector D as a function of the range r. In spherical, cylindrical,
and rectangular coordinates, Eq. 5.1.5 provides the correct expression (Table 5.2, p. 190).

Properties of the divergence: The divergence is a direct measure of the flux density of the vector field. A
vector field is said to be incompressible if the divergence of that field is zero. It is therefore compressible when
the divergence is nonzero [e.g.,∇·D(x, s) = ρ(x, s)] (see Table 5.3, page 199).
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For example, compared to air, water is considered to be incompressible. The stiffness of a fluid (i.e., the bulk
modulus) is a measure of its compressibility. At very low frequencies, air may be treated as incompressible (like
water), since as s→ 0,

−∇·u(x, s) = s

ηoPo
P (x, s)→ 0.

The definition of compressible depends on the wavelength in the medium, so the term must be used with some
awareness of the frequencies being in the analysis. As a rule of thumb, if the wavelength λ = co/f is much larger
than the size of the system, the medium may be modeled as an incompressible fluid.

Curl ∇×():

The curl (∇×()) takes a vector in C3 into a second vector in C3. For example, in the case of fluids, the vorticity is
defined as ω = ∇×ν and rotation as Ω = ω/2. The curl is a measure of the rotation of a vector field in a plane
about the axis perpendicular to that plane. In the case of a liquid, it corresponds to the angular momentum, such
as in a whirlpool in water, or a tornado in air. A massive top falls over when not spinning. But once spinning, it
can stably stand on its pointed tip. These systems are stable due to conservation of angular momentum.

The curl and the divergence are both key operations when we working with Maxwell’s four equations. For
example, the curl transforms the vector fieldH(x, s) ∈ C3 [A/m] into a complex vector current densityC(x, s) ∈
C2 [A/m2]:

∇×H(x, s) ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣ = C(x, s) [A/m2]. (5.1.6)

The notation | · | indicates the determinant (Appendix A.3.1, p. 223), ∂x is shorthand for ∂/∂x, and H =
[Hx, Hy, Hz]T .

Exercise #1
If we let H = −yx̂ + xŷ + 0ẑ, ∇×H = 2ẑ, thus H has a constant rotation; when H = 0x̂ + 0ŷ + z2ẑ,
∇×H = 0 has a curl of zero and thus is irrotational.

There are simple rules that precisely govern when a vector field is rotational versus irrotational, and compress-
ible versus incompressible. These classifications are dictated by Helmholtz’s theorem, the fundamental theorem
of vector calculus (Eq. 5.6.7, p. 200).

Wedgie ∇∧ () :

A special case of the curl is the two-dimensional differential wedge products2

∇x ∧H(x, t) =
∣∣∣∣∂y ∂z
Hy Hz

∣∣∣∣ = Cx(x, s) [A/m2].

The curl is made up of three such differential wedge products.3

Laplacian∇2():

The Laplacian operator∇2 ≡ ∇·∇ (Table 5.1, page 173) is defined as the divergence of the gradient

∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (5.1.7)

Since the Laplacian does so much common work, we nickname it DoG (Div of Grad).
Starting from a scalar field, the gradient produces a vector, which is then operated on by the divergence to take

the output of the gradient back to a scalar field. Thus the Laplacian transforms a scalar field back to a scalar field.
We have seen the Laplacian before when we defined complex analytic functions (Eq. 4.2.8, p. 137).

A classic example of the Laplacian is a voltage scalar field Φ(x) [V], which results in the electric field vector

E(x) = [Ex(x), Ey(x), Ez(x)]T = −∇Φ(x) [V/m].

2https://en.wikipedia.org/wiki/Triple_product#As_an_exterior_product
3This notation suggests that ||∇·E +  ∧E||2 = ||∇·E||2 + || ∧E||2, which is related to Helmholtz’s theorem.
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When this is scaled by the permittivity, we obtain the electric flux D = εoE [C/m2], the charge density per unit
area. Here εo [F/m] is the vacuum permittivity εo = 1/coro ≈ 8.85× 10−12 [F/m].

Taking the divergence ofD results in the charge density ρ(x) [C/m3] at x:

∇·D = ∇2Φ(x) = ρ(x).

Thus the Laplacian of the voltage, scaled by εo, results in the local charge density.
Another classic example of the Laplacian is an acoustic pressure field %(x, t) [Pa], which defines a vector

force density f(x, t) = −∇%(x, t) [N/m2] (Eq. 5.2.5, p. 183). When this force density [N/m2] is integrated over
an area, the net radial force [N] is

Fr = −
∫

S
∇%(x)dx [N]. (5.1.8)

An inflated balloon with a static internal pressure of 3 [atm], in an ambient pressure of 1 [atm] (sea level),
forms a sphere due to the elastic nature of the rubber, which acts as a stretched spring under its surface tension.
The net normal force on the surface of the balloon is its area times the pressure drop of 2 [atm] across the surface.
Thus the static pressure is

%(x) = 3u(ro − r) + 1 [Pa],

where u(r) is a step function of the radius r = ||x|| > 0, centered at the center of the balloon, having radius ro.
Taking the gradient gives the negative4 of the radial force density (i.e., perpendicular to the surface of the

balloon):

−fr(r) = ∇%(x) = ∂

∂r
3u(ro − r) + 1 = −2δ(ro − r) [Pa].

This equation describes a static pressure that is 1 [atm] (105 [Pa]) outside the balloon and 3 [atm] inside. The net
positive force density is the negative of the gradient of the static pressure.

Finally, taking the divergence of the force produces a double delta function at the balloon’s surface. Specifi-
cally, ∇2%(x) = −2δ(1)(ro − r), where 2 is the pressure drop across the balloon. If we take the thickness of the
rubber (l [m]) into account, then∇2% = −2(δ(ro)− δ(ro − l)).

Vector Laplacian ∇2():

A second form of the Laplacian is the vector Laplacian ∇2(), defined as the divergence of the gradient ∇2() ≡
∇·∇(), thus nicknamed Bull-Dog, operates on a vector to produce a vector (Table 5.1, page 173). We shall need
this when working with Maxwell’s equations.

5.1.3 Scalar Laplacian operator in N dimensions
In general, it may be shown that in N = 1, 2, 3 dimensions (Sommerfeld, 1949, p 227),

∇2
r P ≡ 1

rN−1
∂

∂r

(
rN−1 ∂ P

∂r

)
. (5.1.9)

For each value of N , the area A(r) = Aor
N−1. This result will turn out to be useful when we work with the

Laplacian in one, two, and three dimensions. This naturally follows from Eq. 5.2.10, p. 184:

1
A(r)

∂

∂r

[
A(r) ∂

∂r

]
%(r, t) = 1

c2o

∂2

∂t2
%(r, t)↔ s2

c2o
P (r, s).

Example: When N = 3 (i.e., spherical geometry), A(r) = Aor
2, thus

∇2
r P ≡ 1

r2 ∂rr
2∂r P (5.1.10)

= 1
r

∂2

∂r2 r P , (5.1.11)

resulting in the general d’Alembert solutions (Eq. 4.4.1 p. 141) for the spherical wave equation,

P±(r, s) = 1
r
e∓κ(s)r

where κ(s) = s/co.

4The force is pointing out, stretching the balloon.
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Exercise #2
Prove the result of the previous example by expanding Eqs. 5.1.10 and 5.1.11 using the chain rule.

Solution: Expanding Eq. 5.1.10:

1
r2 ∂rr

2∂r P = 1
r2

(
2r + r2∂r

)
∂r P

=2
r

P r + P rr.

Expanding Eq. 5.1.11, we obtain

1
r
∂rrr P =1

r
∂r ( P + r P r)

=1
r

( P r + P r + r P rr)

=2
r

P r + P rr.

Thus the two are equivalent. �

Summary

The radial component of the Laplacian in spherical coordinates (Eq. 5.1.10) simplifies to

∇2
r%(x) = 1

r2
∂

∂r
r2 ∂

∂r
%(x) = 1

r

∂2

∂r2 r%(x).

Since DoG is∇2 = ∇·∇, it follows that the net force f(x) = [Fr, 0, 0]T , Eq. 5.1.8 in spherical coordinates has a
radial component Fr and angular component of zero. Thus the force across a balloon may be approximated by a
delta function across the thin sheet of stretched rubber.

We can extended the preceding example in an interesting way to the case of a rigid hose, a rigid tube, that
terminates on the right in an elastic medium (the above example of a balloon), such as an automobile tire. On the
far left let’s assume there is a pump injecting the fluid into the rigid hose. Consider two different fluids: air and
water. Air is treated as a compressible fluid, whereas water is incompressible. However, such a classification is
relative, determined by the relative compliance of the balloon (i.e., tire) at the relatively rigid pump and hose.

This is a special case of a more general situation: When a fluid is treated as incompressible (rigid), the
speed of sound becomes infinite, and the wave equation is an invalid description. In this case the motion is best
approximated by Laplace’s equation. This represents the transition from short to long wavelengths, from wave
propagation having delay, to quasistatics, having no delay.

This example may be modeled as either an electrical or a mechanical system. While the two systems are very
different in their physical realization, they are mathematically equivalent, forming a perfect analog. If we take the
electrical analog, the pump is a current source, injecting charge Qo into the hose, which being rigid cannot expand
(has a fixed volume). The hose may be modeled as a resistor and the tire as a capacitor Co, which fills with charge
as it is delivered via the resistor, from the pump. The capacitor obeys the same equation as Hooke’s law for a
spring, F = Ko∆, where Ko is the stiffness of the spring, Co = 1/Ko is the spring’s compliance, and ∆ is the
displacement. In electrical terms, Qo = CoΦ where Φ is the voltage, which acts like a force F; Qo is the charge,
which plays the role of the mass of the fluid. The charge Q is conserved, just as the mass of the fluid is conserved
(they cannot be created or destroyed).

The flow of the fluid is called the flux, which is the general term for the mass flow, heat or electrical current flow
(Table 3.2, p. 110). The two equations may be rewritten directly in terms of the force (F,Φ) and flow (momentum
or current flux). A third alternative is in terms of the electrical

I = Co
d

dt
Φ [A] (5.1.12)

and mechanical
J = Co

d

dt
F [kgm-s/m] (5.1.13)

impedance/admittance relationship.
It is common to treat the stiffness of the balloon, which acts as a spring, as a compliance Co = 1/Ko, in which

case the impedance Z is defined in the frequency domain as the ratio of the generalized force over the generalized
flow

Z(s) = 1
sCo

[ohms].



5.1. PROPERTIES OF FIELDS AND POTENTIALS 177

In the case of mechanical systems Zm(s) ≡ F/J , while for the electrical system, Ze(s) ≡ Φ/I . In thermody-
namics the thermal compliance is Co = S/T , thus Zthemo = T/s S = 1/sCo. It is helpful to use the unit [ohms]
when working with any impedance, allowing for a uniform terminology for the different physical situations and
many forms of impedance. This greatly simplifies the notation.

In the time domain, Ohm’s law becomes Eq. 5.1.13 for the case of a mechanical compliance Co = 1/Ko and
Eq. 5.1.12 for the electrical capacitor C. As shown in Table 3.2, the formula for the generalized impedance is
typically expressed in terms of the Laplace frequency s, which of course is the LT of the time variables.

The final solution of this system is solved in the frequency domain. The impedance seen by the source is the
sum of the resistance R and the impedance of the load, giving

Z = R+ 1
sC

.

This results in a simple relationship between the force and the flow, as determined by the action of the source on
the load Z(s). The results may be given in terms of the voltage across the compliance in terms of the voltage
Φs (or current Is) due to the source. Given some algebra, the voltage across the compliance Φc, divided by the
voltage of the source, is

Φc
Φsource

= R

R+ 1/sC .

Thus the calculus reduces to some algebra in the frequency domain, which in this case has a simple pole at
sp = −1/RC. The time domain response is then found by taking the inverse LT .

Cauchy’s residue theorem (p. 151) gives the final answer, which describes how the voltage across the com-
pliance builds exponentially with time, from zero to the final value. Given the voltage, we can also compute the
current, as a function of time. This then represents the entire process of either blowing up a balloon, charging a
capacitor, or heating water on a stove, the difference being only the physical notation, as the math is identical.

Note that this differential equation is first-order in time, which in frequency means the impedance has a single
pole. Thus the equation for charging a capacitor or pumping up a balloon describes a diffusion process. If we had
taken the impedance of the mass of the fluid in the hose into account, we would have a lumped-parameter model
of the wave equation with a second-order system. This is mathematically related to the homework assignment
about train cars (masses) connected by springs (Fig. 5.4, Homework DE-3, problem 2).

Example: The voltage

φ(x, t) = e−κ·xu(t− x/c)↔ 1
s
e−κ·x [V] (5.1.14)

represents one of d’Alembert’s solution (Eq. 4.4.1, p. 141) of the wave equation (Eq. 3.1.5, p. 53) as well as an
eigenfunction of the gradient operator ∇. From the definition of the scalar (dot) product of two vectors (Fig. 3.4,
p. 88),

κ · x = κxx+ κyy + κzz = ||κ|| ||x|| cos θκx,

where ||κ|| =
√
κ2
x + κ2

y + κ2
z and ||x|| =

√
x2 + y2 + z2 are the lengths of vectors κ and x, and θκx is the

angle between them. As before, s = σ + ω is the Laplace frequency.
To keep things simple, we let κ = [κx, 0, 0]T so that κ · x = κxxx̂. We shall soon see that ||κ|| = 2π/λ

follows from the basic relationship between a wave’s radian frequency ω = 2πf and its wavelength λ:

ωλ = co. (5.1.15)

As the frequency increases, the wavelength becomes shorter. This key relationship may have been first researched
by Galileo in about 1564, followed by Mersenne5 in about 1627 (Fig. 1.5, p. 9).

Exercise #3
Show that Eq. 5.1.14 is an eigenfunction of the gradient operator∇.

Solution: Taking the gradient of φ(x, t) gives

∇e−κ·xu(t) = −∇κ · x e−κ·xu(t)
= −κ e−κ·xu(t),

5 See https://www-history.mcs.st-and.ac.uk/Biographies/Mersenne.html;

“In the early 1620s, Mersenne listed Galileo among the innovators in natural philosophy whose views should be rejected. However, by the early
1630s, less than a decade later, Mersenne had become one of Galileo’s most ardent supporters.” (Garber, 2004)
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or in terms of φ(x, t),
∇φ(x, t) = −κφ(x, t)↔ −s

c
e−κ·x.

Thus φ(x, t) is an eigenfunction of ∇, having the vector eigenvalue κ. As before, ∇φ is proportional to the
current, since φ is a voltage, and the ratio (i.e., the eigenvalue) may be thought of as a mass, analogous to the
impedance of a mass (or inductor). In general, the units provide the physical interpretation of the eigenvalues and
their spectra. �

Exercise #4
Compute n̂ for φ(x, s) as given by Eq. 5.1.14.

Solution: n̂ = κ/||κ|| represents a unit vector in the direction of the wave propagation.�

Exercise #5
If the sign of κ is negative, what are the eigenvectors and eigenvalues of∇φ(x, t)?

Solution:

∇e−κ·xu(t) = −κ · ∇(x)e−κ·xu(t)
= −κ e−κ·xu(t).

Nothing changes other than the sign of κ. Physically this means the wave is traveling in the opposite direction,
corresponding to the forward and retrograde d’Alembert waves. �

Prior to this section, we had considered the Taylor series in only one variable, such as for polynomials
PN (x), x ∈ R (Eq. 3.1.7, p. 54), and PN (s), s ∈ C (Eq. 3.2.20, p. 74). The generalization from real to com-
plex analytic functions led to the LT and the host of integration theorems (FTCC, Cauchy CT-1, CT-2, CT-3).
What is in store when we generalize from one spatial variable (R) to three (R3)?

Exercise #6
Find the velocity v(t) of an electron in a field E.

Solution: From Newton’s second law, −qE = mev̇(t) [N], where me is the mass of the electron. Thus we
must solve this first-order differential equation to find v(t). As before, this is best done in the frequency domain
v(t)↔ V (s).�

Role of potentials: Note that the scalar fields (e.g., temperature, pressure, voltage) are all scalar potentials,
summarized in Table 3.2 (p. 110). In each case the gradient of the potential results in a vector force field, just as
in the electric case above (Eq. 5.1.1).

Table 3.2 is helpful in understanding the physical meaning of the gradient of a potential, which is typically a
generalized force (electric field, acoustic force density, temperature flux), that in turn generates a flow (current,
velocity, heat flux (entropy)). The ratio of the potential over flow determines the impedance. Four examples are

1. The voltage drop across a resistor causes a current to flow, as described by Ohm’s law. The difference in
voltage between two points is a crude form of gradient when the frequency f [Hz] is low, such that the
wavelength is much larger than the distance between the two points. This is the essence of the quasistatic
approximation (Postulate P10, p. 122).

2. The gradient of the pressure gives rise to a force density in the fluid medium (air, water, oil, etc.), that causes
a flow (velocity vector) in the medium.

3. The gradient of the temperature also causes a flow of heat that is proportional to the thermal resistance,
given Ohm’s law for heat (Feynman, 1970b, p 3–7).

4. When a solution contains ions, it defines an electrochemical Nernst potential N(x, t) (Fermi, 1936; Scott,
2002). This electrochemical potential is similar to a voltage or temperature field, the gradient of which
defines a virtual force on the ions, resulting in an ionic current.

Thus in the above examples there is a potential, the gradient of which is a force, that when applied to the
medium (an impedance) causes a flow (flux or current) proportional to that impedance due to the medium, which
is the ratio of the gradient of the potential to the current. The product of the force and flow is a power.
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Exercise #7
Show that the integral of Eq. 5.1.1 is an antiderivative.

Solution: We use the definition of the antiderivative given by the FTC (Eq. 4.2.2, p. 135):

φ(x, t)− φ(xo, t) =
∫ x

xo

E(x, t) · dx

= −
∫ x

xo

∇φ(x, t) · dx

= −
∫ x

xo

(
x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

)
φ(x, t) · dx

= −
∫ x

xo

(
x̂∂φ
∂x

+ ŷ∂φ
∂y

+ ẑ∂φ
∂z

)
· (x̂dx+ ŷdy + ẑdz)

= −
∫ x

xo

∂φ

∂x
dx−

∫ y

yo

∂φ

∂y
dy −

∫ z

zo

∂φ

∂z
dz

= −
∫ x

xo

dφ(x, t)

= −
(
φ(x, t)− φ(xo, t)

)
.

This may be verified by taking the gradient of both sides:

∇φ(x, t)−��>
0

∇φ(xo, t) = −∇
∫ x

xo

E(x, t) · dx = E(x, t).

If we apply the FTC, the antiderivative must be φ(x, t) = Exxx̂ + 0ŷ + 0ẑ. This same point is made by Feynman
(1970b, p. 4-1, Eq. 4.28). �

Given that the force on a charge is proportional to the gradient of the potential, this exercise shows that the
integral of the gradient depends on only the end points, the work done in moving a charge depends on only the
limits of the integral, which is the definition of a conservative field but holds only in the ideal case where E is
determined by Eq. 5.1.1—that is, the medium has no friction (there are no other forces on the charge).

The conservative field: An important question is: When is a field conservative? A field is conservative when
the work done by the motion is independent of the path of the motion. Thus the conservative field is related to the
FTC, which states that the integral of the work depends on only the end points.

A more complete answer must await the introduction of the fundamental theorem of vector calculus (Eq. 5.6.7,
p. 200). A few examples provide insight:

Example: The gradient of a scalar potential, such as the voltage (Eq. 5.1.1), defines the electric field, which drives
a current (flow) across a resistor (impedance). When the impedance is infinite, the flow is zero, leading to zero
power dissipation. When the impedance is lossless, the system is conservative.

Example: At audible frequencies the viscosity of air is quite small and thus, for simplicity, it may be taken as
zero. However, when the wavelength is small (e.g., at 100 [kHz] λ = co/f = 345/105 = 3.45 [mm]) the lossless
assumption breaks down, resulting in a significant propagation loss. When the viscosity is taken into account, the
field is lossy and thus the field is no longer conservative. In narrow tubes, for example a flute, thermal loss plays
a much larger role due to the walls (Appendix D).

Example: If a temperature field is a time-varying constant [i.e., T (�x, t) = To(t)], there is no “heat flux,” since
∇To(t) = 0. When there is no heat flux [i.e., flux, or flow], there is no heat power, since the power is the product
of the force and the flow.

Example: The force of gravity is given by the gradient of Newton’s gravitational potential (Eq. 3.1.1, p. 52):

F = −∇rφN(r) = − ∂

∂r

1
r

= 1
r2 .
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Historically speaking, φN (r) was the first conservative field, used to explain the elliptic orbits of the planets
around the sun. Galileo’s law says that bodies fall with constant acceleration, giving rise to a parabolic path and a
time of fall proportional to t2. This behavior of falling objects directly follows from the Galilean potential:

φG(r) = 1
(r − ro)

= −ro
1− r/ro

=
r<ro

−ro(1− r/ro + (r/ro)2 + · · · ) ≈
r�ro

ro − r,

which, given the large radius ro of the earth and the small distance of the object from the surface of the earth
r − ro, is equal to the distance above the ground. Thus Galileo’s law says that the force a falling body sees is
constant:

FG = −Go∇rφG(r) = Go.

This can be scaled by Go to account for the magnitude of the gravitational force.

Exercise #8
Galileo discovered that the height of a falling object is proportional to the square of the time it falls. Based on
Newton’s follow-up analysis, today we would say this height h(t) is

h(t) = 1
2mGo(t− to)

2 [m],

where m is the object’s mass and Go is the gravitational constant for the earth at its surface ro. Show that h(t)
directly follows from the potential φG = ro − r. This formula applies if you toss a ball into the air or if you drop
it from a high place.

Solution: Given Galileo’s potential φG(r) ≈
r�ro

mGo(ro − r), thus ḧ(t) = mGo. Given Galileo’s formula

for the height h(t), the velocity is v(t) = ṙ(t) = mGot, and the acceleration is r̈(t) = mGo. �

Exercise #9
Find the time that it takes to fall from a distance r = L. That is solve h(t) = L for the time the object takes to fall
the distance L.

Solution: Setting to = 0 gives t2 = 2L/mGo. Thus the time to fall is T (L) =
√

2L/mGo. �

5.2 Partial differential equations and field evolution
The three main classes of partial differential equations (PDEs) are: elliptic, parabolic, and hyperbolic, distin-
guished by the order of the time derivative. These categories seem to have little mathematical utility (the categories
are labels).

5.2.1 The Laplacian∇2:
In the most important case the space operator is the Laplacian ∇2, the definition of which depends on the di-
mensionality of the waves—that is, the coordinate system being used. We first discussed the Laplacian as a 2D
operator on p. 137 where we studied complex analytic functions, and again on p. 172. An expression for ∇2 for
one, two, and three-dimensions was provided as Eq. 5.1.9 (p. 175). In three dimensional rectangular coordinates,
it is defined as (see p. 174)

∇2T (x) =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T (x). (5.2.1)

The Laplacian operator is ubiquitous in mathematical physics, starting with simple complex analytic functions
(Laplace’s equation) and progressing to Poisson’s equation, the diffusion equation, and finally the wave equation.
Only the wave equation results in a delay. The diffusion equation “wave” has an instantaneous spread (the effective
“wavefront” velocity is infinite, yet the wavelength is long; it’s not a traveling wave).

Examples of elliptic, parabolic, and hyperbolic equations are

1. Laplace’s equation: The equation
∇2Φ(x) = 0 (5.2.2)

describes, for example, the voltage inside a closed chamber that has a given voltage on the walls or the
steady-state temperature within a closed container having a specified temperature distribution on the walls.
There are no dynamics to the potential, even when it is changing, since the potential instantaneously follows
the potential on the walls.
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2. Poisson’s equation: In the steady state, the diffusion equation degenerates to either Poisson’s or Laplace’s
equation; both are classified as elliptic equations (second-order in space, zero-order in time). As in the
diffusion equation, the evolution has a wave velocity that is functionally infinite. For example,

∇2Φ(x, t) = ρ(x, t)

holds for gravitational fields or the voltage around a charge. It does not describe gravity waves, which travel
at the speed of light.

3. Fourier diffusion equation: Equation 5.2.3 describes the evolution of the scalar temperature T (x, t) (a scalar
potential), gradients of solution concentrations (i.e., ink in water), and Brownian motion. Diffusion is first-
order in time, which is categorized as parabolic (first-order in time, second-order in space). When these
equations are Laplace transformed, diffusion has a single real root, resulting in a real solution (e.g., T ∈ R).
There is no wavefront in the case of the diffusion equation. As soon as the source is turned on, the field is
nonzero at every point in the bounded container. As an example,

∇2T (x, t) = κo
∂T (x, t)
∂t

↔ sκoT (x, s) (5.2.3)

describes the temperature T (x, t) ↔ T (x, ω), as proposed by Fourier in 1822, or the diffusion of two
miscible liquids (Fick, 1855) or Brownian motion (Einstein, 1905). The diffusion equation is not a wave
equation, since the temperature wavefront propagates instantaneously. The diffusion equation does a poor
job of representing the velocity of molecules banging into each other, since such collisions have a mean free
path, and thus the velocity cannot be infinite.

4. Wave equations: There are scalar and vector forms of wave equations.

(a) Scalar wave equations: Equation 3.1.3 (p. 52) describes the evolution of a scalar potential field, such
as pressure %(x, t) (sound) or the displacement of a string or membrane under tension. The wave
equation is second-order in time. When transformed into the frequency domain, the solution has pairs
of complex conjugate roots, leading to two real solutions. The wave equation is classified as hyperbolic
(second-order in time and space).

(b) Vector wave equations: Maxwell’s equations describe the propagation of the electric E(x, t) and
magnetic H(x, t) field strength vectors, as well as the electric D(x, t) = εoE(x, t) and magnetic
B(x, t) = µoH(x, t) flux vectors. ME are antireciprocal (P6).

Solution evolution: The partial differential equation defines the evolution of the scalar field [pressure %(x, t)
and temperature T (x, t)], or vector field (E,D,B,H), as functions of space x and time t. There are two basic
categories of field evolution: diffusion and propagation.

1. Diffusion: The simplest and easiest PDE example, easily visualized, is a static6 (time-invariant) scalar
temperature field T (x) [°C]. Just like an impedance or admittance, a field has regions where it is analytic,
and for the same reasons, T (x, t) satisfies Laplace’s equation

∇2T (x, t) = 0.

Since there is no current when the field is static, such systems are lossless and thus are conservative.

When T (x, t) depends on time (is not static), it is described by the diffusion equation (Eq. 5.2.3), a rule
for how T (x, t) evolves with time from its initial state T (x, 0). The constant κo is called the thermal
conductivity, which depends on the properties of the fluid in the container, with sκo being the thermal
admittance per unit area. The conductivity is a measure of how the heat gradients induce heat currents
J = −κo∇T , analogous to Ohm’s law for electricity.

Note that when T (x, t→∞) the temperature reaches a steady state, J = 0 and∇2T = 0. This all depends
on what is happening at the boundaries. When the wall temperature of a container is a function of time, the
internal temperature T (x, t) will continue to change, but with a frequency-dependent delay that depends on
the thermal conductivity κo.

Such a system is analogous to an electrical resistor–capacitor series circuit connected to a battery. For
example, the wall temperature (voltage across the battery) represents the potential driving the system. The

6Postulate P3, p. 122.
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thermal conductivity κo (the electrical resistor) is likewise analogous. The fluid (the electrical capacitor) is
being heated (charged) by the heat (charge) flux. In all cases Ohm’s law defines the ratio of the potential
(voltage) to the flux (current). How this happens can be understood only once the solution to the equations
has been established. The fluid has a heat capacity analogous to that of an electrical capacitor (Kirchhoff,
1868, 1974). Sometimes the diffusion equation is called the telegraph equation.

2. Propagation: Pressure and electromagnetic waves are described by a scalar potential (pressure) (Eq. 3.1.3,
p. 52) and a vector potential (Eq. 5.7.4, p. 205), leading to scalar and vector wave equations. Sometimes the
wave equation is called the telephone equation.

The Taylor series of f(x): Next we extend the concept of the Taylor series of one variable to x ∈ R3. Just as we
generalized the derivative with respect to a real frequency variable ω ∈ R to complex frequency s = σ + ω ∈ C,
here we generalize the derivative with respect to x ∈ R to the vector x ∈ R3.

Since the scalar field is analytic in x, it is a good place to start. Assuming we have carefully defined the Taylor
series (Eq. 3.2.9, p. 68) in one and two (Eq. 4.2.7, p. 137) variables, the Taylor series of f(x) in x ∈ R3 about
x = 0 may be defined as

f(x+ δx) = f(x) +∇f(x) · δx+ 1
2!

3∑
k=1

3∑
l=1

∂2f(x)
∂xk∂xl

δxkδxl + HOT, (5.2.4)

where HOT stands for Higher Order Terms (Greenberg, 1988, p 639). From this definition, it is clear that the
gradient is the generalization of the second term in the one-dimensional Taylor series expansion.

Summary: For every potential φ(x, t) there exists a force density f(x, t) = −∇φ(x, t), proportional to the
potentials, that drives a generalized flow u(x, t). If the normal components of the force and flow are averaged over
a surface, the mean force and volume flow (i.e, volume velocity for the acoustic case) are defined. In such cases
the impedance Z(s) is the net force through the surface force over the net flow, and Gauss’s law and quasistatics
(Postulate P10, p. 122) come into play (Feynman, 1970a). We call this the generalized impedance. An example is
Z(s) =

√
s.

Assuming linearity (Postulate P2, p. 121), the product of the force and flow is the power, and the ratio
(force/flow) is an impedance (Table 3.2, p. 110). This impedance statement is called Ohm’s law, Kirchhoff’s
laws, Laplace’s law, or Newton’s laws. In the simplest cases, they are all linearized (proportional) complex rela-
tionships between a force and a flow. Very few impedance relationships are inherently linear over a large range of
force or current, but for physically useful levels, they are treated as linear. Nonlinear interactions require a more
sophisticated approach, typically involving numerical methods, working in the time domain.

In electrical circuits it is traditional to define a zero potential ground point that all voltages use as the reference
potential. The ground is a useful convention as a simplifying rule, but it obscures the physics and obscures the
fact that the voltage is not the force. Rather, the force is the voltage difference, referenced to the ground, which is
defined as zero volts. This results in abstracting away (i.e., hiding) the difference in voltage. It seems misleading
(more precisely, it is wrong) to state Ohm’s law as the voltage over the current, since Ohm’s law actually says that
the voltage difference (i.e., voltage gradient) over the current defines an impedance (Kennelly, 1893).

When we measure the voltage between two points, it is a crude approximation to the gradient based on the
quasistatic approximation (Postulate P10). The pressure is also a potential, the gradient of which is a force density,
which drives the volume velocity (flow).

In Sec. 5.6.5 we introduce the fundamental theorem of vector calculus (otherwise known as Helmholtz’s
decomposition theorem), which generalizes Ohm’s law to include circulation (e.g., angular momentum, vorticity,
and the related magnetic effects). To understand these generalizations in flow, we need to understand compressible
and rotational fields (Table 5.3, p. 199), complex analytic functions, and more mathematical physics history.

It is the difference in the potential (i.e., voltage, temperature, pressure) that is proportional to the flux. This can
be viewed as a major simplification of the gradient relationship, justified by the quasistatic assumption (Postulate
P10, p. 122).

The roots of the impedance are related to the eigenmodes of the system equations. The solutions to the
equations are the eigenfunctions, evaluated at the eigenvalues (p. 137)

5.2.2 Scalar wave equation (Acoustics)
In this section we discuss the general solution to the wave equation, which has two forms: scalar waves (acoustics)
and vector waves (electromagnetics). These have an important mathematical distinction but a similar solution
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Figure 5.2: Experimental setup showing a large pipe on the
left terminating at the wall containing a small hole with a bal-
loon, shown in green. At time t = 0 the balloon is pricked
and a pressure pulse is released. The baffle on the left rep-
resents a semi-∞ long tube having a large radius compared
to the horn input diameter 2a. At time T the outbound pres-
sure pulse %(r, T ) = δ(t − x/co)/r has reached a radius
x = r − ro = coT , where r = x is the location of the source
at the throat of the horn and r is measured from the vertex. At
the throat of the horn V +/A+ = V −/A−. The term “horn” is
used for the case of scalar waves, while the term “wave-guide”
is used when speaking of EM waves. When the propagation is
constrained by a horn, or wave-guide, the waves are “guided.”

space, one scalar and the other vector. We start with the scalar wave equation. The vector case will be discussed
Sec. 5.7.2 (p. 205).

A good starting point for understanding PDEs is to explore the scalar wave equation (Eq. 3.1.3, p. 52). Acoustic
wave propagation was first analyzed mathematically by Isaac Newton in his famous book Principia (1687), in
which he first calculated the speed of sound based on the conservation of mass and momentum.

Early history: The study of wave propagation begins at least as early as Huygens (ca. 1678) (Pierce, 1981, p
15). The acoustic variables are the pressure,

%(x, t)↔ P (x, s),

and the particle velocity,
ν(x, t)↔ U (x, s).

To obtain a wave, we must include two basic components: the stiffness of air and its mass. The two equations
are called (1) Newton’s second law (F = ma) and (2) Hooke’s law (F = kx), respectively. In vector form these
equations are (1) Euler’s equation (i.e., conservation of momentum density),

−∇%(x, t) = ρo
∂

∂t
ν(x, t)↔ ρosU (x, s), (5.2.5)

which assumes the time-average density ρo is independent of time and position x, and (2) the continuity equation
(i.e., conservation of mass density),

−∇·ν(x, t) = 1
ηoPo

∂

∂t
%(x, t)↔ s

ηoPo
P (x, s) (5.2.6)

(Pierce, 1981; Morse, 1948, p 295). Here Po = 105 [Pa] is the barometric pressure and ηoPo is the dynamic
(adiabatic) stiffness, with ηo = 1.4 (See p. 243). Combining Eqs. 5.2.5 and 5.2.6 (removing ν(x, t)) results in the
three-dimensional scalar pressure wave equation

∇2%(x, t) = 1
c2o

∂2

∂t2
%(x, t)↔ s2

c2o
P (x, s) (5.2.7)

with co =
√
ηoPo/ρo being the air sound velocity, and ν =

√
ηoPoρo being the characteristic resistance of air,

assuming no visco-thermal losses.

Exercise #10
Show that Eqs. 5.2.5 and 5.2.6 can be reduced to Eq. 5.2.7.

Solution: Taking the divergence of Eq. 5.2.5 gives

−∇·∇%(x, t) = ρo
∂

∂t
∇·ν(x, t). (5.2.8)

Note that ∇·∇ = ∇2 (Table 5.1). Next, substituting Eq. 5.2.6 into the above equation results in the scalar wave
equation, Eq. 5.2.7, since co =

√
ηoPo/ρo. �
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5.2.3 The Webster horn equation (WHEN)
An important generalization of the problem of lossless plane-wave propagation in one-dimensional uniform tubes
is known as transmission line theory. As depicted in Fig. 5.2, by allowing the area A(r) [e.g., for the conical
horn A(r) = Ao(r/L)2 with L = 1 [m] and A0 ≤ 4π] of an acoustical waveguide (horn) to vary along the
range axis r (the direction of wave propagation), we can explore general solutions to the wave equation. Classic
applications of horns include vocal tract acoustics, loudspeaker design, cochlear mechanics, quantum mechanics
(e.g., the hydrogen atom), and wave propagation in periodic media (Brillouin, 1953).

We must be more precise when defining the area A(x): The area is not the cross-sectional area of the horn;
rather it is the wavefront (isopressure) area, which is related to Gauss’ law, since the gradient of the pressure
defines the force that drives the mass flow (also called volume velocity).

For the scalar wave equation (Eq. 5.1.9, p. 175), the Webster Laplacian is

∇2
r %(r, t) = 1

A(r)
∂

∂r

[
A(r) ∂

∂r

]
%(r, t). (5.2.9)

The Webster Laplacian is based on the quasistatic approximation (Postulate P10, p. 122), which requires that
the frequency lie below the critical value fc = co/2d—namely, that a half wavelength be greater than the horn
diameter d (i.e., d < λ/2).7 For the adult human ear canal, d = 7.5 [mm] and fc = (343/2 · 7.5)× 10−3 ≈ 22.87
[kHz], which is above the upper range of human hearing.

The term on the right of Eq. 5.2.9, which is identical to Eq. 5.1.9 (p. 175), is also the Laplacian for thin tubes
(e.g., rectangular, spherical, and cylindrical coordinates). Thus the Webster horn “wave” equation is

1
A(r)

∂

∂r

[
A(r) ∂

∂r

]
%(r, t) = 1

c2o

∂2

∂t2
%(r, t)↔ s2

c2o
P (r, s), (5.2.10)

where %(r, t)↔ P (r, s) is the acoustic pressure in Pascals [Pa] (Hanna and Slepian, 1924; Mawardi, 1949; Eisner,
1967; Morse, 1948); Olson (1947, p. 101); Pierce (1981, p. 360). Extensive experimental analyses for various
types of horns (conical, exponential, parabolic) along with a review of horn theory may be found in Goldsmith
and Minton (1924). Of special interest is Eisner (1967) due to his history section and long list of relevant articles.

The limits of the Webster horn equation: It is commonly stated that the Webster horn equation (WHEN) is
fundamentally limited and thus is an approximation that applies only to frequencies much lower than fc (Morse,
1948; Shaw, 1970; Pierce, 1981). However, in all these discussions it is assumed that the area function A(r) is the
horn’s cross-sectional area, not the area of the isopressure wavefront.

In the next section we show that this “limitation” may be avoided (subject to the f < fc quasistatic limit,
Postulate P10, p. 122), making the Webster horn theory an “exact” solution for the lowest-order “plane-wave”
eigenfunctions of Eq. 5.2.10. The limitation of the quasistatic approximation is that it “ignores” higher-order
evanescent modes, which are naturally small since, being evanescent modes below their cutoff frequency, the
wave number is real and thus they do not propagate (Hahn, 1941; Karal, 1953). This method is frequently called
a modal analysis or eigenanalysis. This is the same approximation that is required to define an impedance, since
every eigenmode has an impedance (Miles, 1948). These modes define a Hilbert “vector” space (also called an
eigenspace).

As derived in Appendix H (p. 259), the acoustic variables (eigenfunctions) are redefined on the isopressure
wavefront boundary for the pressure and the corresponding volume velocity (Hanna and Slepian, 1924; Morse,
1948; Pierce, 1981). The resulting acoustic impedance is then the ratio of the pressure to the volume velocity. This
approximation is valid up to the frequency where the first cross-mode begins to propagate (f > fc), which may be
estimated given the roots of the Bessel eigenfunctions (Morse, 1948). Perhaps it should be noted that these ideas,
which may come from acoustics, apply equally well to electromagnetics and quantum mechanics, and other wave
phenomena.

Visco-thermal losses: When losses are to be included, the wave number κ(s) = s/co must be replaced with
Eq. D.1.5 (p. 242). This introduces dispersion in the wavefront due to the very small dispersive term 2β0

√
s,

which contains a branch cut. When calculating the losses, we must be careful that they are always on the correct
Riemann sheet. In cases where precise estimates of the wave properties and input impedance are required, this
term is critical.

7This condition may be written in several ways, the most common being ka < 1, where k = 2π/λ and a is the horn radius. This may be
expressed in terms of the diameter as 2π

λ
d
2 < 1, or d < λ/π < λ/2. Thus d < λ/2 may be a more precise metric by the factor π/2 ≈ 1.6.

This is called the half-wavelength assumption, a synonym for the quasistatic approximation, and the Nyquist theorem (See DE-3, #2).
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The best known examples of wave propagation are electrical and acoustic transmission lines. Such systems
are loosely referred to as the telegraph or telephone equations, harking back to the early days of their discovery
(Heaviside, 1892; Campbell, 1903; Brillouin, 1953; Feynman, 1970a). The telegraph equation characterizes the
large resistance of the wire over long distances along with the stray capacitance of the wire to the ground (which
at the time was taken as the second conductor, to save wire). Thus the telegraph equation is best modeled by a
diffusion line. The telephone equation included loading coils, consisting of inductors placed periodically in the
wire, to increase the circuits inductance. This converted the circuit into a true transmission line. The loading coils
were introduced by the AT&T engineer and mathematician George Ashley Campbell (Campbell, 1903, 1937),
however they were first proposed and promoted by Heaviside.

In acoustics, waveguides are known as horns, such as the horn connected to the first phonographs from around
the turn of the century (Webster, 1919). Thus the names reflect the historical development, back to a time when
mathematics and its applications were related.

5.2.4 Matrix formulation of the WHEN
Newton’s laws of conservation of momentum (Eq. 5.2.5) and mass (Eq. 5.2.6) are modern versions of Newton’s
starting point for calculating the horn lowest-order plane-wave eigenmode wave speed.

The acoustic equations for the average pressure P (r, ω) and the volume velocity are derived in Appendix H,
where the pressure and particle velocity equations (Eqs. H.1.4 and H.1.6) are transformed into a 2 × 2 matrix of
acoustical variables, average pressure P (r, ω) and volume velocity V (r, ω):

− d

dr

[
P (r, ω)
V (r, ω)

]
=
[

0 sρ0
A(r)

sA(r)
ηoPo

0

] [
P (r, ω)
V (r, ω)

]
. (5.2.11)

The equations
M(r) = ρo/A(r) and C(r) = A(r)/ηoPo (5.2.12)

define the per-unit-length mass and compliance of the horn (Ramo et al., 1965, p 213). The product of P (r, s) and
V (r, s) defines the acoustic power [W/m2], while their ratio defines the horn’s admittance Y ±in (r, s) = V ±/P ,
looking in the two directions (Pierce, 1981, p 37–41).

To obtain the Webster horn pressure equation Eq. 5.2.10 from Eq. 5.2.11, we take the partial derivative of the
top equation

−∂
2 P
∂r2 = s

∂M(r)
∂r

V + sM(r)∂V
∂r

and then use the lower equation to remove ∂V /∂r,

∂2 P
∂r2 − s

∂M(r)
∂r

V = s2M(r)C(r) P = s2

c2o
P .

Note that c2o = MC =
(

ρo

��A(r)

)
·
(
��A(r)
ηoPo

)
. In air co =

√
η0Po/ρo.

We must then use the upper equation a second time to remove V :

∂2

∂r2 P + 1
A(r)

∂A(r)
∂r

∂

∂r
P = s2

c2o
P (r, s). (5.2.13)

By use of the chain rule, equations of this form may be directly integrated, since

∇r P = 1
A(r)

∂

∂r

[
A(r) ∂

∂r

]
P (r, s)

= ∂2

∂r2 P (r, s) + 1
A(r)

∂A(r)
∂r

P (r, s). (5.2.14)

This is equivalent to integration by parts, with integration factor A(r). Finally we set κ(s) ≡ s/co, which later
may be generalized to include visco-thermal losses (Eq. D.1.5, p. 242).

Merging Eqs. 5.2.13 and 5.2.14 results in the Webster horn equation (WHEN) (Eq. 5.2.10, p. 184):

1
A(r)

∂

∂r
A(r) ∂

∂r
P (r, s) = κ2(s) P (r, s)↔ 1

c2o

∂2

∂t2
%(r, t). (5.2.15)
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Equations having this form are known as Sturm-Liouville equations. This important class of ordinary differential
equations follows from the use of separation of variables of the Laplacian in any (i.e., every) separable coordinate
systems (Morse and Feshbach, 1953, p 494–523). The frequency domain eigensolutions are denoted P±(r, s).

We transform the three-dimensional acoustic wave equation into acoustic variables (Eq. 5.2.7) in Appendix H
by the application of Gauss’s law, resulting in the one-dimensional WHEN (Eq. 5.2.10), which is a nonsingular
Sturm-Liouville equation.8 It seems significant that the integration factor corresponds to the horn’s area function.
Thus we have demonstrated that Eqs. 5.2.7 and 5.2.11 reduce to to Eq. 5.2.15 in a horn.

8The Webster horn equation is closely related to Schrödinger’s equation (Salmon, 1946).
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5.3 Problems VC-1

5.3.1 Topics of this homework:
Vector algebra and fields in R3, gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss’s
(divergence) and Stokes’s (curl) laws, system classification (postulates).

5.3.2 Scalar fields and the∇ operator
Problem # 1: Let T (x, y) = x2 + y be an analytic scalar temperature field in two dimensions
(single-valued ∈ R2).

– 1.1: Find the gradient of T (x) and make a sketch of T and the gradient.

– 1.2: Compute∇2T (x) to determine whether T (x) satisfies Laplace’s equation.

– 1.3: Sketch the iso-temperature contours at T = −10, 0, 10 degrees.

– 1.4: The heat flux9 is defined as J(x, y) = −κ(x, y)∇T , where κ(x, y) is a constant that
denotes thermal conductivity at the point (x, y). Given that κ = 1 everywhere (the medium is
homogeneous), plot the vector J(x, y) = −∇T at x = 2, y = 1. Be clear about the origin,
direction, and length of your result.

– 1.5: Find the vector ⊥ to ∇T (x, y)—that is, tangent to the iso-temperature contours.
Hint: Sketch it for one (x, y) point (e.g., 2, 1) and then generalize.

– 1.6: The thermal resistance RT is defined as the potential drop ∆T over the magnitude
of the heat flux |J |. At a single point the thermal resistance is

RT (x, y) = −∇T/|J |.

How is RT (x, y) related to the thermal conductivity κ(x, y)?

Problem # 2: Acoustic wave equation
Note: In this problem, we will work in the frequency domain.

– 2.1: The basic equations of acoustics in one dimension are

− ∂

∂x
P = ρos ~V and − ∂

∂x
~V = s

ηoPo
P .

Here P (x, ω) is the pressure (in the frequency domain), V (x, ω) is the volume velocity (the integral of the velocity
over the wavefront with area A), s = σ + ω, ρo = 1.2 is the specific density of air, ηo = 1.4, and Po is the
atmospheric pressure (i.e., 105 Pa). Note that the pressure field P is a scalar (pressure does not have direction),
while the volume velocity field ~V is a vector (velocity has direction).

We can generalize these equations to three dimensions using the∇ operator

−∇P = ρos ~V and −∇ · ~V = s

ηoPo
P .

9The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.
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– 2.2: Starting from these two basic equations, derive the scalar wave equation in terms of
the pressure P ,

∇2P = s2

c20
P ,

where c0 is a constant representing the speed of sound.

– 2.3: What is c0 in terms of η0, ρ0, and P0?

– 2.4: Rewrite the pressure wave equation in the time domain using the time derivative
property of the Laplace transform [e.g., dx/dt ↔ sX(s)]. For your notation, define the time–
domain signal using a lowercase letter, p(x, y, z, t)↔ P .

5.3.3 Vector fields and the∇ operator

5.3.4 Vector algebra
Problem # 3: LetR(x, y, z) ≡ x(t)x̂ + y(t)ŷ + z(t)ẑ.

– 3.1: If a, b, and c are constants, what isR(x, y, z) ·R(a, b, c)?

– 3.2: If a, b, and c are constants, what is d
dt

(R(x, y, z) ·R(a, b, c))?

Problem # 4: Find the divergence and curl of the following vector fields:

– 4.1: v = x̂ + ŷ + 2ẑ

– 4.2: v(x, y, z) = xx̂ + xyŷ + z2ẑ

– 4.3: v(x, y, z) = xx̂ + xyŷ + log(z)ẑ

– 4.4: v(x, y, z) = ∇(1/x+ 1/y + 1/z)

5.3.5 Vector and scalar field identities
Problem # 5: Find the divergence and curl of the following vector fields:

– 5.1: v = ∇φ, where φ(x, y) = xey

– 5.2: v = ∇×A, whereA = xx̂ + yŷ + zẑ

– 5.3: v = ∇×A, whereA = yx̂ + x2ŷ + zẑ

– 5.4: For any differentiable vector field V , write two vector calculus identities that are
equal to zero.

– 5.5: What is the most general form a vector field may be expressed in, in terms of scalar
Φ and vectorA potentials?
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Problem # 6: Perform the following calculations. If you can state the answer without doing
the calculation, explain why.

– 6.1: Let v = sin(x)x̂ + yŷ + zẑ. Find ∇ · (∇× v).

– 6.2: Let v = sin(x)x̂ + yŷ + zẑ. Find ∇× (∇
√
v · v)

– 6.3: Let v(x, y, z) = ∇(x+ y2 + sin(log(z)). Find ∇× v(x, y, z).

5.3.6 Integral theorems
Problem # 7: For each of the following problems, in a few words, identify either Gauss’s or
Stokes’s law, define what it means, and explain the formula that follows the question.

– 7.1: What is the name of this formula?∫
S
n̂ · v dA =

∫
V
∇ · v dV.

– 7.2: What is the name of this formula?∫
S

(∇× V ) · dS =
∮
C

V · dR

Give one important application.

– 7.3: Describe a key application of the vector identity

∇× (∇× ~V ) = ∇(∇ · ~V )−∇2~V .
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Figure 5.3: Throat acoustical resistance rA and
acoustical reactance xA , frequency characteristics of
infinite eigenfunctions of the parabolic, conical, ex-
ponential, hyperbolic, and cylindrical horns, having
a throat area of 1 [cm2]. Note how the “critical”
frequency (defined here as the frequency where the
reactive and real parts of the radiation impedance are
equal) of the horn reduces dramatically with the type
of horn. For the uniform horn, the reactive compo-
nent is zero, so there is no cutoff frequency. For
the parabolic horn (1), the cutoff is around 3 kHz.
For the conical horn (2), the cutoff is at 0.6 [kHz].
For the exponential horn (3), the critical frequency
is around 0.18 [kHz], which is one-16th that of the
parabolic horn. For each horn the cross-sectional
area is defined as 100 [cm2] at a distance of L = 1
[m] from the throat (Olson, 1947, p 101); (Morse,
1948, p 283).

5.4 Three examples of finite-length horns
Figure 5.3 (p. 190) is taken from the classic book by Olson (1947, p. 101), showing the theoretical radiation imped-
ance Zrad(r, ω) for five horns. Table 5.2 summarizes the properties of four of these horns: uniform (cylindrical)
(A = Ao), parabolic (A(r) = Aor), conical (spherical) (A(r) = Aor

2), and exponential (A(r) = Aoe
2mr).

Table 5.2: Horns and their properties for N = 1, 2, and 3 dimensions, along with the exponential horn (EXP). The range variable goes
from ro ≤ r ≤ L [m] with area 1 ≤ A(r) ≤ 100 [cm2]. F (r) is the coefficient on P x, κ(s) ≡ s/co, where co is the speed of sound and
s = σ + ω is the Laplace frequency. The horn’s eigenfunctions are P±(ξ, s) ↔ %±(ξ, t). When ± is indicated, the outbound solution
corresponds to the negative sign. Eigenfunctions H±0 (ξ, s) are outbound and inbound Hankel functions. The rightmost column is the input
radiation admittance normalized by the characteristic admittance Yr(r) = A(r)/ρoco.

N Name radius Area/Ao F (r) P∓(r, s) %∓(ro, t) Y ∓rad/Yr
1D uniform 1 1 0 e∓κ(s)r δ(t) 1

2D parabolic
√
r r 1/r H∓0 (−jκ(s)r) — −roH∓1

H∓0

3D conical r r2 2/r e∓κ(s)r/r δ(t)± co
ro
u(t) 1± co/sro

EXP exponential emr e2mr 2m e−(m∓√m2+κ2)r e−mrE(t) Eq. 5.4.11

5.4.1 Uniform horn
The one-dimensional wave equation [A(r) = Ao = 1 [cm2]] is

d2

dr2 P = κ2(s) P ,

where we set κ2(s) ≡ s2/c2o.

Solution: The two eigenfunctions of this equation are the two d’Alembert waves (Eq. 4.4.1, p. 141):

%(x, t) = P +
0 %

+(t− x/c) + P−0 %
−(t+ (x− L)/c) ↔ P +

0 e
−κ(s)x + P−0 e

κ(s)(x−L),

where P±0 ∈ C are wave amplitudes and κ(s) = s/co = ω/c is called the propagation function (also known as
the wave-evolution function, propagation constant, and wave number).

Note that for the uniform lossless horn, ω/co = 2π/λ. It is convenient to normalize P +
0 = 1 and P−L = 1.

The characteristic admittance Yr(x) (Table 5.2) is independent of direction. The signs must be physically
chosen, with the velocity V ± into the port, to ensure that Yr > 0.
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Applying the boundary conditions: The general solution in terms of the eigenvector matrix, evaluated at x =
L, is [

P (x)
V (x)

]
L

=
[
e−κx eκ(x−L)

Yre−κx −Yreκ(x−L)

]
L

[
P +

0
P−0

]
L

=
[
e−κL 1

Yre−κL −Yr

] [
P +

0
P−0

]
L

, (5.4.1)

where P +
0 and P−0 are the relative amplitudes of the two unknown eigenfunctions to be determined by the bound-

ary conditions at x = 0, L, κ = s/c, and Yr = 1/Zr = Ao/ρoc.
Solving Eq. 5.4.1 for P +

0 and P−0 with determinant ∆ = −2Yre−κL,we get[
P +
L

P−L

]
= −1

2Yre−κL

[
−Yr −1

−Yre−κL e−κL

] [
P
V

]
L

= 1
2

[
eκL −Z eκL

1 Z

] [
P
−V

]
L

. (5.4.2)

In the final step we swapped all the signs, including those on V , and moved Zr = 1/Yr inside the matrix.
We can uniquely determine these two weights P +

L , P−L given the pressure and velocity at the boundary x = L,
which is typically determined by the load impedance (ZL(s) = P L/V L).

The weights may now be substituted back into Eq. 5.4.1 to determine the pressure and velocity amplitudes at
any point 0 ≤ x ≤ L: [

P
V

]
x

= 1
2

[
e−κx eκ(x−L)

Yre−κx −Yreκ(x−L)

]
x

[
eκL −Z eκL

1 Z

] [
P
−V

]
L

. (5.4.3)

Setting x = 0 and multiplying these out give the final transmission matrix:[
P
V

]
0

= 1
2

[
eκL + e−κL Zr(eκL − e−κL)

Yr(eκL − e−κL) eκL + e−κL

]
x

[
P
−V

]
L

. (5.4.4)

Note that the diagonal terms are cosh κL and the off-diagonal terms are sinh κL.
Applying the last boundary condition, we evaluate Eq. 5.4.2 to obtain the ABCD matrix at the input (x = 0)

(Pipes, 1958), [
P
V

]
0

=
[

cosh κL Zr sinh κL
Yr sinh κL cosh κL

] [
P
−V

]
L

. (5.4.5)

Note that the uniform horn is reversible (P7) and reciprocal (P6).

Exercise #11
Evaluate the expression in terms of the load impedance.

Solution: Since Zload = −P L/V L, we have

P
V

∣∣∣∣
0

= Zload cosh κL− Zr sinh κL
Zload Yr sinh κL− cosh κL (5.4.6)

�

Impedance matrix: Equation 5.4.5 is an impedance matrix (algebra required)[
P 0
P L

]
= Zr

sinh(κL)

[
cosh(κL) 1

1 cosh(κL)

] [
V 0
V L

]
.

Exercise #12
Write out the short-circuit (V L = 0) input impedance Zin(s) for the uniform horn.

Solution:

Zin(s) = P
V

∣∣∣∣
V L=0

= Zr
cosh κL
sinh κL = Zr tanh κL|VL=0 .

�
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Input admittance Yin: Given the input admittance of the horn, it is possible to determine whether it is uniform
without further analysis. That is, if the horn is uniform and infinite in length, the input admittance at x = 0 is

Yin(x = 0, s) ≡ V (0, ω)
P (0, ω) = Yr,

since P +
0 = 1 and P−L = 0. For an infinite uniform horn, there are no reflections.

When the uniform horn is terminated with a fixed impedance Zr at x = L, we can substitute pressure and
velocity measurements into Eq. 5.4.2 to find P 0 and P 0, and given these, we can calculate the pressure reflectance
at x = L (Eq. 3.4.6, p. 85),

ΓL(s) = P L

P 0
= P (L, ω)− ZrV (L, ω)

P (L, ω) + ZrV (L, ω) = ZL − Zr

ZL + Zr
.

Given sufficiently accurate measurements of the throat pressure and assuming ΓL = 0, the input impedance Zin
at the input x = 0 is Zr = ρoc/Ao.

5.4.2 Conical horn
Using the conical horn area A(r) ∝ r2 in Eq. 5.2.10, on page 184 (or Eq. 5.2.11 on page 185) results in the
spherical wave equation

P rr(r, ω) + 2
r

P r(r, ω) = κ2 P (r, ω), (5.4.7)

where κ(s) = ±s/co. The eigensolutions of Eq. 5.4.7 are

P±(r, s) = e∓κr

r
↔ 1

r
δ(t∓ r/co).

Radiation admittance for the conical horn: The conical horn’s acoustic input admittance Yin(r, s) at any
location r is found by dividing V (r, s) by P (r, s):

Y ±in (r, s) = V ±

P±
= −A(r)

sρo

d

dr
ln P±(r, s) (5.4.8)

= Yr(r)
[
1± co

sr

]
↔ A(r)

ρoco

(
δ(t− r/co)±

co
r
u(t− r/co)

)
. (5.4.9)

The pressure pulse is delayed by r/co due to e−κ(s)r. As the area of the horn increases, the pressure decreases as
1/r = 1/

√
A(r). This results in the uniform backflow cou(t)/r ↔ co/sr due to conservation of mass, and the

characteristic admittance Yr(r) variation with r.

5.4.3 Exponential horn
If we define the area as A(r) = Aoe

2mr, the eigenfunctions of the horn are

P±(r, ω) = e−mre∓j
√
ω2−ω2

c r/c, (5.4.10)

which may be shown by the substitution of P±c (r, ω) into Eq. 5.2.10 (p. 184).
This case is of special interest because the radiation impedance is purely reactive below the horn’s cutoff

frequency (ω < ωc = mco), as may be seen from curves 3 and 4 of Fig. 5.3 (p. 190). As a result, no energy can
radiate from an open horn for ω < ωc because

κ(s) = −m± 

co

√
ω2 − ω2

c = −m∓ 1
co

√
ω2
c − ω2

is purely real (this is the case of nonpropagating evanescent waves).
If we use Eq. 4.4.7 (p. 142), the input admittance is

Y ±in (x, s) = −A(x)
sρo

(
m±

√
m2 + κ2

)
x. (5.4.11)
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Kleiner (2013) gives an equivalent expression for Yin(x, ω) given area S(x) = emx,

Yin(x, ω) = S(x)
ωρ

[
m

2 + 

√
4ω2 − (mc)2

2c

]
,

and impedance

Zin(r, ω) = ρc

ST

[

ωc
ω

+
√

1−
(ωc
ω

)2
]
,

where ωc(r) is the cutoff frequency. Given this exact solution to the exponential horn, we could use a series
expansion of the form

A(r) =
∑
k

ake
bkx ∈ R

to obtain the general solution, for an arbitrary analytic A(r).

5.5 Solution methods
To model the wave equation, two distinct mathematical techniques are described. The first of these is called
separation of variables. This method is limited to a small and restrictive number of separable coordinate sys-
tems (SCS). Once the SCS is chosen, the eigenfunctions are known as solutions to that specific Sturm-Liouville
equation, which are always scalar (ordinary) differential equation (ODEs).

The second method uses the transmission matrix (a lumped-parameter method). This solution method assumes
a limit on the upper frequency response. That is, quasistatics assumes the wavelength is larger than the size of
the object being modeled. Thus other than the upper frequency limit, there are no limitations in the analytical and
numerical solutions using the transmission matrix method. Furthermore, it may be computed in both the frequency
and time domains (Fettweis, 1986).

1a. Separable coordinate systems: Classically PDEs are solved by separation of variables. This method is
limited to a few ortho-normal coordinate systems, such as rectangular, cylindrical, and spherical coordinates
(Morse, 1948, p 296–97). Even a slight deviation from separable specific coordinate systems represents a
major barrier toward further analysis and understanding, blocking insight into more general cases. Separable
coordinate systems have a high degree of symmetry. Note that the solution of the wave equation is not tied
to a specific coordinate system.

1b. Sturm-Liouville methods and eigenvectors: When the coordinate system is separable, the resulting PDEs
are always reduced to a system of Sturm-Liouville equations. The solutions of this important class of
Sturm-Liouville eigenfunctions are all tabulated.

Webster horn theory (Webster, 1919; Morse, 1948; Pierce, 1981) is a generalized Sturm-Liouville equation
that adds its physics in the form of the horn’s area function. The Webster equation sidesteps the seriously
limiting problem of separation of variables by using the alternative quasistatic solution, which ignores the
non propagating high-frequency evanescent modes. This is essentially a one-dimensional low-pass approx-
imation to the wave equation.

While mathematics provides rigor, physics provides understanding. While both are important, it is the
physical applications than make the theory useful.

2. Lumped-element method: As described (see page 107) a system may be represented in terms of lumped
elements, as either electrical inductors, capacitors, and resistors or their mechanical counterparts, masses,
springs, and dashpots. Such systems are represented by 2× 2 transmission matrices in the s (i.e., Laplace)
domain (Ramo et al., 1965, Appendix IV).

When a system of lumped-element networks contains only resistors and capacitors or resistors and inductors,
the solution is a diffusion equation, which does not support propagated waves. Depending on the elements in
the system of equations, there can be an overlap between a diffusion process and scalar waves, represented
as transmission lines, both modeled as lumped-element networks of 2 × 2 matrices (Eq. 3.8.1, p. 107)
(Campbell, 1922; Brillouin, 1953; Ramo et al., 1965).

Nyquist sampling and quasistatics: Quasistatic methods provide band-limited solutions below a critical
frequency fc for a much wider class of geometries, by avoiding high-frequency cross-modes. The model of
a train is depicted in Fig. 5.4.
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Example: Train-mission-line problem. The mechanical mass-spring system of Fig. 5.4 is the electrical
equivalent circuit. The mass is modeled as an inductor and the springs as capacitors to ground. The velocity
is analogous to a current and the force fn(t) to the voltage φn(t). The length of each cell is ∆ [m].

K K KK K
MM M M

f1 f2 f3 f4

C

1
2M

1
2M

φ1 φ2 φ3 φ4

∆

Figure 5.4: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of stiffness K or
complianceC = 1/K. The equivalent electrical circuit is shown below the mass-spring system, with the masses modeled by inductors
(M ) and springs modeled as capacitors (C). For this model to accurately represent a transmission line the frequency must be less than
the equivalent Nyquist frequency fc. The delay of one cell is To = ∆/co. One can measure either To or ∆ and co = 1/

√
MC.

Since λc = 2∆, it follows that the cutoff frequency is fc = co/2∆ = 1/2To. For f < fc, the frequency response is independent
of frequency, thus acting as a pure delay. As the frequency is increased above fc, the wavelength becomes shorter that the critical
wavelength λc = 2∆, and the delay line becomes a lowpass filter, strongly departing from transmission line properties.

When the wavelength λ = co/fc is greater than twice the physical distance ∆ between the elements

λ > λc = 2∆ [m],

the approximation is mathematically equivalent to a transmission line. As described in DE-3, problem #2,
the velocity is co = 1/

√
MC [m/s]. As the frequency increases, the wavelength becomes shorter. When

the frequency is equal to the critical frequency fc the critical wavelength λc = co/fc = 2∆. Above the
critical frequency the quasistatic (lumped-element) model breaks down and transitions from a delay line to
a lowpass filter, as discussed in DE-3, problem #2.

The frequency is under the control of the modeling process, since more elements may be added to allow
for higher frequencies (shorter wavelengths). If the nature of the solution at high frequencies (f > fc) is
desired, we may add more sections. For many (perhaps most) problems, lumped elements are easy to use
and accurate, as long as we don’t violate the Nyquist condition (Brillouin, 1953; Ramo et al., 1965).

5.5.1 Eigenfunctions %±(r, t) of the WHEN
Because the wave equation (Eq. 5.2.7) is second-order in time, there are two causal independent eigenfunction
solutions: an outbound (right–traveling) %+(r, t) wave, and an inbound (left-traveling) %−(r, t) wave.

Every eigenfunction depends on an area functionA(r) (Eq. 5.2.10, p. 184). In theory then, given an eigenfunc-
tion, it should be possible to find the area A(r). This is known as the inverse problem, which is generally believed
to be a difficult problem. Specifically, given the eigenvalues λk, how does one determine the corresponding area
function A(r)?

Because the characteristic impedance Yr(r) of the wave in the horn changes with location, there are local re-
flections due to these area variations. Thus there are fundamental relationships between the area change dA(r)/dr,
the horn’s eigenfunctions P±(r, s), the eigenmodes, and the input impedance.

Complex vs. real frequency: We shall continue to maintain the distinction that functions of ω are Fourier
transforms and causal functions of Laplace frequency s correspond to Laplace transforms, which are necessarily
complex analytic in s in the right half-plane (RHP) region of convergence (RoC). This distinction is critical, since
we typically describe impedance Z(s) and admittance Y (s) as complex analytic functions in s in terms of their
poles and zeros. The eigenfunctions P±(r, s) of Eq. 5.2.10 are also causal complex analytic functions of s.

Plane-wave eigenfunction solutions: In 1690, nine years before Newton’s publication of Principia, Christiaan
Huygens was the first to gain insight into wave propagation, today known as Huygens’s principle. While his
concept showed a deep insight, we now know it was flawed, as it ignored the backward-traveling wave (Miller,
1991). In 1747 d’Alembert published the first correct solution for the plane-wave scalar wave equation,

%(x, t) = f(t− x/co) + g(t+ x/co), (5.5.1)
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where f(·) and g(·) are general functions of their argument. That this is the solution may be shown by use of the
chain rule, by taking partials with respect to x and t.

In terms of physics, d’Alembert’s general solution describes two arbitrary waveforms f(·) and g(·) traveling
at a speed co, one forward and one reversed. This solution is quite easily visualized.

Exercise #13
By the use of the chain rule, prove that d’Alembert’s formula satisfies the one-dimensional wave equation.

Solution: Taking a derivative with respect to t and r gives

∂t%(r, t) = −cof ′(r − cot) + cog
′(r + cot)

∂r%(r, t) = f ′(r − cot) + g′(r + cot),

and a second derivative gives

∂tt%(r, t) = c2of
′′(r − cot) + c2og

′′(r + cot)
∂rr%(r, t) = f ′′(r − cot) + g′′(r + cot).

From these last two equations we have the one-dimensional wave equation

∂rr%(r, t) = 1
c2o
∂tt%(r, t),

which has solutions in Eq. 5.5.1. �

Exercise #14
Assuming f(·) and g(·) are δ(·), find the Laplace transform of the solution corresponding to the uniform horn
A(x) = 1.

Solution: Using Table 3.9 (p. 120) of Laplace transforms on Eq. 5.5.1 gives

%(x, t) = δ(t− x/co) + δ(t+ x/co)↔ e−sx/co + esx/co . (5.5.2)

Note that the delay To = ±x/co depends on the range x. �

Three-dimensional d’Alembert spherical eigenfunctions: We can generalize the d’Alembert solution to spher-
ical waves by changing the area function of Eq. 5.2.10 toA(r) = Aor

2 (see Eq. 5.1.9, p. 175 and Table 5.2, p. 190).
The wave equation then becomes

∇2
r%(r, t) = 1

r

∂2

∂r2 r%(r, t) = 1
c2o

∂2

∂t2
%(r, t).

Multiplying by r results in the general spherical (3D) d’Alembert wave equation solution

%(r, t) = f(t− r/co)
r

+ g(t+ r/co)
r

for arbitrary waveforms f(·) and g(·). These are the eigenfunctions for the spherical scalar wave equation.

5.6 Integral definitions of∇(), ∇·(), ∇×(), and ∇∧ ()
In Sec. 5.2, page 180, we described to two forms of wave equations, scalar and vector. Up to now we have only
discussed the scalar case. The vector wave equation describes the evolution of a vector field, such as Maxwell’s
electric field vector E(x, t).

There are two equivalent definitions for each of the four operators: differential and integral. The integral form
provides a more intuitive view of the operator, which in the limit converges to the differential form. Following a
discussion of the gradient, divergence, and curl integral operators, we discuss these two forms.

In addition there are three fundamental vector theorems: Gauss’s law (divergence theorem), Stokes’s law
(curl theorem), and Helmholtz’s decomposition theorem. Without the use of these fundamental vector calculus
theorems, we could not understand Maxwell’s equations.
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5.6.1 Gradient: E = −∇φ(x)
As shown in Fig. 5.1 (p. 171), the gradient maps R1 7→

∇
R3. The gradient is defined as the unit-normal n̂ weighted

by the potential φ(x) averaged over a closed surface S ,

∇φ(x) ≡ lim
S ,V→0

{∫∫
S φ(x) n̂ dS

V

}
[V/m] , (5.6.1)

having area S and volume V and centered at x (Greenberg, 1988, p 773).10 Here n̂ is a dimensionless unit vector
perpendicular to the surface S :

n̂ = ∇φ
‖∇φ‖

. (5.6.2)

The dimensions of Eq. 5.6.1 are in the units of the potential times the area, divided by the volume, as needed
for a gradient (e.g., [V/m]). The units depend on the potential. If φ were temperature, the units would be [deg/m].

Exercise #15
Justify the units of Eq. 5.6.1.

Solution: The units depend on φ per unit length. If φ is voltage, then the gradient has units of [V/m]. Under
the limit, d|S |/||S || must have units of m−1.�

The natural way to define the surface and volume is to place the surface on the isopotential surfaces, forming
either a cube or a pill-box-shaped volume. As the volume ||S || goes to zero, so must the area |S |. One must avoid
irregular volumes where the area is finite as the volume goes to zero (Greenberg, 1988, footnote p 762).

A well-known example is the potential

φ(x, y, z) = Q

εo
√
x2 + y2 + z2

= Q

εoR
[V]

around a point charge Q [SI units of coulombs]. The constant εo is the permittivity [F/m2]. A second well-known
example is the acoustic pressure potential around an oscillating sphere, which has the same form (see Table 5.2,
p. 190).

How does this work? To better understand what Eq. 5.6.1 means, consider a three-dimensional Taylor series
expansion (See Eq. 5.2.4, p. 182) of the potential in x about the limit point xo:

φ(x) ≈ φ(xo) +∇φ(x) · (x− xo) + HOT.

We could define the gradient using this relationship as

∇φ(xo) = lim
x→xo

φ(x)− φ(xo)
x− xo

.

For this definition to apply, x must approach xo along n̂. To compute the higher-order terms (HOT), we need the
Hessian matrix.11

The natural way to define a surface |S | is to find the isopotential contours. The gradient is in the direction of
maximum change in the potential, thus perpendicular to the isopotential surface. The key to the integral definition
is in taking the limit. As the volume ||S || shrinks to zero, the HOT are small and the integral reduces to the first-
order term in the Taylor expansion, since the constant term integrates to zero. Such a construction was used in the
proof of the Webster horn equation (Appendix H, p. 259; Fig. H.1, p. 260).

One major problem with Eq. 5.6.1 is that this definition is self-referencing, since n̂ is based on the gradient.
Thus the integral definition of the gradient is based on the gradient. Equation 5.6.1 is similar to the mean value
theorem for the gradient.

5.6.2 Divergence: ∇·D = ρ [C/m3]
The definition of the divergence at x = [x, y, z]T is (see Eq. 5.1.3)

∇·D(x, t) ≡ [∂x, ∂y, ∂z] ·D(x, t) =
[
∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

]
(x, t) = ρ(x, t),

which maps R3 7→
∇·

R1.

10For further discussions, see Greenberg (1988, pp. 778, 791, 809).
11Hi,j = ∂2(x)φ/∂xi∂xj , which exists if the potential is analytic in x at xo.
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S Surface (closed)

Tangent plane

ρenc Charge

n̂ ⊥ dS

Volume V

∇·D ≡ lim
V ,S→0

{∫∫
S n̂ ·D dS

V

}
[C/m3]

Q enc =
∫∫

S
n̂ ·D dS

=
∫∫∫

V
ρenc dV [C]

Figure 5.5: Left: On the left is the physical layout of the integral. Right: The top equation is the integral definition of the divergence of
D as an integral over the closed surface S of the normal component of vector D, given the limit as the surface and volume shrink to 0. The
middle equation states the enclosed charge Q enc in terms of the surface integral of the normal component ofD. The bottom equation gives the
charge enclosed in terms of a volume integral over the enclosed charge density ρenc.

5.6.3 Divergence and Gauss’s law
Like the gradient, the divergence of a vector field may be defined as the surface integral of a compressible vector
field in the limit as the volume enclosed by the surface goes to zero. As in the case of the gradient, if this
definition is to make sense, the surface S must be closed, defining the volume V . The difference here is that the
surface integral is over the normal component of the vector field being operated on (Greenberg, 1988, p 762–763)

∇·D = lim
V ,S→0

{∫∫
S D · n̂ dS

V

}
= ρ(x, y, z) [C/m3]. (5.6.3)

As with the gradient, we have defined the surface with area S , and volume V . It is a necessary condition that as
the area S goes to zero, so does the volume V .

As defined previously (Eq. 5.6.2) and shown here in Fig. 5.5, n̂ is a unit vector normal to the closed iso-
potential surface S . The limit, as the volume and surface simultaneously go to zero, defines the total flux across
the surface. Thus the surface integral is a measure of the total flux perpendicular to the surface. It is helpful to
compare this formula with that for the gradient, Eq. 5.6.1.

Gauss’s law: The definitions in Fig. 5.5 resulted in Gauss’s law, a major breakthrough in vector calculus. For
the electrical case, this is equivalent to the observation that the total flux across the surface is equal to the net
charge enclosed by the surface. Since the volume integral over the charge density ρ(x, y, z) is the total charge
enclosed Qenc,

Qenc =
∫∫∫

V
∇·D dV =

∫∫
S
D ·n̂ dS [C]. (5.6.4)

When the surface integral over the normal component of D(x) is zero, the total charge enclosed is zero. If there
is only positive (or negative) charge inside the surface, ∇·D = ρ(x) = 0. It is clear that this result only holds in
the quasistatic limit, which is always satisfied because S → 0.

Taking the derivative with respect to time gives the total current normal to the surface:

Ienc =
∫∫

S
D ·n̂ dS = Q̇enc =

∫∫∫
V
ρ̇enc dV [A]. (5.6.5)

As summarized by Feynman (1970b, p. 13-2):

The current leaving the closed surface S equals the rate of the charge leaving that volume V , defined
by that surface.

The integral definition reduces to a common-sense summary that can be grasped intuitively.

5.6.4 Integral definition of the curl: ∇×H = C

As briefly summarized on page 174, the differential definition of the curl maps R3 7→
∇×

R3. The curl of the

magnetic field strengthH(x) is the current density C = σE + Ḋ:

∇×H ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
Hx Hy Hz

∣∣∣∣∣∣ = C [A/m2].
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n̂ ⊥ dS

Tangent plane
S Surface (open)

B Boundarydl

∇×H ≡ lim
B ,S→0

{∫∫
S n̂×H dS

S

}
[A/m2]

Ienc =
∫∫

S
(∇×H) ·n̂ dS =

∮
B
H ·dl [A]

Figure 5.6: Left: The integral definition of the curl is related to that of the divergence (Eq. 5.6.3), as an integration over the tangent to the
surface, except: (1) the curl is defined as the cross-product n̂ ×H [A/m2] of unit vector n̂ with the current density H (Greenberg, 1988, p
823), and (2) the surface is open, leaving a boundary B along the open edge. As with the divergence, which leads to Gauss’s law, this definition
leads to a second fundamental theorem of vector calculus: Stokes’s law (also called the curl theorem). Right: Equations that summarize Stokes
theorem (law).

Curl and Stokes’s law: Like the gradient and divergence, the curl may be written in integral form, allowing for
the physical interpretation of its meaning:

The surface integral definition of ∇×H = C [A/m2], where the current density C is perpendicular
to the rotation plane ofH .

Stokes’s law states that the open surface integral over the normal component of the curl of the magnetic field
strength (n̂ ·∇×H [A/m2]) is equal to the line integral

∮
B H ·dl along the boundary B . As summarized in Fig. 5.6,

Stokes’s law is

Ienc =
∫∫

S
(∇×H) ·n̂ dS

=
∫∫

S
C ·n̂ dS

=
∮

B
H ·dl [A].

(5.6.6)

That is: The line integral ofH along the open surface’s boundary B is equal to the total current enclosed Ienc .
In many texts the normalization (denominator under the integral) is a volume V (Greenberg, 1988, p 778,823–

4). However, because the surface is open, this volume does not exist (when we define a volume, the surface must
be closed). The definition must hold even in the limit when the curved surface S degenerates to a plane, with the
boundary B enclosing S . In this limit there is no volume.

To resolve this problem, we take the normalization to be the surface S of Fig. 5.6. Note that in the limit B → 0,
the limiting definition is independent of any curvature, since the integral is over the normal component ofH (i.e.,
n̂ ⊥H(x, t)) at the limit point xo. The net flux is independent of the curvature of S as B → 0.

Finally, the curl of a vector is composed of three wedge products. However, the curl is defined only in R3.
Since the wedge product is defined in R2, for vectors of any length, it can be used to generalize the curl to every
vector space, independent of its dimension.

The wedge product (Fig. 3.4, p. 88) is also a natural tool for dealing with the Hall effect and superconductivity,
since these are two-dimensional phenomena.

Summary: Since integration is a linear process (sums of smaller elements), we can tile (tessellate) the surface,
breaking it up into smaller surfaces and their boundaries, the sum of which is equal to the integral over the original
boundary. This is an important concept that leads to the proof of Stokes’s law.

Table 5.1 (p. 173) provides a description of the three basic integration theorems along with their mapping
domains. The integral formulations of Gauss’s and Stokes’s laws use n̂ ·D andH × n̂ in the integrands. The key
distinction between the two laws naturally follows from the properties of the scalar (A ·B) and vector (A ×B)
products, as discussed in Fig. 3.4 (p. 88). To fully appreciate the differences between Gauss’s and Stokes’s laws,
we must master these two types of vector products.

Paraphrasing Feynman (1970b, 3-12), we have

1. Φ2 = Φ1 +
∫ 2

1 ∇Φ · dS

The line integral of an analytic function depends only on the end points.
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2.
∮
D · n̂ dS =

∮
∇·D dV =

∮
ρ dV

The normal component over a surface integral equal the divergence over the volume integral.

3.
∮

B E · dl =
∮

S (∇×E) · n̂ dS = −
∮

Ḃ · n̂ dS

The line integral of the electric field (the induced EMF in any loop) equals the integral of the normal
component of time-rate-of-change of the magnetic flux. The induced EMF is the Thévenin voltage in series
with the loop. This explains the working of an electrical transformer.

5.6.5 Helmholtz’s decomposition theorem
This is the time to rethink everything we have defined in terms of the two types of vector fields that decompose
every analytic vector field as shown in Table 5.3. The irrotational field is defined as one that is curl free. The
incompressible field is one that is divergence free.

According to Helmholtz’s decomposition theorem, every analytic vector field may be decomposed into in-
dependent rotational and compressible components (Helmholtz, 1978). An alternative name for Helmholtz’s de-
composition theorem is the fundamental theorem of vector calculus (FTVC). Gauss’s and Stokes’s theorems12

along with Helmholtz’s decomposition theorem are the three fundamental theorems of vector calculus. Portraits
of Helmholtz and Kirchhoff are provided in Fig. 5.8 (p. 200).

Table 5.3: The four possible classifications of scalar and vector potential fields: rotational/irrotational and compressible/incompressible.
Rotational fields are generated by the vector potential (e.g., A(x, t)), while compressible fields are generated by the scalar potentials (e.g.,
voltage φ(x, t), velocity ψ, pressure %(x, t), or temperature T (x, t)).

Field: Compressible Incompressible
ν(x, t) ∇·ν 6= 0 ∇·ν = 0
Rotational ν = ∇φ+∇×ω ν = ∇×w
∇×ν 6= 0 Vector wave Eq. Lubrication theory

∇2ν = 1
c2 ν̈ Boundary layers

Irrotational Acoustics Statics
conservative ν = ∇ψ ∇2φ = 0
∇×ν = 0 ∇2%(x, t) = 1

c2 %̈(x, t) Laplace’s Eq. (c→∞)

The four categories of linear fluid flow: The following is a summary of the four cases for fluid flow, as shown
in Table. 5.3:

1,1 Compressible, rotational fluid (general case): ∇ψ 6= 0, ∇×w 6= 0. This is wave propagation in a medium
where viscosity cannot be ignored, as in acoustics close to the boundaries, where viscosity contributes to
losses (Batchelor, 1967).

1,2 Incompressible, rotational fluid (lubrication theory): ν = ∇×w 6= 0,∇·ν = 0,∇2ψ = 0. In this case,
the flow is dominated by the walls, while the viscosity and heat transfer introduce shear. This is typical of
lubrication theory (solenoidal fields).

2,1 Compressible, irrotational fluid (acoustics): ν = ∇ψ, ∇×w = 0. Here losses (viscosity and thermal
diffusion) are small (assumed to be zero). We can define a velocity potential ψ, the gradient of which gives
the air particle velocity, thus ν = −∇ψ. For an irrotational fluid,∇×ν = 0 (Greenberg, 1988, p 826). This is
the case for the conservative field, where

∫
ν ·n̂dR depends on only the end points and

∮
B ν ·n̂dR = 0. When

a fluid may be treated as having no viscosity, it is typically assumed to be irrotational, since it is viscosity
and shear that lead to rotation (Greenberg, 1988, p 814). A fluid’s angular velocity is Ω = 1

2∇×ν = 0; thus
irrotational fluids have zero angular velocity (Ω = 0).

2,2 Incompressible, irrotational fluid (statics): ∇·ν = 0 and ∇×ν = 0; thus ν = ∇ψ and ∇2ψ = 0. An
example is water in a small space at low frequencies, where the wavelength is long compared to the size of
the container; the fluid may be treated as incompressible. When ∇×ν = 0, the effects of viscosity may be
ignored, as it is the viscosity that creates the shear that leads to rotation. This is the case in modeling the
cochlea, where fluid losses are ignored and the quasistatic limit is justified.

12These theorems are mathematical relationships that follow from physical principles.
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In summary, each of these cases is an approximation that best applies in the low-frequency limit. This is why
it is called quasistatic, meaning low but not zero frequency, where the wavelength is more than twice the diameter.

Figure 5.7: A solenoid is a uniform coil of wire. The term comes from the Greek meaning “shaped like
a pipe or channel.” When a steady current is passed through the wire, a uniform magnetic field intensity H is
created. Such a coil is indistinguishable from a permanent bar magnet with its north and south poles. Depending
on the direction of the current, one end of a finite solenoidal coil is the north pole of the magnet, and the other
end is the south pole. The uniform field inside the coil is called solenoidal, a confusing synonym for rotational
(Figure from Wikipedia).

A magnetic solenoidal field is a uniform-flux field Bz(x) that is generated by a solenoidal coil and, to an
excellent approximation, is uniform inside the coil, making it similar to that of a permanent magnet. As a result,
the divergence of a solenoidal field is approximately zero, which makes it incompressible (∇·= 0) and rotational
(∇×6= 0).

You need to know the term solenoidal since it is widely used. However the preferred terms are incompressible
and rotational. Strictly speaking, the term solenoidal field applies to only a magnetic field produced by a solenoid.

Figure 5.8: Left: Hermann von Helmholtz (taken from Helmholtz (1978)), Right: Gustav Kirchhoff. Together they were the first to
account for viscous (Helmholtz, 1858, 1978, 1863b) and thermal (Kirchhoff, 1868, 1974) losses in the acoustic propagation of airborne sound,
as first experimentally verified by Mason (1928) p. 241).

Application and derivation

Helmholtz’s decomposition theorem is expressed as the linear sum of a scalar potential φ(x, y, z) (think voltage)
and a vector potential (think magnetic vector potential). Specifically,

E(x, s) = −∇φ(x, s) +∇×A(x, s), (5.6.7)

where φ is the scalar and A is the vector potential as a function of the Laplace frequency s. Of course, this
decomposition is general (not limited to the electromagnetic case). It applies to linear fluid vector fields, which
include linear fluids (water, air). If rotational and dilation become coupled, this relationship will break down.

This theorem is easily stated (and proved) but less easily appreciated (Heras, 2016). A physical description
is helpful: Every vector field may be split into two independent parts: translation and rotation.13 We have seen
this same idea in vector algebra, where the scalar and wedge products of two vectors are perpendicular (Fig. 3.4,
p. 88).

For example, think of linear versus angular momentum, which are independent in that they represent different
ways of delivering kinetic energy via different modalities (degrees of freedom, DoF). Linear and rotational motions
are a common theme in physics, rooted in geometry. Thus it seems a natural extension to split a vector field into
independent dilation and rotation parts.

Example: A fluid with mass and momentum can be moving along a path and independently be rotating. These
independent modes of motion correspond to different types of kinetic energy (modes), such as translational, com-

13Actually it may be split into three independent parts: translation, dilation, and rotation.
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pressional, and rotational. Each eigenmode of vibration can be viewed as an independent degree of freedom
(DoF).

Helmholtz’s decomposition theorem (FTVC) quantifies these degrees of freedom. To prove the construction,
second-order vector identities DoC: ∇·∇×() = 0 and CoG: ∇×∇() = 0 may be used to verify the FTVC. The
role of the FTVC is especially useful when applied to Maxwell’s equations.

Helmholtz’s decomposition theorem proof: To prove Eq. 5.6.7 we must understand how it splits the vector
field into parts. The identities have a physical meaning: Every vector field may be split into its translational and
rotational parts. If E is the electric field [V/m], φ is the voltage, andA is the current induced rotational part.

To do this we need the two key vector identities that are always zero for analytic fields: the curl of the gradient
(∇×∇()),

∇×∇φ(x) = 0, (5.6.8)

and the divergence of the curl14 (∇·∇×())
∇·(∇×A) = 0. (5.6.9)

These identities are easily verified by working out a few specific examples based on the definitions of the three
operators, gradient, divergence, and curl, or in terms of the operator’s integral definitions (see page 195).

By applying these two identities to Helmholtz’s decomposition, we can appreciate the theorem’s significance.
We can work backward via a physical argument that rotational momentum (rotational energy) is independent of
translational momentum. Once these forces are made clear, the vector operations take on meaning. One might
conclude that the physics is simply related to geometry via the scalar and vector products.

Specifically, if we take the divergence of Eq. 5.6.7 and use the DoG, then

− 1
εo
ρ̇ = ∇·E = ∇·{−∇φ+����:

0
∇×A} = −∇·∇φ = −∇2φ,

If we take the curl, then

−Ḃ = ∇×E = ∇×{��
�*0

−∇φ+∇×A} = ∇×∇×A = ∇2A−∇2A,

since the∇×∇ zeros the scalar field φ(x, y, z).

5.6.6 Second-order operators
In addition to the first-order vector derivatives are second-order operators, the most important being the scalar
Laplacian∇2() = ∇·∇() and vector Laplacian ∇2() = ∇·∇(), which operates on vectors.15

Terminology:

There are six second-order combinations of∇, requiring six mnemonics (Table 5.1, p. 173):

1. DoG: Divergence of the gradient (scalar Laplacian operates on scalar potentials (Greenberg, 1988, p. 779)):

∇2φ = (∇·∇)φ

= ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 (5.6.10)

2. DoG: Divergence of the Gradient (Bull-Dog, the vector Laplacian ∇2 (Sommerfeld, 1952, p 33) ):

∇2A = (∇ ·∇)A

= ∂2A

∂x2 + ∂2A

∂y2 + ∂2A

∂z2

= ∇2A−∇×∇×A (5.6.11)
14Helmholtz was the first person to apply mathematics in modeling the eye and the ear (Helmholtz, 1863a).
15https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates#Non-trivial_calculation_rules
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3. gOd: Gradient of the Divergence (∇2A = ∇(∇·A))

∇2A = ∇(∇·A)

= ∇
(
∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

)
=
(

x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

)(
∂ax
∂x

+ ∂ay
∂y

+ ∂az
∂z

)
= x̂ ∂

∂x
∇·A+ ŷ ∂

∂y
∇·A+ ẑ ∂

∂z
∇·A (5.6.12)

4. CoC: Curl of the curl (∇×∇×= gOd- DoG) (Sommerfeld, 1952, p 33, Eq. 2b).

∇×∇×A = ∇(∇·A)− (∇ ·∇)A
= ∇2A−∇2A (5.6.13)

5. DoC: Divergence of the curl (∇·∇×= 0)

6. CoG: Curl of the gradient (∇×∇ = 0)

DoC(·) and CoG(·) are special because they are always zero:

∇ · ∇×A = 0, ∇×∇φ = 0, (5.6.14)

making them useful in proving the FTVC (Eq. 5.6.7, p. 200).
A third special vector identity ∇×∇× is Eq. 5.6.13. which operates on vector fields and is useful for defining

the vector Laplacian DoG as the difference between gOd and CoC (i.e., DoG = gOd − CoC):

∇2() = ∇2 ()−∇×∇×().

The role of gOd (∇2 ) is commonly ignored because it is zero for the magnetic wave equation, due to there being
no magnetic charge [∇·B(x, t) = 0; thus ∇2B(x, t) ≡ 0]. However for the electric vector wave equation it plays
a role as a source term:

∇2φ(x, t) = −∇E(x, t) = − 1
εo

∇2D(x, t) = − 1
εo
∇ρ(x, t),

or since∇·D = ρ,
∇2D(x, t) = ∇∇·D = −∇ρ(x, t).

When the charge density is inomogeneous, such as the case of a plasma (e.g., the sun), this term plays an important
role as a source term in the electric wave equation. This case needs to be further explored through some physical
examples.

Exercise #16
Show that DoG: ∇2 and gOd: ∇2 differ.

Solution: Use ∇×∇×() to explore this relationship. If DoG and gOd were the same, ∇×∇×() would be
null.�

Exercise #17
What is the difference between DoG:∇2 and Bull-DoG: ∇2?

Solution: DoG operates on scalar functions while Bull-DoG operates on vector functions.�

Discussion: It is helpful to view these two groups as playing fundamentally different roles:
utility operators∇×∇×(): DoG:∇2(), and gOd: ∇2 (),

and
identity operators DoC: DoC() = 0 and CoG:∇×∇()=0 (Eq. 5.6.14).
When using second-order differential operators, we must be careful with the order of operations, which can be

subtle. Most of this is common sense. For example, don’t operate on a scalar field with∇×, and don’t operate on a
vector field with∇.16 DoG acts on on each vector component ∇2A = ∇2Axx̂ +∇2Ayŷ +∇2Az ẑ (Eq. 5.6.11),
which is very different from the action of the Laplacian (DoG).

16This operation defines a dyadic tensor, a generalization of the vector.
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5.7 The unification of electricity and magnetism
Once we have mastered the three basic vector operations—gradient, divergence, and curl—we are ready to appre-
ciate Maxwell’s equations. Like the vector operations, these equations may be written in integral or differential
form. An important difference is that with Maxwell’s equations, we are dealing with well-defined physical quan-
tities. The scalar and vector fields take on meaning and units. Thus, to understand these important equations, we
must master both the names and units of the four fields E,H,B,D, as described in Table 5.4.

Table 5.4: The variables of Maxwell’s equations have names (e.g., EF, MI) and units (in square brackets [SI units]). The units are
necessary to obtain a full understanding of each of the four variables and their corresponding equations. For example, Eq. EF has units [V/m].
By integrating E from x = a, b, one obtains the voltage difference between the two points. The speed of light in-vacuo is c = 3 × 108 =
1/√µoεo [m/s], and the characteristic resistance of light ro = 377 =

√
µo/εo [Ω] (i.e., ohms).

Symbol Name Units Maxwell’s Eq.
E EF: Electric field strength [V/m] ∇×E = −∂tB
D = εoE ED: Electric displacement (flux density) [C/m2] ∇ ·D = ρ
H MF: Magnetic field strength [A/m] ∇×H = Jm + ∂tD
B = µoH MI: Magnetic induction (flux density) [Wb/m2] ∇ ·B = 0

Field strength E,H: As summarized by Eqs. 5.7.1, there are two field strengths: the electric E with units
of [V/m] and the magnetic H with units of [A/m]. The ratio |E|/|H| =

√
µo/εo = 377 [ohms] for in-vacuo

plane-waves (µo, εo).
If two conducting plates are placed 1 [m] apart, with 1 [V] across them, the electric field is E = 1 [V/m]. If a

charge (i.e., an electron) is placed in an electric field, it feels a force f = qE [N], where q is the magnitude of the
charge [C].

To help us understand the meaning ofH , consider the solenoid made of wire, as shown in Fig. 5.7, that carries
a current of Iθ [A]. The axial (along the long axis) magnetic field Hz inside such a solenoid is uniform, with a
direction that depends on the polarity of Iθ, is

Hz = N

L
Iθ [Wb],

where L is the length of the coil, N is the number of turns.

Flux D,B: Flux is a flow, such as the mass flux of water flowing in a pipe [kg/s] driven by a force (pressure
drop) across the ends of the pipe, or the heat flux in a thermal conductor, that has a temperature drop across it (i.e.,
a window or a wall). The flux is the same as the flow, be it charge, mass, or heat (Table 3.2, p. 110). In Maxwell’s
equations there are also two fluxes: the electric flux D and the magnetic flux B. The flux density units for D is
[C/m2], and the magnetic flux densityB is measured in either weber [Wb/m2]) or [tesla] [T].

5.7.1 Maxwell’s equations
Maxwell’s equations (ME) consist of two curl equations (Eqs. 5.7.1) operating on the field strengths EF E and
MFH , and two divergence equations (Eq. 5.7.2) operating on the field fluxes EDD and MIB. In matrix format,
the ME are

∇×
[
E(x, t)
H(x, t)

]
= ∂t

[
−B(x, t)
D(x, t)

]
=
[

0 −µo
εo 0

]
∂t

[
E(x, t)
H(x, t)

]
↔
[

0 −sµo
σo + sεo 0

] [
E(x, ω)
H(x, ω)

]
.

(5.7.1)

When the medium is conducting, ∂tD must be replaced by C = σoE + ∂tD ↔ (σo + sεo)E(x, ω) where
σo + sεo is an admittance density [f/m2].

There are also two auxiliary equations:

∇·
[
D
B

]
= −∂t

[
ρ(x)

0

]
. (5.7.2)
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The top equation states conservation of charge, while the lower states that there is no magnetic charge. When
expressed in integral format, Stokes’s law follows from the curl equations and Gauss’s law from the divergence
equations.

Exercise #18
When a static current is flowing in a wire in the ẑ direction, the magnetic flux is determined by Stokes’s theorem
(Fig. 5.6). Thus, just outside the wire we have

Ienc =
∫∫

S
(∇×H) ·n̂ d|S | =

∮
B
H ·dl [A].

For this simple geometry, the current in a wire is related toH(x, t) by

Ienc =
∮

B
H ·dl = Hφ2πr.

Here Hφ is perpendicular to both the radius r and the direction of the current ẑ. Thus

Hφ = Ienc

2πr ,

whereHφ is attenuated by 1/r (Ramo et al., 1965, Eq. 9, page 244).

Exercise #19
Explain how Stokes’s theorem may be applied to∇×E = −Ḃ, and explain what it means. Hint: This is the same
argument given above for the current in a wire, but for the electric case.

Solution: Integrating the left side of equation Eq. 5.7.3 over an open surface results in a voltage (emf) induced
in the loop closing the boundary B of the surface

φinduced =
∫∫

S
(∇×E) ·n̂ d|S | =

∮
B
E ·dl [V]. (5.7.3)

The emf (electromagnetic force) is the same as the Thévenin source voltage induced by the rate of change of the
flux. Integrating Eq. 5.7.3 over the same open surface S results in the source of the induced voltage φinduced,
which is proportional to the rate of change of the flux [weber]:

φinduced = − ∂

∂t

∫∫
S
B ·n̂ dA = Lψ̇ [Wb/s] or [V],

where L [H] is the inductance of the wire, with impedance ZL(s) = sL. The area integral on the right is the total
flux crossing normal to the surface ψ [Wb]. The rate of change of the total flux [Wb/s] is the induced (Thévenin)
voltage [V]. �

If we apply Gauss’s theorem to the divergence equations, we find the total flux that crosses the closed surface.

Exercise #20
Apply Gauss’s theorem to equation ED and explain what it means in physical terms.

Solution: The area of the normal component of D is equal to the volume integral over the charge density.
Thus Gauss’s theorem says that the total charge within the volume Qenc, found by integrating the charge density
ρ(x) over the volume V , is equal to the normal component of the fluxD that crosses the surface S :

Qenc =
∫∫∫

V
∇·D dV =

∫∫
S
D ·n̂ dA.

When equal amounts of positive and negative charge exist within the volume, regardless of its distribution, the
integral is zero. �
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Summary: Maxwell’s four equations relate the field strengths to the flux densities. There are two types of
variables: field strengths (E,H) and flux densities (D,B). There are two classes: electric (E,D) and magnetic
(H,B). This is a 2 × 2 matrix, with column being field strength and flux densities and rows being electric and
magnetic variables.

Strength Flux density
Electric E [V/m] D [C/m2]
Magnetic H [A/m] B [Wb/m2]

Applying Stokes’s curl theorem to the forces induces a Thévenin voltage (emf) or Norton current source.
Applying Gauss’s divergence theorem to the flows gives the total charge enclosed. The magnetic charge is zero
(∇·B = 0) because magnetic monopoles do not exist. However, magnetic dipoles do exist, as in the example of
the electron, which contains a magnetic dipole.

5.7.2 Derivation of the vector wave equation
Next we provide the derivation of the vector wave equation starting from Maxwell’s equations (Eq. 5.7.1), which
is reminiscent of the derivation of the Webster horn equation (Eq. 5.2.2, p. 182). Working in the frequency domain
and taking the curl of both sides give

∇×∇×
[
E
H

]
=
[

0 −sµo
sεo 0

]
∇×

[
E
H

]
=
[

0 −sµo
sεo 0

] [
0 −sµo
sεo 0

] [
E
H

]
= −s

2

c2o

[
E
H

]
.

Using the CoC identity∇×∇×() = ∇2 ()−∇2() (Eq. 5.6.13, p. 202) gives

∇2
[
E
H

]
−∇2

[
E
H

]
= s2

c2o

[
E
H

]
or finally Maxwell’s vector wave equation

∇2
[
E
H

]
− s2

c2o

[
E
H

]
= ∇

[ 1
εo
∇·D

1
µo
���:

0∇·B

]

= 1
εo

[
∇ρ(x, s)

0

] (5.7.4)

with the electric excitation term ∇ρ(x, s). Note that if µ and ε depended on x, the terms on the right would not
be zero. In deep outer space with its black holes and plasma everywhere (e.g., inside the sun), this seems possible,
even likely.

Recall the d’Alembert solutions of the scalar wave equation (Eq. 4.4.1, p. 141)

E(x, t) = f(x− ct) + g(x+ ct),

where f and g are arbitrary vector fields. This result applies to the vector case, since it represents three identical,
yet independent, scalar wave equations in the three dimensions.

Poynting vector: The EM power flux density P [W/m2] is perpendicular to E andB, denoted as

P = 1
µo
E ×B = E ×H [W/m2].

The corresponding EM momentum flux density M (hence ME are related to mass, thus gravity) is

M = εoE ×B = D ×B [C/m2 ·Wb/m2].
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Since the speed of light is co = 1/√µoεo,dividing by the momentum flux density gives

P = c2oM [W/m2],

which is related to the Einstein energy–mass equivalence formula E = mc2o (Sommerfeld, 1952).
For example, the power emitted by the sun is about 1360 [W/m2], with a radiation pressure of 4 [µN/m2] (i.e.,

4 [µPa]) (Fitzpatrick, 2008). By way of comparison, the threshold audible acoustic pressure at the human eardrum
at 1 [kHz] is 20 [µPa], which is 14 [dB] (a factor of 5) the solar radiation pressure. Also:

The lasers used in Inertial Confinement Fusion (e.g., the NOVA experiment in Lawrence Livermore
National Laboratory) typically have energy fluxes of 1018 [W/m2]. This translates to a radiation
pressure of about 104 atmospheres!

–Fitzpatrick (2008, p. 291) One [atm] is 105 [Pa].

Electrical impedance seen by an electron: Up to now we have considered only the Brune impedance, which is
a special case with no branch points or branch cuts. We can define impedance for diffusion, as in the diffusion of
heat. There is also the diffusion of electrical and magnetic fields at the surface of a conductor, where the resistance
of the conductor dominates the dielectric properties. This is called the electrical skin effect, where the conduction
currents are dominated by the conductivity of the metal rather than the displacement currents. In such cases, the
impedance is proportional to

√
s, which requires that it has a branch cut. Still, the real part of the impedance must

be positive in the right s half-plane, the required condition of all impedances, such that Postulate P3 (p. 122) is
satisfied. The same effect is observed in acoustics (see Appendix D).

When we deal with Maxwell’s equations, the force is defined by the Lorentz force,

f = qE + qν ×B = qE +C ×B,

which is the force on a charge (e.g., electron) due to the electric E and magnetic B fields. The magnetic field
plays a role when the charge has a velocity ν. When a charge is moving with velocity ν, it may be viewed as a
current C = qν (see the discussion on p. 121).

The complex admittance density is

Y (s) = σo + sεo [f/m2]

(Feynman, 1970b, p 13–1). Here σo is the electrical conductivity and εo is the electrical permittivity. Since
ωεo � σo, the conductivity reduces to the resistance of the wire per unit length.17

5.8 Potential solutions of Maxwell’s equations
One primary reason for using potentials is to generate solutions to Maxwell’s equations. For example, if we
extend Eq. 5.1.1 (p. 171), we can express Maxwell’s equations in terms of scalar and vector potentials. These
relationships are (Sommerfeld (1952, p. 146), Feynman (1970d, p. 18-10)):

E(x, t) = −∇φ(x, t)− ∂A(x, t)
∂t

[V/m] (5.8.1)

and

H(x, t) = 1
µo

[
∇×A(x, t) + ∂D(x, t)

∂t

]
[A/m]. (5.8.2)

We have extendedH(x, t) to include the electric potential term

D(x, t) = ε(x, t)E(x, t) = −ε(x, t)∇φ(x, t),

normally taken to be zero because taking the curl of H( t) naturally removes any electrical potential term due to
CoG.18 The extension makes the potential solutions symmetric so thatE andH each have electrical and magnetic
excitation.

17For copper ω � ωc = σo/εo ≈ 6× 107/9× 10−12 ≈ 6.66× 1018 [rad/s], or fc = 1018 [Hz]. This corresponds to a wavelength of
λo ≈ co/fc = 0.30 [nm]. For comparison, the Bohr radius (hydrogen) is ≈0.053 [nm] (5.66 times smaller) and the Lorentz radius (of the
electron) is estimated to be 2.8× 10−15 [m] (2.8 [femtometers]).

18In-vacuo εo = 8.85× 10−12 [F/m2] is the capacitance, and sεo is the electric compliance-density of light. The related magnetic mass-
density is the permeability µo = 4π×10−7 [H/m2] having an inductive impedance of sµo [Ω/m]. It is helpful to think of εo as a capacitance
per unit area and µo as an inductance per unit area (consistent with their units). The in-vacuo speed of light is co = 1/√εoµo = 3 × 108

[m/s], but is slower when traveling in matter (Brillouin, 1960).
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Exercise #21
Explain why some dependence on φ(x, t) do not appear in Eq. 5.8.2 but do in 5.8.1.

Solution: For H(x, t) to depend on φ(x, t) it must appear through the electric strength, as E(x, t) =
−∇Φ(x, t). But then∇×H(x, t) would mean applying CoG (i.e.,∇×∇φ = 0) on the right side of the equation.
Since this term would be zero; it is assumed to be zero, thus H(x, t) dependents on only A(x, t). To fill out the
symmetry, we have added ∂tD(x, t) to Eq. 5.8.2, to see what might happen in a more general case. �

Use of Helmholtz’s theorem on potential solutions: The generalized solutions to Maxwell’s equations (Eqs. 5.8.1
and 5.8.2) have been expressed in terms of EM potentials φ(x) and A(x) and Helmholtz’s theorem. These are
solutions to Maxwell’s equations expressed in terms of the potentials φ(x, s) and A(x, s), as determined at the
boundaries (Sommerfeld, 1952, p 146). These relationships are invariant to certain functions added to each poten-
tial, as shown below. They are equivalent to Maxwell’s equations following the application of∇· and ∇× .

Next we show that the potential equations (Eqs. 5.8.1 and 5.8.2) are consistent with Maxwell’s equations
(Eq. 5.7.1).

ME for E(x, t): Taking the curl of Eq. 5.8.1, applying CoG = 0, and using Eq. 5.8.2, we find that

∇×E = −���
�:0

∇×∇Φ−∇× ∂A
∂t

= −∂B
∂t

(5.8.3)

recovers Maxwell’s equation for E(x) (Eq. 5.7.1).
Taking the divergence of Eq. 5.8.2 and applying DoC = 0 give Eq. 5.7.2 forB(x):

∇·B(x) =���
���:

0
∇·∇×A(x) = 0.

ME forH(x, t): To recover Maxwell’s equation forH(x) (Eq. 5.7.1,∇×H = C) from the potential equation
(Eq. 5.8.2), we take the curl and useB = εoH (Table 5.4, p. 203):

∇×B(x) = µo∇×H(x)
= ∇×∇×A(x)
= ∇2A(x, t)−∇2A(x, t)

= ∇∇·A(x, t)− 1
c2o

∂2

∂2
t

A(x, t)

= − 1
c2
(
Ä+∇Φ̇

)
+ µoJ.

This last equation may be split into two independent equations by the use of Helmholtz’s theorem:

∇2A− 1
c2o
Ä = −µoJ and ∇·A+ 1

c2o
Φ̈ = 0.

Taking the divergence of Eq. 5.8.2 and applying DoC = 0 gives Eq. 5.7.2 (∇·D = −ρ̇). Alternatively,

∇2Φ− 1
c2o

Φ = − ρ

εo
,

which is the scalar potential wave equation driven by the charge (Sommerfeld, 1952, p 146).

Summary: In conclusion, Eq. 5.8.1, along with DoC = 0 and CoG = 0, gives Maxwell’s Eqs. 5.7.1 and 5.7.2
for E. Likewise, Eq. 5.8.2, along with DoC = 0 and CoG = 0, gives Maxwell’s Eqs. 5.7.1 and 5.7.2 for H . The
above derivation for H(x, t) from A and Φ derives the magnetic component of the field, expressed in terms of its
vector potential, in the same way as Eq. 5.7.1 describes E(x, t) in terms of the potentials.

We may view the potential equations (Eqs 5.8.1 and 5.8.2) as equivalent to Maxwell’s equations; thus they are
the solutions to ME in terms of potentials.
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Exercise #22
Starting with the values of the speed of light co = 3 × 108 [m/s] and the characteristic resistance of light waves
ro = 377 [ohms], use the formulas c0 = 1/√µoεo and ro =

√
εo/µo to find values for εo and µo.

Solution: Squaring c2o = 1/µoεo and r2
o = µo/εo, we may solve for the two unknowns: c2or

2
o = 1
��µoεo
��µo
εo

=
1/ε2o; thus εo = 1/coro = 10−8/2.998 · 377 ≈ 8.85 × 10−12 [F/m]. Likewise, µo = ro/co = (377/2.998) ×
10−8 ≈ 125.75×10−8 [H/m]. The value of µo is defined in the international SI units as 4π×10−7 ≈ 12.56610−7

[H/m].
It is more productive to memorize c0 and r0, from which εo and µo may be quickly derived. �

Exercise #23
Starting from Eq. 5.7.1, with Jm = σoE, Maxwell’s equation, including the magnetic intensity, is

∇×H(x, t) = Jm(x, t) + ∂

∂t
D(x, t).

Find the equation for the magnetically induced current Jm(x, t).
Solution: The divergence of the curl is zero (DoC = 0),

��
���:

0
∇·∇×H(x, t) = ∇·Jm(x, t) + ∂

∂t
ρ(x, t) = 0, (5.8.4)

which is conservation of charge (i.e., Gauss’s theorem). �
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5.9 Problems VC-2

5.9.1 Topics of this homework:
Partial differential equations; fundamental theorem of vector calculus (Helmholtz’s theorem); wave equation;
Maxwell’s equations (ME) and variables (E,D;B,H); Second-order vector differentials; Webster horn equation.

Notation: The following notation is used in this homework:

1. s = σ + jω is the Laplace frequency, as used in the Laplace transform.

2. A Laplace transform pair is indicated by the symbol↔: for example, f(t)↔ F (s).

3. πk is the kth prime; for example, πk ∈ P, πk = [2, 3, 5, 7, 11, 13, . . .] for k = 1, . . . , 6).

5.9.2 Partial differential equations (PDEs): Wave equation
Problem # 1: Solve the wave equation in one dimension by defining ξ = t∓ x/c.

– 1.1: Show that d’Alembert’s solution, %(x, t) = f(t− x/c) + g(t+ x/c), is a solution to
the acoustic pressure wave equation in one dimension:

∂2%(x, t)
∂x2 = 1

c2
∂2%(x, t)
∂t2

,

where f(ξ) and g(ξ) are arbitrary functions.

Problem # 2: Solving the wave equation in spherical coordinates (i.e., three dimensions)

– 2.1: Write the wave equation in spherical coordinates %(r, θ, φ, t). Consider only the
radial term r (i.e., dependence on angles θ and φ is assumed to be zero). Hint: The form
of the Laplacian as a function of the number of dimensions is given in Eq. 5.1.9 (page 175).
Alternatively, look it up on the internet or in a calculus book.

– 2.2: Show that this equation is true:

∇2
r%(r) ≡ 1

r2
∂

∂r
r2 ∂

∂r
%(r) = 1

r

∂2

∂r2 r%(r). (VC-2.1)

Hint: Expand both sides of the equation.

– 2.3: Use the results from Eq. VC-2.1 to show that the solution to the spherical wave
equation is

∇2
r %(r, t) = 1

c2
∂2

∂t2
%(r, t) (VC-2.2)

%(r, t) = f(t− r/c)
r

+ g(t+ r/c)
r

. (VC-2.3)

– 2.4: Using f(ξ) = sin(ξ)u(ξ) and g(ξ) = eξu(ξ), write the solutions to the spherical
wave equation, where u(ξ) is the Heaviside step function.
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– 2.5: Sketch this f(ξ) and g(ξ) for several times (e.g., 0, 1, and 2 seconds), and describe
the behavior of the pressure %(r, t) as a function of time t and radius r.

– 2.6: What happens when the inbound wave reaches the center at r = 0?

5.9.3 Helmholtz’s formula
Every differentiable vector field may be written as the sum of a scalar potential φ and a vector potential w. This
relationship is best known as the fundamental theorem of vector calculus (also called Helmholtz’s formula):

v = −∇φ+∇×w. (VC-2.4)

This formula seems to be a natural extension of the algebraic productsA·B ⊥ A×B, sinceA·B ∝ ‖A‖‖B‖ cos(θ)
and A×B ∝ ‖A‖‖B‖ sin(θ), as developed in Appendix A.3.1, page 221. Thus these orthogonal components
have magnitude 1 when we take the norm, due to Euler’s identity (cos2(θ) + sin2(θ) = 1).

As shown in Table 5.1 (p. 173), Helmholtz’s formula separates a vector field (i.e., v(x)) into compressible and
rotational parts:

1. The rotational (e.g., angular) part is defined by the vector potentialw, which requires that∇×∇×w 6= 0.
A field is irrotational (conservative) when∇×v = 0, meaning that the field v can be generated using only a
scalar potential, v = ∇φ (note that this is how a conservative field is usually defined, by saying there exists
some φ such that v = ∇φ).19

2. The compressible (e.g., radial) part of a field is defined by the scalar potential φ, which requires that∇·∇φ =
∇2φ 6= 0. A field is incompressible (solenoidal) when∇ · v = 0, meaning that the field v can be generated
using only a vector potential, v = ∇×w.

The definitions and generating potential functions of irrotational (conservative) and incompressible (solenoidal)
fields naturally follow from two key vector identities: (1)∇ · (∇×w) = 0 and (2) ∇× (∇φ) = 0.

Problem # 3: Define the following:

– 3.1: A conservative vector field

– 3.2: An irrotational vector field

– 3.3: An incompressible vector field

– 3.4: A solenoidal vector field

– 3.5: When is a conservative field irrotational?

– 3.6: When is an incompressible field irrotational?

Problem # 4: For each of the following, (i) compute∇·v, (ii) compute∇×v, and (iii) classify
the vector field (e.g., conservative, irrotational, incompressible, etc.).

– 4.1: v(x, y, z) = −∇(3yx3 + y log(xy))

19A note about the relationship between the generating function and the test: You might imagine special cases where ∇ × w 6= 0 but
∇ × ∇ × w = 0 (or ∇φ 6= 0 but ∇2φ = 0). In these cases, the vector (or scalar) potential can be recast as a scalar (or vector) potential.
For example, consider a field v = ∇φ0 + b, where b = xx̂ + yŷ + zẑ. Note that b can actually be generated by either a scalar potential
(φ1 = 1

2 [x2 + y2 + z2], such that ∇φ1 = b) or a vector potential (w0 = 1
2 [z2x̂ + x2ŷ + y2ẑ], such that ∇ × w0 = b). We find that

∇× v = 0; therefore v must be irrotational. We say this irrotational field is generated by∇φ = ∇(φ0 + φ1).
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– 4.2: v(x, y, z) = xyx̂− zŷ + f(z)ẑ

– 4.3: v(x, y, z) = ∇× (xx̂− zŷ)

5.9.4 Maxwell’s Equations
The variables have the following names and defining equations (see Table 5.4, p. 203):

Symbol Equation Name Units
E ∇×E = −Ḃ Electric field strength [volts/m]

D = εoE ∇ ·D = ρ Electric displacement (flux density) [coul/m2]
H ∇×H = J + Ḋ Magnetic field strength [amps/m]

B = µoH ∇ ·B = 0 Magnetic induction (flux density) [webers/m2]

Note that J = σE is the current density (which has units of [amps/m2]). Furthermore, the speed of light in vacuo
is co = 3×108 = 1/√µoεo [m/s], and the characteristic resistance of light ro = 377 =

√
µo/εo [Ω (i.e., ohms)].

5.9.5 Speed of light
Problem # 5: The speed of light in vacuo is co = 1/√µoεo ≈ 3×108 [m/s]. The characteristic
resistance in vacuo is ro =

√
µo/εo ≈ 377 [Ω].

– 5.1: Find a formula for the in-vacuo permittivity εo and permeability in terms of co and
ro. Based on your formula, what are the numeric values of εo and µo?

– 5.2: In a few words, identify the law given by this equation, define what it means, and
explain the formula: ∫

S
n̂ · v dA =

∫
V
∇ · v dV.

5.9.6 Application of Maxwell’s equations

Problem # 6: The electric Maxwell equation is ∇ × E = −Ḃ, where E is the electric field
strength and Ḃ is the time rate of change of the magnetic induction field, or simply the magnetic
flux density. Consider this equation integrated over a two-dimensional surface S, where n̂ is a
unit vector normal to the surface (you may also find it useful to define the closed path C around
the surface): ∫∫

S

[∇×E] · n̂dS = − ∂

∂t

∫∫
S

B · n̂dS.

– 6.1: Apply Stokes’s theorem to the left-hand side of the equation.

– 6.2: Consider the right-hand side of the equation. How is it related to the magnetic flux
Ψ through the surface S?

– 6.3: Assume the right-hand side of the equation is zero. Can you relate your answer in
question 6.1 to one of Kirchhoff’s laws?

Problem # 7: The magnetic Maxwell equation is ∇ ×H = C ≡ J + Ḋ, where H is the
magnetic field strength, J = σE is the conductive (resistive) current density, and the displace-
ment current Ḋ is the time rate of change of the electric flux densityD. Here we defined a new
variable C as the total current density.
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– 7.1: First consider the equation over a two-dimensional surface S:∫∫
S

[∇×H] · n̂dS =
∫∫

S

[J + Ḋ] · n̂dS =
∫∫

S

C · n̂dS.

Then apply Stokes’s theorem to the left-hand side of this equation. In a sentence or two, explain the meaning of
the resulting equation. Hint: What is the right-hand side of the equation?

Problem # 8: Consider the next equation in three dimensions. Take the divergence of both
sides and integrate over a volume V (closed surface S):∫∫∫

V

∇ · [∇×H]dV =
∫∫∫

V

∇ ·CdV.

– 8.1: What happens to the left-hand side of this equation? Hint: Can you apply a vector
identity? Apply the divergence theorem (sometimes known as Gauss’s theorem) to the right–
hand side of the equation, and interpret your result. Hint: Can you relate your result to one of
Kirchhoff’s laws?

5.9.7 Second-order differentials
Problem # 9: This problem is about second-order vector differentials.

– 9.1: If v(x, y, z) = ∇φ(x, y, z), then what is∇ · v(x, y, z)?

– 9.2: Evaluate∇2φ and ∇×∇φ for φ(x, y) = xey.

– 9.3: Evaluate∇ · (∇× v) and ∇× (∇× v) for v = xx̂ + yŷ + zẑ.

– 9.4: When V (x, y, z) = ∇(1/x+ 1/y + 1/z), what is∇× V (x, y, z)?

– 9.5: When was Maxwell born and when did he die? How long did he live (within ±10
years)?

5.9.8 Capacitor analysis

Problem # 10: Find the solution to the Laplace equation between two infinite20 parallel plates
separated by a distance d. Assume that the left plate at x = 0 is at voltage V (0) = 0 and the
right plate at x = d is at voltage Vd ≡ V (d).

– 10.1: Write Laplace’s equation in one dimension for V (x).

– 10.2: Write the general solution to your differential equation for V (x).

– 10.3: Apply the boundary conditions V (0) = 0 and V (d) = Vd to solve for the constants
in your equation from question 10.2.

– 10.4: Find the charge density per unit area (σ = Q/A, where Q is charge and A is area)
on the surface of each plate. Hint: E = −∇V , and Gauss’s law states that

∫∫
SD ·n̂dS = Qenc.

– 10.5: Determine the per-unit-area capacitance C of the system.

20We study plates that are infinite because this means the electric field lines are perpendicular to the plates, running directly from one plate
to the other. However, we solve for per-unit-area characteristics of the capacitor.
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5.9.9 Webster horn equation
Problem # 11: Horns illustrate an important generalization of the solution of the one dimen-
sional wave equation in regions where the properties (i.e., area of the tube) vary along the axis
of wave propagation. Classic applications of horns are in vocal tract acoustics, loudspeaker
design, cochlear mechanics, and any case that has wave propagation. Write the formula for
the Webster horn equation, and explain the variables.
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5.10 Further readings
The above concepts come straight from mathematical physics, as developed in the 17th–19th centuries. Much of
this was first developed in acoustics by Helmholtz, Stokes, and Rayleigh, following through Green’s footsteps,
as described by Rayleigh (1896). When it comes to fully appreciating Green’s theorem and reciprocity, I have
found Rayleigh (1896) to be a key reference. To repeat my reading experience, start with Brillouin (1953, 1960),
followed by Sommerfeld (1952) and Pipes (1958). Second-tier reading contains many items: Morse (1948);
Sommerfeld (1949); Morse and Feshbach (1953); Ramo et al. (1965); Feynman (1970a); Boas (1987). A third tier
might include Helmholtz (1863a); Fry (1928); Lamb (1932); Bode (1945); Montgomery et al. (1948); Beranek
(1954); Fagen (1975); Lighthill (1978); Hunt (1952); Olson (1947). Other physics writings include the impressive
series of mathematical-physics text books by authors J.C. Slater, and the Landau and Lifshitz.21

21https://www.amazon.com/Mechanics-Third-Course-Theoretical-Physics/dp/0750628960



Appendices

215





Appendix A

Notation

A.1 Number systems

The notation used in this book is defined in this appendix so that it may be quickly accessed.1 Where the definition
is sketchy, page numbers are provided where these concepts are fully explained, along with many other important
and useful definitions. For example a discussion of N may be found on page 14. Math symbols such as N may be
found at the top of the index, since they are difficult to alphabetize.

A.1.1 Units

Strangely, or not, classical mathematics, as taught today in schools, does not seem to acknowledge the concept
of physical units. Units seem to have been abstracted away. This makes mathematics distinct from physics,
where almost everything has units. Presumably this makes mathematics more general (i.e., abstract). But for the
engineering mind, this is not ideal, or worse, as it necessarily means that important physical meaning, by design,
has been surgically removed. We shall use SI units whenever possible, which means this book is not not a typical
book on mathematics. Spatial coordinates are quoted in meters [m], and time in seconds [s]. Angles in degrees
have no units, whereas radians have units of inverse-seconds [s−1]. A complete list of SI units may be found at
https://physics.nist.gov/cuu/pdf/sp811.pdf and Graham et al. (1994) for a discussion of basic math
notation.

When writing a complex number we shall adopt 1 to indicate
√
−1. Matlab/Octave allows either 1ı or 1.

Units are SI; angles are in degrees [deg] unless otherwise noted. The units for π are always radians [rad]. For
example sin(π), e90◦ = eπ/2.

A.1.2 Symbols and functions

We use ln as the log function base e, log as base 2, and πk to indicate the kth prime (e.g., π1 = 2, π2 = 3).
It is helpful to know where the letters of the alphabet are. Everyone knows the first letter is /a/ and the last /z/,

but what is the 10th or 20th letter? The table below shows that /j/ is the 10th letter, /t/ the 20th, /o/ the 15th, and
/z/ the 26th.

index: 1 10 20 +1
+0 a j t —
+5 e o y z

This is helpful for quickly moving around the alphabet, when looking up words in the dictionary or an alphabetized
list. If you forget how many letters there are in the English alphabet, this will help you recall it is 26.

When working with Fourier F T and Laplace LT transforms, lower case symbols are in the time domain while
upper case indicates the frequency domain, as f(t) ↔ F (ω). An important exception is Maxwell’s equations
because they are so widely used as upper-case bold letters (e.g., E(x, ω)). It would seem logical to change this to
e(x, t)↔ E(x, ω), to conform.

1https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols
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A.1.3 Common mathematical symbols
There are many pre-defined symbols in mathematics, too many to summarize here. We shall only use a small
subset, defined here.

• A set is a collection of objects that have a common property, defined by braces. For example, if set P =
{a, b, c} such that a2 + b2 = c2, then members of P obey the Pythagorean theorem. Thus we could say that
{1, 1,

√
2} ∈ P .

• Number sets: N,P,Z,Q,F, I,R,C are briefly discussed below, and in greater detail in Sec. 2.1 (pp. 13–15).

• One can define sets of sets and subsets of sets, and this is prone (in my experience) to error. For example,
what is the difference between the number 0 and the null set ∅ = {0}? Is 0 ∈ ∅? Ask a mathematician.
This seems a lackluster construction in the world of engineering.

• A vector is a column n-tuple. For example [3, 5]T =
[
3
5

]
.

• The symbol ⊥ is used in different ways to indicate two things are perpendicular, orthogonal, or in disjoint
sets. In set theory A ⊥ B is equivalent to A∩B = ∅. If two vectorsE,H are perpendicularE ⊥H , then
their inner product E ·H = 0 is zero. One must infer the meaning of ⊥ from its context.

Table A.1: List of all upper and lower case Greek letters used in the text.

Greek letters

Frequently Greek letters, as provided in Fig. A.1, are associated in engineering and physics with a specific physical
meaning. For example, ω [rad] is the radian frequency 2πf , ρ [kgm/m3] is commonly the density. φ, ψ are
commonly used to indicate angles of a triangle, and ζ(s) is the Riemann zeta function. Many of these are so well
established it makes no sense to define new terms, so we will adopt these common terms (and define them).

Likely you do not know all of these Greek letters, commonly used in mathematics. Some of them are pro-
nounced in strange ways. The symbol ξ is pronounced “see,” ζ is “zeta,” β is “beta,” and χ is “kie” (rhymes with
pie and sky). I will assume you know how to pronounce the others, which are more phonetic in English. One
advantage of learning LATEX the powerful open-source math-oriented word-processing system used to write this
book, is that math symbols are included, making then easily learned.

Double-Bold notation

Table A.2 indicates the symbol followed by a page number indication where it is discussed, and the Genus (class)
of the number type. For example, N > 0 indicates the infinite set of counting numbers {1, 2, 3, · · · }, not including
zero. Starting from any counting number, you get the next one by adding 1. Counting numbers are sometimes
called the natural or cardinal numbers.

We say that a number is in the set with the notation 3 ∈ N ⊂ R, which is read as “3 is in the set of counting
numbers, which in turn is in the set of real numbers,” or in vernacular language “3 is a real counting number.”

Prime numbers (P ⊂ N) are taken from the counting numbers, but do not include 1.
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Table A.2: Double-bold notation for the types of numbers. (#) is a page number. Symbol with an exponent denote the dimensionality. Thus
R2 represents the real plane. An exponent of 0 denotes point, e.g.,  ∈ C0. It is reasonable to consider negative primes to be primes.

Symbol (p. #) Genus Examples Counter Examples
N (14) Counting 1,2,17,3, 1020 -5, 0, π, -10.3, 5j
P (14) Prime 2, 3, 17, 199, 23993 0, 1, 4, 32, 12
Z (14) Integer -1, 0, 17, 5j, -1020 1/2,π,

√
5

Q (14) Rational 2/1, 3/2, 1.5, 1.14
√

2, 3−1/3, π
F (15) Fractional 1/2, 7/22 1/

√
2

I (15) Irrational
√

2, 3−1/3, π, e Vectors
R (15) Reals

√
2, 3−1/3, π 2πj

C (15) Complex 1,
√

2j, 3−j/3, πj Vectors
G Gaussian integers 3− 2 ∈ Z ∪ C complex integers

The signed integers Z include 0 and negative integers. Rational numbers Q are historically defined to include
Z, a somewhat inconvenient definition, since the more interesting class are the fractionals F, a subset of rationals
F ∈ Q that exclude the integers (i.e., F ⊥ Z). This is a useful definition because the rationals Q = Z ∪ F are
formed from the union of integers and fractionals.

The rationals may be defined, using set notation (a very sloppy notation with an incomprehensible syntax), as

Q = {p/q : q 6= 0 & p, q ∈ Z},

which may be read as “the set ‘{· · · }’ of all p/q such that ‘:’ q 6= 0, ‘and’ p, q ⊂ Z. The translation of the symbols
is in single (‘· · · ’) quotes.

Irrational numbers I are very special: They are formed by taking a limit of fractionals, as the numerator
and denominator→ ∞, and approach a limit point. It follows that irrational numbers must be approximated by
fractionals.

The reals (R) include complex numbers (C) having a zero imaginary part (i.e., R ⊂ C).
The size of a set is denoted by taking the absolute value (e.g., |N|). Normally in mathematics this symbol

indicates the cardinality, so we are defining it differently from the standard notation.

A.1.4 Classification of numbers:
From the above definitions there exists a natural hierarchical structure of numbers:

P ⊂ N, Z : {N, 0,−N}, F ⊥ Z, Q : Z ∪ F, R : Q ∪ I ⊂ C

1. The primes are a subset of the counting numbers: P ⊂ N.

2. The signed integers Z are composed of ±N and 0, thus N ⊂ Z.

3. The fractionals F do not include of the signed integers Z.

4. The rationals Q = Z ∪ F are the union of the signed integers and fractionals.

5. Irrational numbers I have the special properties I ⊥ Q.

6. The reals R : Q, I are the union of rationals and irrationals I.

7. Reals R may be defined as a subset of those complex numbers C having zero imaginary part.

A.1.5 Rounding schemes
In Matlab/Octave there are five different rounding schemes (i.e., mappings): round(x), fix(x), floor(x),
ceil(x), roundb(x), with input x ∈ R and output k ∈ N. For example 3 = bπe , 3 =

⌊
e1⌉ = b2.7183e

rounds to the nearest integer, whereas 3=floor(π) rounds down while 3=ceil(e1) =
⌈
e1⌉ rounds up. Round-

ing schemes are use for quantizing a number and generating a remainder. For example: y=rem(x) is equiva-
lent to y = x − bxe. Note round(π) ≡ bπe introduces negative remainders when ever a number rounds up
(π = dπe − 0.8541).
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The continued fraction algorithm (CFA), Sec. 2.4.4 (p. 31) is a recursive rounding scheme, operating on the
reciprocal of the remainder. For example:

exp(1) = 3 + 1/(−4 + 1/(2 + 1/(5 + 1/(−2 + 1/(−7)))))− o
(
1.75× 10−6) ,

= [3;−4, 2, 5,−2,−7]− o(1.75× 10−6).

The expressions in square brackets is a notation for the CFA integer coefficients. The Octave/Matlab function
having x ∈ R, is either rat(x) with output ∈ N, or rats(x), with output ∈ F.

A.1.6 Periodic functions
Fourier series tells us that periodic functions are discrete in frequency, with frequencies given by nTs, where Ts
is the sample period. The discrete F T (DFT) is a good example. When using the DFT, the sample period is
Ts = 1/2Fmax and the minimum and maximum frequencies are given by Fmin = Fmax/NFT where NFT is the
size of the DFT.

This concept is captured by the Fourier series, which is a frequency expansion of a periodic function. This
concept is quite general. Periodic in frequency implies discrete in time. Periodic and discrete in time requires
periodic and discrete in frequency (the case of the DFT). The modulo function x = mod (x, y) is periodic with
period y (x, y ∈ R).

A periodic function may be conveniently indicated using double-parentheses notation. This is sometimes
known as modular arithmetic. For example,

f((t))T = f(t) = f(t± kT )

is periodic on t, T ∈ R with a period of T and k ∈ Z. This notation is useful when dealing with Fourier series of
periodic functions such as sin(θ) where sin(θ) = sin((θ))2π = mod (sin(θ), 2π).

When a discrete valued (e.g., time t ∈ N) sequence is periodic with period N ∈ Z, we use square brackets

f [[n]]N = f [n] = f [n± kN ],

with k ∈ Z. This notation will be used with discrete-time signals that are periodic, such as the case of the DFT.
It is common for fractions to repeat. For example 1/7=0.((142857)) where the double brackets indicates this

number repeats. That is 1/7=0.142857,142857,142857,142857, . . . .

A.2 Differential equations vs. polynomials
A polynomial has degree N defined by the largest power. A quadratic equation is degree 2, and a cubic has degree
3. We shall indicate a polynomial by the notation

PN (z) = zN + aN−1z
N−1 · · · a0.

It is a good practice to normalize the polynomial so that aN = 1. This will not change the roots, defined by
Eq. 3.1.7 (p. 54). The coefficient on zN−1 is always the sum of the roots zn (aN−1 =

∑N
n zn), and a0 is always

their product (a0 =
∏N
n zn). Polynomials with aN = 1 are denoted monic polynomials. Because that is a

mouthful, it is helpful to call MN (s) = PN (s)/aN a monic.
Differential equations have order (polynomials have degree). If a second-order differential equation is Laplace

transformed (Lec. 3.10, p. 117), one is left with a degree 2 polynomial. For example,

d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = α

(
d

dt
x(t) + βx(t)

)
↔ (A.2.1)

(s2 + bs+ c)Y (s) = α(s+ β)X(s). (A.2.2)

Y (s)
X(s) = α

s+ β

s2 + bs+ c
≡ H(s)↔ h(t). (A.2.3)

As with monics, the lead coefficient must always be 1. The complex variable s ∈ C is the Laplace frequency.
The ratio of the output Y (s) over the input X(s) is called the system transfer function H(s). The coefficient

α ∈ R is called the gain. The roots of the numerator are called the zeros and those of the denominator, the poles.
When H(s) is the ratio of two degree 1 monics, the transfer function is said to be bilinear, since it is linear in both
the input and output. In such cases H(s) has only one pole and one zero. The inverse Laplace transform of the
transfer function is called the system impulse response, which describes the system’s output signal y(t) for any
given input signal x(t), via convolution (i.e., y(t) = h(t) ? x(t)).
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A.3 Matrix algebra: Systems

A.3.1 Vectors
Vectors as columns of ordered sets of scalars ∈ C. When we write them out in text, we typically use row notation,
with the transpose symbol:

[a, b, c]T =

ab
c

 .
This is strictly to save space on the page. The notation for conjugate transpose is †, for exampleab

c

† =
[
a∗ b∗ c∗

]
.

The above example is said to be a 3-dimensional vector because it has three components.

A.3.2 Vector products
A scalar product (aka dot product) is defined to “weight” vector elements before summing them, resulting in a
scalar. The transpose of a vector (a row-vector) is typically used as a scale factor (i.e., weights) on the elements
of a vector. For example, 1

2
−1

 ·
1

2
3

 =

 1
2
−1

T 1
2
3

 =
[
1 2 −1

] 1
2
3

 = 1 + 2 · 2− 3 = 2.

A more interesting example is1
2
4

 ·
 1
s
s2

 =

1
2
4

T  1
s
s2

 =
[
1 2 4

]  1
s
s2

 = 1 + 2s+ 4s2.

Polar scalar product: The vector-scalar product in polar coordinates is (Fig. 3.4, p. 88)

B ·C = ‖B‖ ‖C‖ cos θ ∈ R,

where cos θ ∈ R is called the direction-cosine betweenB and C.

Polar wedge product: The vector wedge product in polar coordinates is (Fig. 3.4, p. 88)

B ∧C = ‖B‖ ‖C‖ sin θ ∈ R,

where sin θ ∈ R is therefore the direction-sine betweenB and C.

Complex polar vector product: From these two polar definitions and eθ = cos θ +  sin θ,

B ·C + B ∧C = ||B||||C|| es.

Hence
|B ·C|2 + |B ∧C|2 = |‖B‖2 ‖C‖2 cos2 θ|+ |‖B‖2 ‖C‖2 sin2 θ| = ||B||2||C||2.

This relationship holds true in any vector space, of any number of dimensions, containing vectors B and C. In
this case s = σ + ω ∈ C can be the Laplace frequency. Jaynes (1991) has an relevant discussion about this type
of vector product.

A.3.3 Norms of vectors
The norm of a vector is the scalar product of the vector with itself

‖A‖ =
√
A ·A ≥ 0,

forming the Euclidean length of the vector.
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Euclidean distance between two points in R3: The scalar product of the difference between two vectors (A−
B) · (A−B) is the Euclidean distance between the points they define

‖A−B‖ =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.

Triangle inequality

‖A+B‖ =
√

(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 ≤ ‖A‖+ ‖B‖.

In terms of a right triangle this says the the sum of the lengths of the two sides is greater to the length of the
hypotenuse, and equal when the triangle degenerates into a line.

Vector cross product: The vector product (aka cross product)A×B = ‖A‖ ‖B‖ sin θ is defined between the
two vectorsA andB. In Cartesian coordinates

A×B = det

∣∣∣∣∣∣
x̂ ŷ ẑ
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .

The triple product: This is defined between three vectors as

A · (B ×C) = det

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
This may be indicated without the use of parentheses, since there can be no other meaningful interpretation.
However for clarity, parentheses should be used. The triple product is the volume of the parallelepiped (3D-crystal
shape) outlined by the three vectors, as shown in Fig. 3.4 p. 88.

Dialects of vector notation: Physical fields are, by definition, functions of space x [m], and in the most
general case, time t[s]. When Laplace transformed, the fields become functions of space and complex fre-
quency (e.g., E(x, t) ↔ E(x, s)). As before, there are several equivalent vector notations. For example,
E(x, t) =

[
Ex, Ey, Ez

]T = Ex(x, t)x̂ + Ey(x, t)ŷ + Ez(x, t)ẑ is “in-line,” to save space. The same
equation may written in “displayed” notation as:

E(x, t) =

Ex(x, t)
Ey(x, t)
Ez(x, t)

 =

ExEy
Ez

 (x, t) =
[
Ex, Ey, Ez

]T ≡ Exx̂ + Eyŷ + Ez ẑ.

Note the three notations for vectors, bold font, element-wise columns, element-wise transposed rows and
dyadic format. These are all shorthand notations for expressing the vector. Such usage is similar to a dialect in a
language.

Complex elements: When the elements are complex (∈ C), the transpose is defined as the complex conjugate
of the elements. In such complex cases the transpose conjugate may be denoted with a † rather than T−2

3
1

† =
[
2 −3 1

]
∈ C.

For this case when the elements are complex, the dot product is a real number

a · b = a†b =
[
a∗1 a∗2 a∗3

] b1b2
b3

 = a∗1b1 + a∗2b2 + a∗3b3 ∈ R.
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Norm of a complex vector: The dot product of a vector with itself is called the norm of a

‖a‖ =
√
a†a ≥ 0.

which is always non-negative.
Such a construction is useful when a and b are related by an impedance matrix

V (s) = Z(s)I(s)

and we wish to compute the power. For example, the impedance of a mass is ms and a capacitor is 1/sC. When
given a system of equations (a mechanical or electrical circuit) one may define an impedance matrix.

Complex power: In this special case, the complex power P (s) ∈ R(s) is defined, in the complex frequency
domain (s), as

P (s) = I†(s)V (s) = I†(s)Z(s)I(s)↔ p(t) [W].

The real part of the complex power must be positive. The imaginary part corresponds to available stored energy.
The case of three-dimensions is special, allowing definitions that are not easily defined in more than three

dimensions. A vector in R3 labels the point having the coordinates of that vector.

A.3.4 Matrices
When working with matrices, the role of the weights and vectors can change, depending on the context. A useful
way to view a matrix is as a set of column vectors, weighted by the elements of the column-vector of weights
multiplied from the right. For example,


a11 a12 a13 · · · a1M
a21 a22 a23 · · · a2M

. . .
aN1 aN2 aN3 · · · aNM



w1
w2
w3
...

wM

 = w1


a11
a21
a31

...
aN1

+ w2


a12
a22
a32

...
aN2

+ · · ·+ wM


a1M
a2M
a3M

...
aNM

 ,

where the weights are
[
w1, w2, . . . , wM

]T
. Alternatively, the matrix is a set of row vectors of weights, each of

which is applied to the column vector on the right ([w1, w2, . . . ,WM ]T ).
The determinant of a matrix is denoted as either detA or simply |A| (as in the absolute value). The inverse of

a square matrix isA−1 or invA. If |A| = 0, the inverse does not exist. AA−1 = A−1A.
Matlab/Octave’s notional convention for a row-vector is [a, b, c] and a column-vector is [a; b; c]. A prime on

a vector takes the complex conjugate transpose. To suppress the conjugation, place a period before the prime.
The : argument converts the array into a column vector, without conjugation. A tacit notation in Matlab is that
vectors are columns and the index to a vector is a row vector. Matlab defines the notation 1:4 as the “row-vector”
[1, 2, 3, 4], which is unfortunate as it leads users to assume that the default vector is a row. This can lead to serious
confusion later, as Matlab’s default vector is a column. I have not found the above convention explicitly stated,
and it took me years to figure this out for myself.

When writing a complex number we shall adopt 1 to indicate
√
−1. Matlab/Octave allows either 1ı or 1.

Units are SI; angles are in degrees [deg] unless otherwise noted. The units for π are always radians [rad]. For
example sin(π), e90◦ = eπ/2.

A.3.5 2× 2 complex matrices
Here are some definitions to learn:

1. Scalar: A number – for example {a, b, c, α, β, . . .} ∈ {Z,Q, I,R,C}

2. Vector: A quantity having direction as well as magnitude, often denoted by a bold letter x, or with an
arrow over the top ~x. In matrix notation, this is typically represented as a single row [x1, x2, x3, . . .] or
single column [x1, x2, x3 . . .]T (where T indicates the transpose). In this text we will typically use column
vectors. The vector may also be written out using unit vector notation to indicate direction. For example:
x3×1 = x1x̂ + x2ŷ + x3ẑ = [x1, x2, x3]T , where x̂, ŷ, ẑ are unit vectors in the x, y, z Cartesian directions
(here the vector’s subscript 3 × 1 indicates its dimensions). The type of notation used may depend on the
engineering problem you are solving.
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3. Matrix: A =
[
a1,a2,a3, . . . ,aM

]
N×M = {an,m}N×M can be a non-square matrix if the number of

elements in each of the vectors (N ) is not equal to the number of vectors (M ). When M = N , the matrix
is square. It may be inverted if its determinant |A| =

∏
λk 6= 0 (where λk are the eigenvalues). In this text

we work only with 2× 2 and 3× 3 square matrices.

4. Linear system of equations: Ax = b where x and b are vectors and matrix A is a square.

(a) Inverse: The solution of this system of equations may be found by finding the inverse x = A−1b.

(b) Equivalence: If two systems of equations A0x = b0 and A1x = b1 have the same solution (i.e.,
x = A−1

0 b0 = A−1
1 b1), they are said to be equivalent.

(c) Augmented matrix: The first type of augmented matrix is defined by combining the matrix with the
right-hand side. For example, given the linear system of equations of the form Ax = y[

a b
c d

] [
x1
x2

]
=
[
y1
y2

]
,

the augmented matrix is

[A|y] =
[
a b y1
c d y2

]
.

A second type of augmented matrix may be used for finding the inverse of a matrix (rather than solving
a specific instance of linear equations Ax = b). In this case the augmented matrix is

[A|I] =
[
a b 1 0
c d 0 1

]
.

Performing Gaussian elimination on this matrix, until the left side becomes the identity matrix, yields
A−1. This is because multiplying both sides by A−1 gives A−1A|A−1I = I|A−1.

5. Permutation matrix (P ): A matrix that is equivalent to the identity matrix, but with scrambled rows (or
columns). Such a matrix has the properties det(P ) = ±1 and P 2 = I . For the 2× 2 case, there is only one
permutation matrix:

P =
[
0 1
1 0

]
P 2 =

[
0 1
1 0

] [
0 1
1 0

]
=
[
1 0
0 1

]
.

A permutation matrix P swaps rows or columns of the matrix it operates on. For example, in the 2×2 case,
pre-multiplication swaps the rows,

PA =
[
0 1
1 0

] [
a b
α β

]
=
[
α β
a b

]
,

whereas post-multiplication swaps the columns,

AP =
[
a b
α β

] [
0 1
1 0

]
=
[
b a
β α

]
.

For the 3×2 case there are 3 ·2/2 = 3 such matrices (swap a row with the other 2, then swap the remaining
two rows).

6. Gaussian elimination (GE) operations Gk: There are three types of elementary row operations, which may
be performed without fundamentally altering a system of equations (e.g. the resulting system of equations
is equivalent). These operations are (1) swap rows (e.g. using a permutation matrix), (2) scale rows, or (3)
perform addition/subtraction of two scaled rows. All such operations can be performed using matrices.

For lack of a better term, we’ll describe these as ‘Gaussian elimination’ or ‘GE’ matrices.2 We will catego-
rize any matrix that performs only elementary row operations (but any number of them) as a ‘GE’ matrix.
Therefore, a cascade of GE matrices is also a GE matrix.

Consider the GE matrix

G =
[
1 0
1 −1

]
.

2The term ‘elementary matrix’ may also be used to refer to a matrix that performs an elementary row operation. Typically, each elementary
matrix differs from the identity matrix by a single row operation. A cascade of elementary matrices could be used to perform Gaussian
elimination.
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(a) This pre-multiplication scales and subtracts row (1) from (2) and returns it to row (2).

GA =
[
1 0
1 −1

] [
a b
α β

]
=
[

a b
a− α b− β

]
.

The shorthand for this Gaussian elimination operation is (1)← (1) and (2)← (1)− (2).

(b) Post-multiplication adds and scales columns.

AG =
[
a b
α β

] [
1 0
−1 1

]
=
[
a− b b
α− β β

]
.

Here the second column is subtracted from the first, and placed in the first. The second column is
untouched. This operation is not a Gaussian elimination. Therefore, to put Gaussian elimination
operations in matrix form, we form a cascade of pre-multiply matrices.
Here det(G) = 1, G2 = I , which won’t always be true if we scale by a number greater than 1. For

instance, if G =
[

1 0
m 1

]
(scale and add), then we have det(G) = 1, Gn =

[
1 0

n ·m 1

]
.

Derivation of the inverse of a 2× 2 matrix
1. Step 1: To derive (ii) starting from (i), normalize the first column to 1.[

1 b
a

1 d
c

] [
x1
x2

]
=
[ 1
a 0
0 1

c

] [
y1
y2

]
.

2. Step 2: Subtract row (1) from row (2): (2)← (2)−(1)[
1 b

a

0 d
c −

b
a

] [
x1
x2

]
=
[ 1
a 0
− 1
a

1
c

] [
y1
y2

]
.

3. Step 3: Multiply row (2) by ca and express result in terms of the determinate ∆ = ad− bc.[
1 b

a
0 ∆

] [
x1
x2

]
=
[ 1
a 0
−c a

] [
y1
y2

]
.

4. Step 4: Solve row (2) for x2: x2 = − c
∆y1 + a

∆y2.

5. Step 5: Solve row (1) for x1:

x1 = 1
a
y1 −

b

a
x2 =

[
1
a

+ b

a

c

∆

]
y1 −

b

a

a

∆y2.

.

Rewriting in matrix format, in terms of ∆ = ad− bc, gives:[
x1
x2

]
=
[ 1
a + bc

a∆ − b
∆

− c
∆

a
∆

] [
y1
y2

]
= 1

∆

[∆+bc
a −b
−c a

] [
y1
y2

]
= 1

∆

[
d −b
−c a

] [
y1
y2

]
,

since d = (∆ + bc)/a.

Summary: This is a lot of messy algebra, so it is essential that you memorize the final result:
(1) swap the diagonal, (2) change the off-diagonal signs, and (3) normalize by the determinant ∆.
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Appendix B

Eigenanalysis

Eigenanalysis is ubiquitous in engineering applications. It is useful in solving differential and difference equations,
data-science applications, numerical approximation and computing, and linear algebra applications. Typically one
must take a course in linear algebra to become knowledgeable in the inner workings of this method. In this
appendix we intend to provide sufficient basics to allow one to read the text.

B.1 The eigenvalue matrix (Λ)
Given 2× 2 matrixA, the related matrix eigen-equation is

AE = EΛ. (B.1.1)

Pre-multiplying by E−1 diagonalizesA, resulting in the eigenvalue matrix

Λ = E−1AE (B.1.2)

=
[
λ1 0
0 λ2

]
. (B.1.3)

Post-multiplying by E−1 recoversA

A = EΛE−1 =
[
a11 a12
a21 a22

]
. (B.1.4)

Matrix product formula:

This last relation is the entire point of the eigenvector analysis, since it shows that any power of A may be
computed from powers of the eigenvalues. Specifically,

An = EΛnE−1. (B.1.5)

For example,A2 = AA = EΛ���
��: 1

(E−1E) ΛE−1 = EΛ2E−1.
Equations B.1.1, B.1.3 and B.1.4 are the key to eigenvector analysis, and you need to memorize them. You

will use them repeatedly throughout this text.

A− λ±I2 is singular:

If we restrict Eq. B.1.1 to a single eigenvector (one of e±), along with the corresponding eigenvalue λ±, we obtain
the two matrix equations

Ae± = e±λ± = λ±e±.

Note the swap in the order of E± and λ±. Since λ± is a scalar, this is legal (and critically important), since this
allows us to factor out e±

(A− λ±I2)e± = 0. (B.1.6)

The matrixA− λ±I2 must be singular because when it operates on e±, having nonzero norm, it must be zero.
It follows that its determinant (i.e., |(A − λ±I2)| = 0) must be zero. This equation uniquely determines the

eigenvalues λ±.

227



228 APPENDIX B. EIGENANALYSIS

B.1.1 Calculating the eigenvalues λ±
The eigenvalues λ± ofA may be determined from |(A−λ±I2)| = 0. As an example we letA be Pell’s equation
(Eq. 2.5.9, p. 42). In this case the eigenvalues may be found from∣∣∣∣1− λ± N

1 1− λ±

∣∣∣∣ = (1− λ±)2 −N = 0,

thus λ± = (1∓
√
N).1

B.1.2 Calculating the eigenvectors e±
Once the eigenvalues have been determined, they are substituted into Eq. B.1.6, which determines the eigenvectors
E =

[
e+, e−

]
, by solving

(A− λ±)e± =
[
1− λ± 2

1 1− λ±

]
e± = 0, (B.1.7)

where 1− λ± = 1− (1∓
√
N) = ±

√
N , thus the Pell equation eigenvalues are

λ± = 1∓
√
N.

Recall that Eq. B.1.6 is singular because we are using an eigenvalue, and each eigenvector is pointing in a
unique direction (this is why it is singular). You might expect that this equation has no solution. In some sense
you would be correct. When we solve for e±, the two equations defined by Eq. B.1.6 are co-linear (the two
equations describe parallel lines so their scalar product is one). This follows from the fact that there is only one
eigenvector for each eigenvalue.

Since there is only one eigenvalue we are expecting trouble, yet we may proceeding to solve for e+ =
[e+

1 , e
+
2 ]T with eigenvalue +

√
N [√

N N

1
√
N

] [
e+

1
e+

2

]
= 0.

If we divide the top row by
√
N the two rows are identical, since the matrix must be singular. Thus this matrix

equation gives two identical equations. This is the price of an over-specified equation (the singular matrix is
degenerate).

We can determine each eigenvectors direction, but not their magnitudes.
Following the same procedure for λ− = −

√
N , the equation for e− is[

−
√
N N

1 −
√
N

] [
e−1
e−2

]
= 0.

As before, this matrix is singular. Here e−1 −
√
Ne−2 = 0, thus the eigenvector is e− = c [

√
N, 1]T where c is a

normalization constant.
Thus the unnormalized eigenmatrix is

E =
[
e+

1 e−2
e+

2 e−2

]
=
[√

N −
√
N

1 1

]
.

Normalization of the eigenvectors:

The constant cmay be determined by normalizing the eigenvectors to have unit length. Since we cannot determine
the length, we set it to 1. Thus the degeneracy may be resolved by the one degree of freedom normalization(

±
√
N
)2

+ 12 = N + 1 = 1/c2.

Thus the normalization factor to force each eigen vector to have length 1 is c = 1/
√
N + 1.

1It is a convention to order the eigenvalues from largest to smallest.
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B.2 Pell equation solution example
Sec. 2.5.2 (p. 42) showed that the solution [xn, yn]T to Pell’s equation is given by powers of the Pell matrix A.
For N = 2, in Sec. 2.5.2 we found the explicit formula for [xn, yn]T , based on powers of the Pell matrix

A = 1
[
1 2
1 1

]
. (B.2.1)

This recursive solution to Pell’s equation (Eq. 2.5.7) is Eq. 2.5.9 (p. 42). Thus we need powers of A, that is An,
which gives an explicit expression for [xn, yn]T . By the diagonalization of A, its powers are simply the powers of
its eigenvalues.

From Matlab/Octave with N = 2 the eigenvalues of Eq. B.2.1 are λ± ≈ [2.4142,−0.4142] (i.e., λ± =
1(1±

√
2)). The solution for N = 3 is shown on page 229.

Once the matrix has been diagonalized, one may compute powers of that matrix as powers of the eigenvalues.
This results in the general solution given by[

xn
yn

]
= 1nAn

[
1
0

]
= 1nEΛnE−1

[
1
0

]
.

The eigenvalue matrix D is diagonal with the eigenvalues sorted, largest first. The Matlab/Octave command
[E,D]=eig(A) is helpful to find D and E given any A. As we saw above,

Λ = 1
[
1 +
√

2 0
0 1−

√
2

]
≈
[
2.414 0

0 −0.414

]
.

B.2.1 Pell equation eigenvalue-eigenvector analysis
Here we show how to compute the eigenvalues and eigenvectors for the 2× 2 Pell matrix for N = 2

A =
[
1 2
1 1

]
.

The Matlab/Octave command [E,D]=eig(A) returns the eigenvector matrix E

E = [e+, e−] = 1√
3

[√
2 −

√
2

1 1

]
=
[
0.8165 −0.8165
0.5774 0.5774.

]
and the eigenvalue matrix Λ (Matlab/Octave’s D)

Λ ≡
[
λ+ 0
0 λ−

]
=
[
1 +
√

2 0
0 1−

√
2

]
=
[
2.4142 0

0 −0.4142

]
.

The factor
√

3 on E normalizes each eigenvector to 1 (i.e., Matlab/Octave’s command norm([
√

2, 1]) gives√
3).

In the following discussion we show how to determine E and D (i.e., Λ), givenA.

Pell’s equation for N = 3
In Table B.1, Pell’s equation for N = 3 is given, with β0 = /

√
2. Perhaps try other trivial solutions such as

[−1, 0]T and [±, 0]T , to provide clues to the proper value of β0 for cases where N > 3.2

Example: I suggest that you verify EΛ 6= ΛE and AE = EΛ with Matlab/Octave. Here is the Matlab/Octave
program which does this:

A = [1 2; 1 1]; %define the matrix
[E,D] = eig(A); %compute the eigenvector and eigenvalue matrices
A*E-E*D %This should be $\approx 0$, within numerical error.
E*D-D*E %This is not zero

2My student Kehan found the general formula for βo.
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Table B.1: Summary of the solution of Pell’s equation due to the Pythagoreans using matrix recursion, for the case of N=3.
The integer solutions are shown on the right. Note that xn/yn →

√
3, in agreement with the Euclidean algorithm. The

Matlab/Octave program for generating this data is PellSol3.m. It seems likely that the powers of β0 could be absorbed in
the starting solution, and then be removed from the recursion.

Pell’s Equation for N = 3
Case of N = 3 & [x0, y0]T = [1, 0]T , β0 = /

√
2

Note: x2
n − 3y2

n = 1, xn/yn −→∞
√

3

[
x1
y1

]
= β0

[
1
1

]
= β0

[
1 3
1 1

] [
1
0

]
(1β0)2 − 3(1β0)2 = 1[

x2
y2

]
= β2

0

[
4
2

]
= β2

0

[
1 3
1 1

] [
1
1

] (
4β2

0
)2 − 3

(
2β2

0
)2 = 1[

x3
y3

]
= β3

0

[
10
6

]
= β3

0

[
1 3
1 1

] [
4
2

] (
10β3

0
)2 − 3

(
6β3

0
)2 = 1[

x4
y4

]
= β4

0

[
28
16

]
= β4

0

[
1 3
1 1

] [
10
6

] (
28β4

0
)2 − 3

(
16β4

0
)2 = 1[

x5
y5

]
= β5

0

[
76
44

]
= β5

0

[
1 3
1 1

] [
28
16

] (
76β5

0
)2 − 3

(
44β5

0
)2 = 1

Summary:
Thus far we have shown that for the case of Pell matrix with N = 2, the normalized eigenmatrix and its inverse is

E = [e+, e−] = 1√
3

[√
2 −

√
2

1 1

]
E−1 =

√
6

4

[
1
√

2
−1

√
2

]
and the eigenmatrix is

Λ =
[
λ+ 0
0 λ−

]
=
[
1 +
√

2 0
0 1−

√
2

]
.

Note that when working with numeric data it is not necessary to normalize E. For example, the form of e±1 =
[1 ± λ+, 1]T is very simple, and easy to work with. Once normalize it becomes (N = 2) [

√
2/
√

3, 1/
√

3]T =
[0.8165, 0.57735]T , obscuring its natural simplicity. The normalization buys little in terms of function.

B.3 Symbolic analysis of T E = EΛ
B.3.1 The 2× 2 transmission matrix
Here we assume

T =
[

A B
C D

]
with ∆T = 1.

The eigenvectors e± of T are

e± =
[

1
2C

[
(A −D )∓

√
(A −D )2 + 4BC

]
1

]
(B.3.1)

and eigenvalues are

λ± = 1
2

[
(A + D )∓

√
(A −D )2 + 4BC

]
. (B.3.2)

Thus the expression under the radical may be rewritten in terms of the determinant of T (i.e., ∆T = AD −BC )
since

(A −D )2 − (A + D )2 = −4AD .
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The for the ABCD matrix the expression under the radical becomes

(A −D )2 + 4BC = A 2 + D 2 − 4AD + 4BC

= A 2 + D 2 − 4∆T .

Rewriting the eigenvectors and eigenvalues in terms of ∆T = ±1, we find

e± =

 1
C

[
A−D

2 ∓
√(A +D

2
)2 ∓∆T

]
1

 (B.3.3)

and

λ± =

A + D
2 ∓

√(
A + D

2

)2
∓∆T

 . (B.3.4)

Note this may be further simplified since the radical is the same.

B.3.2 Matrices with symmetry
For the case of the ABCD matrix the eigenvalues depend on reciprocity, since ∆T = 1 if T (s) is reciprocal, and
∆T = −1 if it is anti-reciprocal. Thus it is helpful to display the eigenfunctions and values in terms of ∆T so this
distinction is explicit.

Reversible systems:

When A = D

E =
[
−
√

B
C +

√
B
C

1 1

]
Λ =

[
A −
√

BC 0
0 A +

√
BC

]
(B.3.5)

the transmission matrix is said to be reversible, and the properties greatly simplify.
Note that ro =

√
B/C is the characteristic impedance and κ(s) = 1/

√
BC is the propagation function.

Reciprocal systems

When the matrix is symmetric (B = C ), the corresponding system is said to be reciprocal. Most physical systems
are reciprocal. The determinant of the transmission matrix of a reciprocal network ∆T = AD − BC = 1. For
example, electrical networks composed of inductors, capacitors and resistors are always reciprocal. It follows that
the complex impedance matrix is symmetric (Van Valkenburg, 1964a).

Magnetic systems such as dynamic loudspeakers are anti-reciprocal, and correspondingly ∆T = −1. The
impedance matrix of these loudspeakers is skew symmetric (Kim and Allen, 2013). All impedance matrices are
either symmetric or anti-symmetric, depending on whether they are reciprocal (LRC networks) or anti-reciprocal
(magnetic networks). These systems have complex eigenvalues with negative real parts, corresponding to damped
(lossy) systems. This follows from conservation of energy. The impedance matrix cannot be Hermitian, or the
losses would be zero, because Hermitian matrices have real eigenvalues. Thus a physical system having loss
cannot be Hermitian because the eigenvalues must have a negative real parts.

In summary, given a reciprocal system, the T matrix has ∆T = 1, and the corresponding impedance matrix is
symmetric (not Hermitian).

B.3.3 Impedance matrix
As previously discussed in Sec. 3.8 (p. 107), the T matrix corresponding to an impedance matrix is[

V1
V2

]
= Z(s)

[
I1
I2

]
= 1

C

[
A ∆T
1 D

] [
I1
I2

]
.

Reciprocal systems have skew-symmetric impedance matrices, namely z12 = z21 (i.e., ∆T = 1). This condition
is best understood using the T form of the impedance matrix, as shown in Fig. 3.9 (p. 109). When the system is
both reversible A = D and reciprocal, the impedance matrix simplifies to

Z(s) = 1
C

[
A 1
1 A

]
.



232 APPENDIX B. EIGENANALYSIS

For such systems there are only two degrees of freedom, A and C . As discussed previously in Sec. 3.8 (p. 107),
each of these has a physical meaning: 1/A is the Thévenin source voltage given a voltage drive and B/A is the
Thévenin impedance (Sec. 3.8.3, p. 108).

Impedance is not Hermitian: By definition, when a system is Hermitian its matrix is conjugate symmetric

Z(s) = Z†(s),

a stronger condition than reciprocal, but not the symmetry of the Brune impedance matrix. A reciprocal Brune
impedance is symmetric (not Hermitian).



Appendix C

Laplace transforms LT

Laplace transforms are discussed in Sec. 3.10 (p. 117), with the definition of the LT in Eq. 3.10.1 (p. 117). Level-I
(basic) LT s are listed in Table 3.6 (p. 116).

C.1 Tables of Laplace transforms
The following tables of LT and LT −1 are a convenient summary of their properties and evaluations for many dif-
ferent functions. Table 3.8 gives basic function properties such as convolution and the properties of step functions
and frequency scaling. Table C.1 provides the commands for doing symbolic (computer algebra and calculus)
transformations, which includes some unusual LT s and Taylor series of the Γ(s) function (Graham et al., 1994), a
complex analytic extension of the factorial. Table 3.9 gives the basic transforms typically used for more common
calculations. Table C.2 provides extended less common transforms, such as the half-derivative and integration and
Bessel functions.

These tables are available in most books on differential equations and remain a core technology for analytic
methods for solving differential equations.

Table C.1: Symbolic relationships among Laplace transforms. K3 is a constant.

syms command result

syms t s p laplace
(
t(p−1)) Γ(p)s−p

syms s ilaplace(gamma(s)) ee
−t

syms s t a ilaplace(exp(-a*s)/s,s,t) Heaviside(t− a)

syms Gamma s t taylor(Gamma,s,t) 1
s − γ + s

(
γ2

2 + π2

12

)
+

s2
(

+ 1
6 polygamma (2, 1)− γπ2

12 −
γ3

6

)
+

s3K3 + · · ·

C.1.1 LT −1 of the Riemann zeta function

The analytic properties of the zeta function ζ(s) have been a holy grail for mathematicians, starting with Euler, all
of whom have made their reputation on that function. For the neophyte, ζ(s) is important because it is an analytic
extension of the sieve, which is the prime identification method. Analytic continuation of the ζ(s) function was
first stated by Riemann, as described in his 1851 paper.1 But is his definition correct? To resolve this one needs to
improve our understanding of the core definition of analytic continuation, as it relates to the LT −1. In the case of
the geometric series the analytic continuation is the closed form expression f(s) = 1/(1 − s) which is valid for
all s 6= 1. This is not Riemann’s definition of analytic continuation.

This section is a beginners review of ζ(s), building on the developments of analytic functions from Chapter 3,
especially in Secs. 3.2.6 and 3.3, p. 80. Well understood are the locations of the poles of zeta, which depend on
the prime numbers. Not so well understood are the remaining analytic properties over the entire plane, such as the
zeros of ζ(x), namely the poles of 1/ζ(s). A key function is ln ζ(s).

1https://www.youtube.com/watch?v=v9nyNBLCPks
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Table C.2: An extended table of Laplace transforms. J0, K1 are Bessel functions of the first and second kind.

f(t)↔ F (s) Name

d1/2

dt1/2
f(t)u(t)↔

√
sF (s) half derivative

d1/2

dt1/2
u(t)↔

√
s half derivative

d

dt

1√
πt
u(t)↔ s√

s
=
√
s semi-inductor

1√
πt
u(t)↔ 1√

s
half integration

erfc(α
√
t)↔ 1

s
e−2α

√
s (Morse and Feshbach (1953), p. 1582) α > 0; erfc

J0(at)u(t)↔ 1√
s2 + a2

J-Bessel

Jn(ωot)u(t)↔

(√
s2 + ω2

o − s
)n

ωno
√
s2 + ω2

o

J1(t)u(t)/t↔
√
s2 + 1− s

J1(t)u(t)/t+ 2u(t)↔
√
s2 + 1 + s = esinh−1(s)

δ(t) + J1(t)u(t)/t↔
√
s2 + 1

I0(t)u(t)↔ 1/
√
s2 − 1 I-Bessel

u(t)/
√
t+ 1↔ es

√
π

s
erfc(
√
s) Error function

√
tu(t) ∗

√
1 + tu(t)↔ es/2K1(s/2)/2s K-Bessel

Zeta(t)↔ ζ(s) Riemann zeta function
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Consider z ≡ esT , where T is the sample period at which data are taken (every T seconds). For example,
if T = 22.676 = 106/44, 100 [µs], then the data is sampled at 44.10 [kHz]. This is how modern digital audio
works, for CD-quality music. The unit-time delay time operator z−1 is

δ(t− T )↔ e−sT .

When we deal with the Euler and Riemann zeta functions, the only sampling period that makes sense is
T = 1 [s] or 1 [Hz] (i.e., n ∈ Z). In this case, the samples of interest are mod(n, πk). Starting from the sieve
of Eratosthenes, Euler showed that the counting numbers n ∈ Z, presented at a rate of one per second [1-Hz],
may be uniquely reduced to multiples of the primes. This is the basis for the fundamental theorem of arithmetic,
the theorem of the concept of the prime number, which states that every integer may be uniquely factored into a
product of prime numbers.

The zeta function The poles of the zeta function depend explicitly on the primes, which makes it a very special
function. In 1737 Euler proposed the real-valued function ζ(x) ∈ R, and x ∈ R to prove that the number of
primes is infinite (Goldstein, 1973). Euler’s definition of ζ(x) ∈ R is given by the analytic power series,

ζ(x) =
∞∑
n=1

1
nx

forx > 1 ∈ R. (C.1.1)

This series converges for x > 0, since R = n−x < 1, n > 1 ∈ N.2

In 1860 Riemann extended the zeta function into the complex plane, resulting in ζ(s), defined by the complex
analytic power series, identical to the Euler formula except x ∈ R has been replaced by s ∈ C;

Zeta(t)↔ ζ(s) ≡ 1
1s + 1

2s + 1
3s + 1

4s + · · · =
∞∑
n=1

1
ns

=
∞∑
n=1

n−s for<{s} = σ > 1. (C.1.2)

This formula converges for <{s} > 1 (Goldstein, 1973). To determine the formula in other regions of the s plane,
we need to extend the series via analytic continuation. As it turns out, Euler’s formulation provided detailed
information about the structure of primes, going far beyond his original goal.

Euler product formula

As first published by Euler in 1737, we can recursively factor out the leading prime term, which results in Euler’s
product formula. Euler’s procedure is an algebraic implementation of the sieve of Eratosthenes (Fig. 2.3, p. 27).

Multiplying ζ(s) by the factor 1/2s and subtracting from ζ(s) remove all the powers of 2: 1/20 + 1/2s +
1/22s + 1/23s + · · ·(

1− 1
2s

)
ζ(s) = 1 + 1

2s + 1
3s + 1

4s + 1
5s + · · · −

(
1
2s + 1

4s + 1
8s + 1

16s + · · ·
)
, (C.1.3)

which results in

ζ1(s) =
(
1− 2−s

)
ζ(s) = 1 + 1

3s + 1
5s + 1

7s + 1
9s + 1

11s + 1
13s + · · · . (C.1.4)

Repeating this with a lead factor 1/3s applied to Eq. C.1.4 gives3

1
3s
(
1− 2−s

)
ζ(s) = 1

3s + 1
9s + 1

15s + 1
21s + 1

27s + 1
33s + · · · . (C.1.5)

Subtracting Eq. C.1.5 from Eq. C.1.4 cancels the terms on the right-hand side of Eq. C.1.4, giving

ζ2(s) =
(
1− 3−s

) (
1− 2−s

)
ζ(s) = 1 + 1

5s + 1
7s + 1

11s + 1
13s + 1

17s + 1
19s + · · · .

If we express this in terms of the primes πk, we can better visualize the structure:

ζ2(s) =
(
1− π−s2

) (
1− π−s1

)
ζ(s) = 1 + 1

πs3
+ 1
πs4

+ 1
πs5

+ 1
πs6

+ 1
πs7

+ 1
πs8

+ · · · .

2Sanity check: For example, let n = 2 and x > 0. Then R = 2−ε < 1, where ε ≡ limx→ 0+. Taking the log gives log2 R =
−ε log2 2 = −ε < 0. Since logR < 0, R < 1.

3This is known as Euler’s sieve, as distinguished from the Eratosthenes sieve.
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Thus ζ2 has removed primes π1, π2, leaving π3 as the lead term in the series on the right-hand side.
This leads to a recursion in ζk,

ζk(s) = ζ(s)
k∏
l=1

ζl(s) = 1 +
∞∑

l=k+1
π−sl .

The series on the right-hand side converges rapidly to 1 as each prime is removed, because the RoC is becoming
much larger with each recursion. Each recursive step in this construction ensures that the lead term, along with
all of its multiplicative factors, is subtracted out, just like the cancellations with the sieve of Eratosthenes. It is
instructive to compare each iteration with that of the sieve (see Fig. 2.3, p. 27).

Repeating this process with the remaining primes removes all the terms on the right-hand side but the first
(leaving 1), which results in Euler’s analytic product formula (s = x ∈ R), or Riemann’s complex analytic
product formula (s ∈ C):

1 = ζ(s)(1− 2−s) · (1− 3−s) · (1− 5−s) · (1− 7−s) · · · · · (1− π−sn ) · · · · .

= ζ(s)
∞∏
k=1

(1− π−sk ) (C.1.6)

ζ(s) = 1∏
k P k(s) , <{s} = σ > 0, (C.1.7)

where the zeros of P k(s) = 1− π−sk define the poles of ζ(s) for prime πk.

Finding the RoC of the product formula: It would be interesting to find the RoC for P k(s), and for rigor, this
question demands further investigation. To find the RoC, we need to evaluate

|π−sk | = |e
−sTk | = |e−σTk | =

(
1
πk

)σ
< 1 for σ > 0,

where Tk = ln πk. For example,
1

P 5(s) = 1
1−

( 1
5
)s = 1 + 1

5s + 1
52s + 1

53s · · · , <{s} = σ > 0.

The RoC for each root is σ ≥ 0 since when σ < 0 .
Since 1/πk < 1 for all k ∈ N, the Taylor series of ζk(x) is entire except at its poles. Note that the RoC of a

Taylor series in powers of π−sk increases with k.

Exercise #1
Work out the RoC for k = 2.

Solution: The formula for the RoC is given above, which for π2 = 3 is

|π−srk | =
{( 1

3
)σr

< 1 for σr > 0,( 1
3
)−σr

< 1 for σr < 0,

where σr is the boundary of the RoC.
�

Exercise #2
Show how to construct Zeta2(t)↔ ζ2(s) by working in the time domain.

Solution: The basic procedure for building a sieve is to sum the integers

S1 =
∞∑
n=1

n2n−1 = 1 · 20 + 2 · 21 + 3 · 22 + · · · ,

while the sieve for the kth prime πk is

Sk =
∞∑
n=1

nπn−1
k = 1 · π0

k + πk · 21 + πk · 22 + · · · .

This sum may be written in terms of the convolution with the Heaviside step function uk, since

uk ? uk = nuk = 0 · u0 + 1 · u1 + 2u2 + · · ·+ kuk + · · · .

�



C.1. TABLES OF LAPLACE TRANSFORMS 237

Poles of ζk(s)

Riemann proposed that Euler’s zeta function ζ(s) ∈ C has a complex argument [first explored by Chebyshev in
1850 (Bombieri, 2000)] that extends ζ(s) into the complex plane (s ∈ C), thus making it a complex analytic
function. Thus we might presume that ζ(s) has an inverse Laplace transform. There seems to be very little written
on this topic (Hill, 2007). We explore this question further here.

-2 -1  0  1  2

 2

 1

 0

-1

-2

Figure C.1: Plot of w(s) = 1
1−e−sπ . Here w(s) has poles where esn ln 2 = 1—namely, where ωn ln 2 = n2π, as seen in the colorized

map (s = σ + ω is the Laplace frequency [rad]).

We can now identify the poles of ζk(s) (p ∈ N), which are required to determine the RoC. For example, the
kth factor of Eq. C.1.7 expressed as an exponential, is

ζk(s) ≡ 1
1− π−sk

= 1
1− e−sTk =

∞∑
k=0

e−skTk , (C.1.8)

where Tk ≡ ln πk. Thus ζp(s) has poles at −snTp = 2πn (when e−sTp = 1), and

ωn = 2πn
Tk

,

with −∞ < n ∈ Z < ∞. These poles are the eigenmodes of the zeta function. Fig. C.1 is a domain-colorized
plot of this function. It is clear that the RoC of ζk is > 0. It would be helpful to determine why ζ(s) has a more
restrictive RoC than each of its factors.

+

Zetap(t)δ(t)

Delay

α = 1
Zetap(t− Tp)

Zetap(t) = α Zetap(n− Tp) + δ(t)

Tp

Figure C.2: This feedback network is described by a time-domain difference equation with delay Tp = lnπk . It has an all-pole transfer
function given by Eq. C.1.11. Physically this delay corresponds to Tp [s].

Inverse Laplace transform

The inverse Laplace transform of Eq. C.1.8 is an infinite series of delays Tp (Table 3.9)4

Zeta
p

(t) = δ(t))Tp ≡
∞∑
k=0

δ(t− kTp)↔
1

1− e−sTp . (C.1.9)

4Here we use a shorthand double-parentheses notation f(t))T ≡
∑∞

k=0 f(t− kT ) to define the one-sided infinite sum.
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Inverse transform of the product of factors

The time-domain version of Eq. C.1.7 may be written as the convolution of all the Zetak(t) factors

Zeta(t) ≡ Zeta
2

?Zeta
3

(t) ? Zeta
5

(t) ? Zeta
7

(t) ? · · · ? Zeta
p

(t) ? · · · , (C.1.10)

where ? represents time convolution (Table 3.8).
Such functions may be generated in the time domain as shown in Fig. C.2, using a feedback delay of Tp [s] as

described by the equation in the figure, with a unity feedback gain α = 1,

Zeta(t) = Zeta(t− Tp) + δ(t).

Taking the Laplace transform of the system equation, we see that the transfer function between the state variable
q(t) and the input x(t) is given by Zetap(t). Taking the LT , we see that ζ(s) is an all-pole function,

ζp(s) = e−sTpζp(s) + 1(t) or ζp(s) = 1
1− e−sTp . (C.1.11)

In terms of the physics, these transmission line equations are telling us that ζ(s) may be decomposed into an
infinite cascade of transmission lines (Eq. C.1.10), each having a unique delay given by Tk = ln πk, πk ∈ P, the
log of the primes. The input admittance of this cascade may be interpreted as an analytic continuation of ζ(s) that
defines the eigenmodes of that cascaded impedance function.

Working in the time domain provides a key insight, as it allows us to determine the analytic continuation of the
infinity of possible continuations, which may not be obvious in the frequency domain. Transforming to the time
domain is a variant of analytic continuation of a function Z(s) ↔ Zeta(t) that depends on the assumption that
Zeta(t) is one-sided in time (causal). It may be helpful to compare this variant to Euler’s continuation of ζ(s),
and later Riemann’s classic 1851 definition of complex analytic continuation Zeta(s).

Additional relationships: We need to know some important relationships provided by both Euler and Riemann
(1859) when we study ζ(s).

With the goal of generalizing his result, Euler extended the definition with the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s) ζ(1− s). (C.1.12)

This seems closely related to Riemann’s time reversal symmetry properties (Bombieri, 2000),

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

This equation is of the form F
(
s
2
)
ζ(s) = F

( 1−s
2
)
ζ(1− s), where F (s) = Γ(s)/πs.

As shown in Table 3.8, the LT −1 of f(−t) ↔ F (−s) represents time-reversal. This leads to causal and
anticausal functions that are symmetric about <{s} = 1/2 (Riemann, 1859) leading to an interpretation of Euler’s
functional equation.

Riemann (1859, page 2) provides an alternative integral definition of ζ(s), based on the complex contour
integration,5

2 sin(πs)Γ(s− 1)ζ(s) = 

∮ ∞
x=−∞

(−x)s−1

ex − 1 dx
−x→y=

∮ ∞
y=−∞

(y)s−1

e−y − 1dx.

Given ζk(s), it seems important to look at the inverse LT of ζk(1−s) to gain insight into the analytically extended
ζ(s).

What is the RoC of ζ(s)? It is commonly stated that Euler’s and thus Riemann’s product formulas are valid
only for <s > 1; however, this does not seem to be actually proved (I could be missing this proof). Here I argue
that the product formula is entire except at the poles—namely, that the formula is valid everywhere other than at
the poles.

5We can verify Riemann’s use of x, which is taken to be real rather than complex. This could be more natural (i.e., modern Laplace
transformation notation) if −x→ y→ z.
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The argument goes as follows: Starting from the product formula (Eq. C.1.7, p. 236), we form the log-
derivative and study the poles and residues:

D(s) ≡ d

ds
ln Πk

1
1− e−sTk

= −
∞∑
k=1

1
1− e−sTk

d

ds
1− e−sTk

= −
∑
k

Tke
−sTk

1− e−sTk ↔
∞∑
k=1

∞∑
n=1

δ(t− nTk).

Here Tk = ln πk, as previously defined, and↔ denotes the inverse Laplace transform, transforming D(s)↔ d(t)
into the time domain. Note that d(t) is a causal function, composed of an infinite number of delta functions (i.e.,
time delays), as shown in Fig. C.2 (p. 237).

Zeros of ζ(s) We are still left with the most important question: Where are the zeros of ζ(s)? Equation C.1.11
has no zeros; it is an all-pole system. The cascade of many such systems is also all-pole. As I see it, the issue is:
What is the actual formula for ζ(s)?

To answer this question, we need to study the properties of the reflectance function Γ(s). Frequency-domain
transfer functions having unity magnitude on the jω axis are called all-pass filters in the engineering literature.
When the reflectance is loss-less, it is therefore all-pass since |Γ(jω| = 1. An important property of all-pass filters
is that they may be accurately approximated by pole-zero pairs straddling the jω axis, with the poles to the left (as
required by causality) and the zeros to the right. Given this placement, the phases of the poles and zeros add. The
group delay gives the net delay of the all-pass filter, which is twice the delay of the poles alone. It would seem that
this careful placement of the zeros exactly across from the poles provides the requirement that the zeros all line up
parallel to the jω axis, as deemed by the Riemann hypothesis. Could this be the resolution of this long-standing
mystery? An alternative possibility is that the convergent product formula has zeros that are obscured by the lack
of convergence of Eq. C.1.2.

Filter properties Given the function

F (s) = (s+ 1)(s− 1)
(s+ 2) ,

1. Find the minimum phase M(s) and all-pass A(s) parts. The minimum phase part has all of its poles and
zeros in the left half-plane (LHP), while the all-pass part has its poles in the LHP and mirrored zeros in the
RHP. Thus we place a removable pole zero pair symmetrically across from the RHP zero, and then write
the expression as the product, that is F (s) = M(s) ·A(s):

F (s) = (s+ 1)(s− 1)
(s+ 2) · s+ 1

s+ 1 = (s+ 1)2

s+ 2 · s− 1
s+ 1

Thus M(s) ≡ (s+1)2

s+2 and A(s) ≡ s−1
s+1

2. Find the magnitude ofM(s) Take the real part of the log ofM and then the anti-log. Thus |M | = e< lnM(s)

3. Find the phase of M(s) In this case we use the imaginary part: ∠M = = lnM(s)

4. Find the magnitude of A(s) 1, by definition.

5. Find the phase of A(s) ∠A = = ln(A)

More questions

There are a number of question to be addressed:

1. Can we interpret the zeta function as a frequency domain quantity, and then inverse transform it into the
time domain?

The answer to this is yes, and the results are quite interesting.

2. Make a histogram of the entropy for the first million integers.

This is a 5 minute job in Matlab/Octave. It goes something line this:
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K=1e5; N=1:K; F=zeros(K,10);
for n=1:K;
f=factor(n);
F(n,1:length(f))=f;

end;
hist(F);



Appendix D

Visco-thermal losses

D.1 Adiabatic approximation at low frequencies

Newton’s early development understandably ignored viscous and thermal losses, by assuming iso-thermal con-
ditions. But starting at very low frequencies, the isothermal assumption breaks down. Modern theory, for audio
frequencies, assumes the adiabatic approximation, and is thus described by the scalar wave equation (Pierce,
1981). But it turns out that even at audio frequencies, the adiabatic approximation is invalid. This was first shown
by Kirchhoff, but was not fully appreciated for more than a century, due to mathematical difficulties, which we
now believe can be explained, as discussed next.

Following Helmholtz (1858), as extended by Kirchhoff (1868), visco-thermal loss mechanisms are related.
The full theory was first worked out by Kirchhoff (1868, 1974). To understand how the are related is complicated,
due to both the history and the mathematics, as briefly discussed by Pierce (1981). Both forms of damping are
caused by two different, but coupled, diffusion effects: (1) viscous effects, due to shear at the container walls, and
(2) thermal effects, due to deviations from adiabatic expansion (Kirchhoff, 1868, 1974). I believe that Einstein
was eventually involved, following his studies on Brownian motion (Einstein, 1905).1,2

These two loss mechanism are restricted to a thin region called the boundary layer, which critically depends
on the square root of the Laplace frequency. A key transition region is where the acoustic wavelength approaches
the complex boundary layer thickness. When the radius of the container (a horn) approaches the viscous boundary
layer, the theory breaks down.

Figure D.1: This figure, taken from Mason (1928), compares the Helmholtz-Kirchhoff theory for |κ(f)| to Mason’s 1928 experimental
measurements of the loss. The ratio of two powers (P1 and P2) is plotted (see Mason’s discussion immediately below his Fig. 4), and
as indicated in the label: “10 log10 P1/P2 for 1 [cm] of tube length.” This is a plot of the transmission power ratio in [dB/cm] which is
10 log |Γ(ω)|2 where Γ(iω) the reflection coefficient . For a discussion of the reflection coefficient and its properties, refer to Sec. 4.4.1,
p. 142.

1See Ch. 3 of https://www.ks.uiuc.edu/Services/Class/PHYS498/.
2https://en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)

241
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D.1.1 Lossy wave-guide propagation
The formulation of visco-thermal loss in air transmission was first worked out by Helmholtz (1863a) and then
extended by Kirchhoff (1868) to include thermal damping (Rayleigh, 1896, Vol. II, p. 319). These losses are
accurately represented by the complex analytic propagation function κ(s) (Eq. D.1.5). Following his review
of these theories, Crandall (1926, Appendix A), the head of the 1926 Acoustic Research Department at that
time, noted that the “Helmholtz-Kirchhoff” theory had never been experimentally verified. Acting on Crandall’s
suggestion, Physicist Warren Mason set out to experimentally verify Kirchhoff’s 60 year old theory. Mason’s
analysis consumed several years (Mason, 1928).

This was a continued effort. Mason (1927) extended earlier work of Stewart’s on acoustic transmission lines,
by including viscous and thermal losses. Stewart’s acoustic theory (Stewart, 1922; Stewart and Lindsay, 1930)
was acoustic version of the work of George Campbell (1904-1923) on electrical wave filters. If today you design
earphones and hearing aids, or otoacoustic research, the works of Steward and Mason are relevant.

Mason’s specification of the propagation function

Mason’s results are reproduced in Fig. D.1 for tubes of radii between 3.7 and 8.5 [mm] of lengths L, having power
reflectance

|ΓL(f)|2 =
∣∣∣e−κ(f)L

∣∣∣2 [cm−1]. (D.1.1)

The complex propagation function use by Mason (1928), as taken from (Rayleigh, 1896, p. 319), was

κ(ω) = Pη′o
√
ω

2coS
√

2ρo
+ iω

co

{
1 + Pη′o

2S
√

2ωρo

}
, (D.1.2)

and the characteristic impedance was

zo(ω) =
√
Poηoρo

{
1 + Pη′o

2S
√

2ωρo
−  Pη′o

2S
√

2ωρo

}
, (D.1.3)

where S = πR2 is the tube area and P = 2πR is its perimeter.
Following Mason (1928, Fig. 5), the measured speed of sound

c′o(ω) = co

{
1− Pη′o

2S
√

2ωρo

}
. (D.1.4)

depends on frequency ω, as derived from the imaginary part of Eq. D.1.2. Figure D.2 directly compares Mason’s
measured sound speed with this equation.
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Figure D.2: Figure 5 from Mason (1928) showing the velocity of sound as a function of frequency, when visco-thermal losses are included.
Note the change in the slope around 0.8 [kHz].

Reduction of Kirchhoff’s equations to complex analytic form: Using the thermodynamic constant β1 defined
by Eq. D.1.7, we may rewrite κ and zo in terms of β0 = β1/2 as

coκ±(s) = s± β1
√
s =

(
βo ±+

√
s
)2 − β2

o . (D.1.5)

The two boxed equations below provide the derivation for the reduction of Mason’s formula, for coκ(ω), to its
complex analytic form (Eq. D.1.5). The first step is to define β1 and coκ(ω)− s. The second box shows it is equal
to β1

√
s. Thus κ(s) is complex analytic in the Laplace frequency s, and following a completion of squares in

√
s,

is given by Eq. D.1.5. The inverse Laplace transforms of
√
s and 1/

√
s are provided in Table C.2 of Appendix C

and Table 3.9 of Sect. 3.10.1.
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STARTING FROM MASON (1928) coκ(ω):

coκ(ω) =
Pη′o
√
ω

2S
√

2ρo
+ ω

{
1 +

Pη′o
2S
√

2ωρo

}
(D.1.6)

DEFINE VARIABLES β1 AND s = ω:

coκ(ω) = s+
�
�
��>

β1
Pη′o

2S√ρo

[√
ω

2
+

s
√

2ω

]
(D.1.7)

THUS

coκ(ω)− s =
β1√

2

[
√
ω +

s
√
ω

]
(D.1.8)

MULTIPLYING TOP AND BOTTOM ON RIGHT BY
√
:

coκ(ω)− s =
β1√

2

[√
ω
√


+
s
√


√
ω

]
SET
√
ω =

√
s

=
β1√

2

[√
s
√


+
s
√


√
s

]
, CROSS MULTIPLY

=
β1√

2

[
s+ s
√
 ·
√
s

]
, FACTOR OUT

s
√
s

= β1

[
�
��1 + 
√

2

]
s
√
s

REPLACE
s
√
s

=
√
s

= β1
√
s

TO SHOW 1 +  =
√

2, SQUARE BOTH SIDES:��1− 1 + 2 = 2.

Acoustic constants for air: Assuming ηo = 1.4 (ratio of specific heats), ρo = 1.2 [kgm/m3] (density), a tem-
perature of 23.5 [◦C], and Po = 105 [Pa] (atmospheric pressure), the lossless sound velocity is co =

√
Poηo/ρo =

341.57 [m/s]. By a comparison of this value of co to Fig. D.2, it is clear that this value does not apply to Mason’s
measurements. Thus to agree with his experimental results, either the ratio Po/ρo or ηo need to be corrected.
Since β1 depends on η′o, ρo and µo this is a good place to look for the discrepancy.

Correction for η′o: The dimensionless constant η′o/
√
µ is defined as the composite thermodynamic constant

(Kirchhoff, 1868; Rayleigh, 1896)

η′o√
µo

=
[
1 +

√
5/2

(
η1/2
o − η−1/2

o

)]
= 1.5345.

Mason (1928) assumed the viscosity to be µo = 18.6× 10−6 [Pa-s] (viscosity), thus the dynamic-to-adiabatic
visco-thermal elastic ratio is

η′o
ηo

= 1.5345
1.4

√
µo = 1.0961√µo,

giving

β1 = 1.0961 P2S

√
µo
ρo
.

Here µo/ρo is known as the kinematic viscosity and µo as the dynamic viscosity.

Reduction of the lossy characteristic impedance: Rendering Eq. D.1.3 dimensionless, its complex analytic
expression greatly simplifies

zo(ω)√
Poηoρo

− 1 = β1√
ω �

�
��

√
−

1− √
2

= β1√
s
���

�:1√

√
− = β1√

s
, (D.1.9)

thus the lossy normalized characteristic impedance is zo(ω)/ro = 1 + β1√
s
, where ro =

√
Poηoρo is the lossless

characteristic resistance, and β1 is defined in Eq. D.1.7.

Reduction of the lossy speed of sound: Finally, starting from Eq. D.1.4,

c′o(ω) = co

{
1− Pη′o

2S
√

2ωρo

}
, (D.1.10)

note that for ω > 0,
(

1− c′o
co

)
> 0, thus

1− c′o(ω)
co

= Pη′o
2S
√

2ωρo
= P

2S
η′o
√


√
2sρo

= P

2S 1.0961 ηo√
s

√
µo
ρo

√


2 = β1
ηo√
s

√


2 .

For ω < 0, this will differ, and for ω = 0 it is singular. This is because of the singular branch cut at s = 0, due to
1/
√
s. The inverse LT of 1/

√
s is provided in Appendix C, Sect. C.2.
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Case of the cylindrical guide: For the case of a cylindrical wave guide, P/2S = 1/R. Thus

β1R = η′o/
√
ρo = 1.0961 ηo

√
µo/ρo = 1.0961× 1.4

√
18.6× 10−6

1.2 = 1.9105× 10−3.

It is well documented in the literature that the boundary layer thickness is proportional to the square root of
the kinematic viscosity (µ/ρ) over frequency. Our result, Eq. D.1.5, is a complex-analytic extension of this classic
boundary layer equation, derived from the classic results of Kirchhoff (1868) and Rayleigh (1896), as verified by
Mason (1928).

Ignores of the lossy wave equation: We may factor Eq. D.1.5 to reveal the mathematical impact of the damping
on κ(s) (β1 = 2βo) √

so = −βo ± βo,

namely
√
so = {0,−β1}. In general there must be four roots, but since β1 ∈ R > 0, the roots in this case are

degenerate, and in the left half plane.
The smaller the radius the greater the damping (β1 = 1.1× 10−3/R). Also note that the propagation function

κ(ω) has a Helmholtz-Kirchhoff correction for both the real and imaginary parts. Thus both the speed of sound
and the damping are dependent on frequency, and in a similar way.

Pressure Eigen-solutions: The forwarded P− and backward P+ pressure waves propagate as

P±(s, x) = e−κ(s)x, e−κ(s)x, (D.1.11)

where κ(s) the complex conjugate of κ(s), such that <κ(s) > 0. The term βo
√
s affects both the real and imag-

inary parts of κ(s). The real part is a frequency-dependent loss, and the imaginary part introduces a frequency-
dependent speed of sound (Mason, 1928).

D.1.2 Impact of viscous and thermal losses
Equation D.1.2 and the measured data are compared in Fig. D.1, as reproduced from Mason’s Fig. 4, which shows
that the wave speed drops from 344 m/s at 2.6 kHz to 339 m/s at 0.4 kHz, a 1.5% reduction. At 1 kHz the loss
is 1 dB/m for a 7.5-mm tube. Note that the loss and the speed of sound vary inversely with the radius. As the
radius approaches the boundary layer thickness (i.e., the radial distance such that the loss is e−1), the effect of the
damping dominates the propagation.

Cut-off frequency so: The frequency where the lossless part equals the lossy part is defined as κ(so) = 0,
namely,

√
so = −βo, or so = β2

o .
To get a feeling for the magnitude of so, let R = 0.75/2 [cm] (i.e., the average radius of the adult ear canal).

Then for R = 3.75× 10−3 [cm]

so = (1.9× 10−3/3.75× 10−3)2 = 1/4.

We conclude that the losses are insignificant in the audio range, since for the human ear canal, fo = β2
o/π ≈

0.25/π = 0.08 Hz.3 This frequency represents the lower bound of the transition from adiabatic to iso-thermal
equilibrium. It should be clear that acoustic frequencies do not actually obey the adiabatic approximation, due
to the thin boundary layer. Both the real and imaginary part of propagation function κ(s), the characteristic
impedance zo(s) and the speed of sound c′o(s) all depended on frequency in the auditory range of human hearing.

Summary: The Helmholtz-Kirchhoff theory of viscous and thermal losses results in a frequency-dependent
speed of sound that has a frequency dependence proportional to 1/

√
s rather than 1/

√
ω (Mason, 1928, Eq. 4).

This corresponds to a 2% change in the sound velocity over the decade from 0.2 to 2 kHz (Mason, 1928, Fig. 5),
in agreement with Mason’s experimental results.

3/home/jba/Mimosa/2C-FindLengths.16/doc.2-c_calib.14/m/MasonKappa.m



Appendix E

Thermodynamic systems

Many people find thermodynamics difficult to understand. Here we explore the reasons behind this lack of
transparency, and propose a solution. To understand the problem it is helpful to compare the nonlinear energy-
equilibrium methods used in thermodynamic, to linear impedance methods, used in acoustics, mechanics and
electrical circuit theory.

Acoustics, mechanics and electrical circuits are explained in terms of linear systems of equations, such as as
Kirchhoff’s and Ohm’s laws, as discussed in Appendix D. The linear impedance formulation leads to a system
of equations that is easily solved, using standard methods of linear algebra. Thermodynamics on the other hand
is formulated in terms of equilibrium energies, resulting in a nonlinear systems of equations. This explains the
difficulty in understanding the relationships. A second issue is that these equations are frequently over-specified.

Traditionally thermodynamics has been formulated with two types of variables, those that are proportional to
the mass, called extensive such as volume and mass, and the those that are independent of mass, called intensive
variables, such as temperature and density (Ambaum, 2010, p. 3).

A more modern and transparent notation is to work with two conjugate variables (CV),1 force density and flux.
Examples of the CV force density include pressure P , temperature T , the Nernst potential, and electrical voltage.
Fluxes CVs inclued mass flux and its area integral, volume velocity V , heat flux, called entropy S, and electrical
current.

Impedance is the ratio of CV, and the power is their product. For example, in electrical network theory, the
impedance is the voltage over the current and the power is the product. Working with impedance always results
in systems of linear equations. linear conjugate variables (LCV) are a generalization of force, the gradient of a
potential, and flow. Namely the formulation in terms of LCV simplifies the thermodynamic system of nonlinear
equations.

E.1 Summary of the thermodynamic relations
To reduce the number of variables we remove mass from the system by working with specific variables (those that
are normalized by the mass). The ratio of the volume V and mass M defines the specific volume ν ≡ V /M =
1/ρ, where ρ is the density. Throughout this discussion we shall use SI units, with V [m3], M [kgm], ρ = 1/ν
[kg/m3].

Four classical thermodynamic energies are defined:

1. internal energy u,

2. specific enthalpy h = u+ P ν,

3. Helmholtz free energy f = u− TS and

4. Gibbs function g = u− TS + P ν.

The Gibbs function is a linear combination of the other three (Ambaum, 2010, Sec. 3.1). As explained by Tolman
(1948), Gibbs viewed a phase transition as a membrane separating two states of a gas. These four relations could
be combined into a 3 × 3 nonlinear energy matrix relating [h, f, g]T to [u, P ν, TS]T . The entries of the matrix
elements would all be either 0, 1,−1.

1https://en.wikipedia.org/wiki/Conjugate_variables_(thermodynamics)
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When many variables are used to describe a system, as in the case of thermodynamics, a matrix formulation
is more compact representation. Here traditional thermodynamic relations are reformulated using linear
2 × 2 matrix algebra.a Starting from the state equation and the Helmholtz expression for the free energy,
we rewrite the system as a linear two-port network. By evaluating the impedance matrix elements, we
may obtain the standard thermodynamic relations in terms of the two heat capacities cp and cv . Due to
this unification of variables, the 2 × 2 formulation, such a formulation manipulation of thermodynamic
relations becomes transparent.

aAn alternative approach is to use a 3× 3 scattering matrix in more than 2 variables (Bilbao, 2004).

In acoustics, the gradient of the pressure −∇P is the acoustic force density, which is proportional to the
volume velocity V (the acoustic flux, or mass flow). Thus the potential and its corresponding mass flux are linear
conjugate variables, the ratio of which defines the specific acoustic impedance, which for air is ρco. When working
with impedances it is standard practice to work with the Laplace complex frequency domain s. The LT transforms
differential equations in time into algebraic relations (i.e., polynomials). In thermodynamics the term potential has
a very different meaning. Here we shall not refer to energies as potentials. When speaking of conjugate variables,
pressure, voltage and temperature are potentials, and velocity, current and entropy are flows.

Using modern engineering terminology, the gradient of every potential is a generalized force F , which ac-
cording to Ohm’s law, is proportional to a generalized flow J . Working with LCV P and the volume velocity sV
gives

−∇P = ρcosV .

Here ρco is the impedance of air, defined as the ratio of the generalized force F = −∇P over the volume velocity
(flow) sV . 3.2 HEAT CAPACITY 45

δ q/ cv

δ q/ cp

δ T

δ T ′

v p

T

A

C

B

FIGURE 3.1 Illustration on a pvT diagram of the relationship between heat capacities at
constant volume and at constant pressure. Process A→B is isovolumetric, process A→C is
isobaric, and process C→B is isentropic.

We can now compress the substance isentropically (no further heat is added
to or removed from the substance) until it has returned to its original volume.
This would lead to a further temperature change ıT ′, which is related to ıv
by

ıT ′ = −
(
∂T

∂v

)
s

ıv. (3.19)

At the end of this process we have added heat ıq and we are back at the
original (specific) volume. This is illustrated in Figure 3.1: going straight
from A to B in the pvT diagram is the same as going from A to B via C. The
total temperature change (going from A to B in the diagram) is therefore by
definition equal to ıq/cv and it is equal to ıT + ıT ′. So we find that

ıq

cv
= ıT + ıT ′ = ıq

cp

(
1 −

(
∂v

∂T

)
p

(
∂T

∂v

)
s

)
. (3.20)

Now, multiplying by cvcp/ıq, substituting cv = T(∂s/∂T)v, and using the first
Maxwell relation, Eq. 3.3, we find that

cp = cv + T

(
∂v

∂T

)
p

(
∂p

∂s

)
v

(
∂s

∂T

)
v

. (3.21)

Figure E.1: Diagram showing the PVT diagram for
an ideal gas. The axes are volume (v), pressure (p), tem-
perature (T). Show are the definitions for the two latent
heat capacities cp and cv . From this figure we can more
easily identify the meanings of the various matrix ele-
ments. Figure 3.1 from Ambaum (2010, p. 45).

Ohm’s law defines a linear relation, with the impedance be-
ing the complex proportional factor. The power is the product of
LCV, which is a nonlinear relation, since it is quadratic in the con-
jugate variables. It follows from linear algebra that linear systems
of equations are more transparent, compared, say, to the thermo-
dynamic energy–based nonlinear of equations.

In terms of the four basic energy definitions, the force-flow re-
lations for the four power relations are define by four differentials
(Ambaum, 2010).

du = TdS − pdν
dh = TdS + νdP
df = −SdT − P dν
dg = −SdT + νdP .

Linear 2 × 2 systems of equations: The LCV thermodynamic
variables are the mechanical (acoustical) pressure P , volume ve-
locity V and the heat variables, temperature T , and entropy rate
Ṡ .

The linear transmission and impedance matrices T and Z re-
late the acoustic variables P , V to the thermodynamic variables
T, Ṡ in two very different ways:[
T
Ṡ

]
= T

[
P
−V

]
=
[

A B
C D

] [
P
−V

]
and

[
P
T

]
= Z

[
V
Ṡ

]
=
[
z11 z12
z21 z22

] [
V
Ṡ

]
.

On the left is the transmission matrix T and on the right is the corresponding impedance matrix Z . By inspection,
the T and Z matrix elements are

T =
[
T
P

∣∣
V =0

T
V

∣∣
P =0

Ṡ
P

∣∣∣
V =0

Ṡ
V

∣∣∣
P =0

]
, Z =

[ P
V

∣∣
Ṡ=0

P
Ṡ

∣∣
V =0

T
V

∣∣
Ṡ=0

T
Ṡ

∣∣
V =0

]
Due to reciprocity, the determinant of T = 1 and z12 = z21 (Postulate P8). When using this matrix representation,
any algebra is explicit. The transmission matrix T and impedance matrix Z are related by Eq. 3.8.6, as discussed
on page 108.
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Summary of Maxwell relations

There are six variants on the transmission matrix (Van Valkenburg, 1964a). The most common are the transmission
T and the impedance Z matrices. Others, such as the admittance matrix Y is simply the inverse of Z . But other
variants are also used for special applications, such scattering matrices.

All the matrices used in thermodynamics are reciprocal, meaning z12 = z21 or ∆T = 1. Each matrix form
show reciprocity in a different way. These expressions for reciprocity were first worked out by Maxwell, where
they are called Maxwell relations (Ambaum, 2010). From the Maxwell relations, it may be shown that the specific
heat capacities are equal to cv = y22 = z11/∆Z and cp = g22 = 1/y22 = ∆Z /z11.

Physical meaning of the matrix elements
The utility of the T and Z representations are very different. The impedance matrix Z always has a physically
measurable interpretation. The diagonal elements z11, z22 represent the input impedance looking into the two
ports, while the off-diagonal elements are transfer impedances, related to the a transfer function between input
and output fluxes and potentials. If the system is reciprocal they are equal (z12 = z21).

The transmission matrix plays a theoretical and modeling role. Thus Z is used for experiments and T for
calculations. Other important matricides are the admittance matrix Y and G . There are simple relationships
between all these matrices (Van Valkenburg, 1964a, p. 310), a few of which are:

T = 1
z21

[
z11 ∆Z
1 z22

]
, Z = 1

C

[
A ∆T
1 D

]
, Y = 1

∆T

[
z22 −z12
−z21 z11

]
, G = 1

z11

[
1 −z12
z21 ∆Z .

]

Physical description of the 2x2 conjugate variables

To determine the physical meanings of the matrix elements we must start with the equation of state for the ideal
gas P V = RT, where R is the specific gas constant. Two key thermodynamic constants are

cv ≡
∂u

∂T

∣∣∣∣
V

= ∂ S
∂T

∣∣∣∣
V

cp ≡
∂h

∂T

∣∣∣∣
P

= ∂ S
∂T

∣∣∣∣
P
.

To identify cp and cv in terms of these matrix elements we need to do some algebra. The equations need to be
reformulated as [

P
Ṡ

]
=
[
z11 β
γ δ

] [
V
T

]
and

[
V
Ṡ

]
=
[
y11 y12
scv scp

] [
P
T

]
. (E.1.1)

Here s = σ + ω is called the Laplace frequency, common to the Laplace transform. Both cp and cv have units of
Farads.

For incompressable liquids these are equal, thus we may define cl = cp = cv . In this case the internal energy
u and enthalpy h are given by

u ≈ h = uo + clT,

which means that any volume change is driven only by temperature rather than by work (Ambaum, 2010).
For water in the vapor state they are distinct with cp = cv + R and cv = 5R/2. It follows that a mixture of

dry air with 5% water vapor is mainly diatomic

(cv/cp)2 = 1.4 = (5 + 2)/5.

From Eq. E.1.1, z11 is the reciprocal of the bulk modulus, defined as ratio of the volume over the pressure com-
pliance for constant entropy (iso-thermal). Likewise, z22 is the ratio of T / Ṡ for constant volume (i.e., isobaric).

SI Units
The pressure P [Pa] is a potential and the volume velocity V [kgm/m2] is a flux having power P V . The corre-
sponding thermal power is Q = T Ṡ where Ṡ is the entropy-rate (Q is the absorbed heat power) in Watts. Since
the temperature T is a potential, analogous to a voltage, then d S/dt must be a flux, analogous to the current in an
electrical system.

The total internal energy of a substance is defined by the enthalpyH = PV −Q, whereQ = T S is the energy
due to heat and PV is the mechanical energy. If H is constant and we vary the heat by a small amount, then
0 = δHδQ− δ(PV ) = δQ− PδV − V δP . The thermodynamic constant cp is defined as ∂Q/∂T | P o (constant
P ) and cv is defined as ∂Q/∂T |V o

(constant V ).
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Summary and conclusions
Since P V is the acoustic power and P /V the acoustic impedance, Q̇ = T Ṡ is the thermal power, thus z22 is
the associated thermal impedance. What is unique about this set of equations is that 1) they are linear in their
variables, and that they must obey reciprocity, defined as either |T | = 1 or z12 = z21.



Appendix F

Number theory applications

F.1 Division with rounding method
We want to show that the GCD for m,n, k ∈ N (Eq. 2.4.2, p. 29) may be written in matrix form as[

m
n

]
k+1

=
[
0 1
1 −

⌊
m
n

⌋] [m
n

]
k

. (F.1.1)

Eq.F.1.1 implements the gcd(m,n) for m > n.
This starts with k = 0, m0 = a, and n0 = b. With this method there is no need to test whether nn < mn, as it

is built into the procedure. The method uses the floor function bxc, which finds the integer part of x (bxc rounds
toward −∞). After each step we will see that the value nk+1 < mk+1. The method terminates when nk+1 = 0
with gcd(a, b) = mk+1.

The following vectorized code is more efficient than the direct matrix method:

function n=gcd2(a,b)

M=[abs(a);abs(b)]; %Save (a,b) in array M(2,1)

% done when M(1) = 0
while M(1) ˜= 0
disp(sprintf(’M(1)=%g, M(2)=%g ’,M(1),M(2)));
M=[M(2)-M(1)*floor(M(2)/M(1)); M(1)]; %automatically sorted
end %done

n=M(2); %GCD is M(2)

With a minor extension in the test for “end,” this code can be made to work with irrational inputs (e.g., (nπ,mπ)).
This method calculates the number of times n < m must subtract from m using the floor function. This

operation is the same as the mod function.1 Specifically,

nk+1 = mk −
⌊m
n

⌋
nk (F.1.2)

so that the output is the definition of the remainder of modular arithmetic. This would have been obvious to anyone
using an abacus, which explains why it was discovered so early.

Note that the next value of m = M(1) is always less than n = M(2) and must remain greater than or equal to
zero. This one-line vector operation is then repeated until the remainder M(1) is 0. The gcd is then n = M(2).
When we use irrational numbers, the code still works except the error is never exactly zero due to IEEE 754
rounding. Thus the criterion must be that the error is within some small factor times the smallest number (which
in Matlab/Octave is the number eps = 2.220446049250313 ×10−16, as defined in the IEEE 754 standard).

Thus, without factoring the two numbers, Eq. F.1.2 recursively finds the gcd. Perhaps this is best seen with
some examples.

The GCD is an important and venerable method, useful in engineering and mathematics but, as best I know,
not typically taught in the traditional engineering curriculum.

1https://en.wikipedia.org/wiki/Modulo_operation
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GCD applied to polynomials: An interesting generalization is to work with polynomials rather than numbers
and apply the Euclidean algorithm.

The GCD may be generalized in several significant ways. For example, what is the GCD of two polynomials?
To answer this question, we must factor the two polynomials to identify common roots.

F.2 Derivation of the CFA matrix
We can define the continued fraction algorithm (CFA) starting from the basic definitions of the floor and remainder
formulas. Starting with a decimal number x, we split it into the decimal and remainder parts.2 If we start with
n = 0 and xo = x ∈ I, the integer part is

m0 = bxc ∈ N

and the remainder is
r0 = x−m0.

Corresponding to the CFA, the next target x1 for n = 1 is

x1 = r−1
0

and the integer part is m1 = bx1c. As in the case of n = 0, the integer part is

m1 = bx1c

and the remainder is
r1 = x1 −m1.

The recursion for n = 2 is similar.
For us to better appreciate what is happening, it is helpful to write these recursions in matrix format. Rewriting

the case of n = 1 and using the remainder formula for the ratio of two numbers p ≥ q ∈ N with q 6= 0, we have[
p
q

]
=
[
u1 1
1 0

] [
r0
r1

]
.

From the remainder formula, u1 = bp/qc. Continuing with n = 2:[
r0
r1

]
=
[
u2 1
1 0

] [
r1
r2

]
,

where u1 = br0/r1c. Continuing with n = 3:[
r1
r2

]
=
[
u3 1
1 0

] [
r2
r3

]
,

where u2 = br1/r2c.
For arbitrary n we find [

rn−2
rn−1

]
=
[
un 1
1 0

] [
rn−1
rn

]
, (F.2.1)

where un = brn−1/rnc. This terminates when rn = 0 in the above nth step:[
rn−2
rn−1

]
=
[
un 1
1 0

] [
rn−1
rn = 0

]
.

Example: We let p = 355 and q = 113, which are coprime, and set n = 1. Then Eq. F.2.1 becomes[
355
113

]
=
[
3 1
1 0

] [
r0
r1

]
,

2The method presented here was developed by Yiming Zhang as a student project in 2019.
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since u1 = b 355
113c = 3. Solving for the RHS gives [r0; r1] = [113; 16] (355 = 113 · 3 + 16). To find [r0; r1], we

take the inverse: [
r0
r1

]
=
[
0 1
1 −3

] [
355
113

]
.

For n = 2, with the RHS from the previous step,[
113
16

]
=
[
u2 1
1 0

] [
r1
r2

]
,

since u2 = b 113
16 c = 7. Solving for the RHS gives [r1; r2] = [16; 1] (113 = 16 · 7 + 1). It seems we are done, but

let’s go one step further.
For n = 3 we now have [

16
1

]
=
[
u3 1
1 0

] [
r1
r2

]
,

since u3 = b 16
1 c = 16. Solving for the RHS gives [r1; r2] = [1; 0]. This confirms that we are done, since r2 = 0.

Derivation of Eq. F.2.1: Equation Eq. F.2.1 is derived as follows: Starting from the target x ∈ R, we define

p = bxc and q = 1
x− p

∈ R.

These two relationships for truncation and remainder allow us to write the general matrix recursion relation for
the CFA (Eq. F.2.1). Given {p, q}, we continue with the above CFA method.

One slight problem with the above is that the output is on the right and the input on the left. Thus we need to
take the inverse of these relationships to turn this into a composition.

F.3 Taking the inverse to get the gcd
Variables p and q are the remainders rn−1 and rn, respectively. Using this notation with n − 1 gives Eq. F.2.1.
Inverting this gives the formula for the GCD:[

rn−1
rn

]
=
[

0 1
1 −

⌊
rn−2
rn−1

⌋] [rn−2
rn−1

]
.

This terminates when rn = 0 and the gcd(p,q) is rn−1. Not surprisingly these equations mirror Eq. 2.4.3
(p. 30), but with a different indexing scheme and interpretation of the variables.

This then explains why Gauss called the CFA the Euclidean algorithm. He was not confused. But since the
equations have an inverse relationship, they are not strictly the same.
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Appendix G

Eleven postulates of systems of algebraic
networks

Physical systems obey basic rules that follow from the physics. It is helpful to summarize these restrictions as
postulates presented in terms of a taxonomy, or categorization method, of the fundamental properties of physical
systems. Eleven of these are listed in this appendix from an article by Kim and Allen (2013).

G.1 Representative system
A taxonomy of physical systems comes from a systematic summary of the laws of physics, which includes at least
the eleven basic network postulates, described in Sec. 3.10.

To describe the network postulates, it is helpful to start from a two-port matrix representation as discussed in
Sec. 3.8 (p. 107).

Figure G.1: The schematic representation of an algebraic network, defined by its two-port ABCD transmission, that has three elements
called the Hunt parameters (Hunt, 1952): Ze(s), the electrical impedance, zm(s), the mechanical impedance, and T (s), the transduction
coefficient matrix of an electromechanical transducer network. The port variables are Φ(f) and I(f): the frequency domain voltage and
current, and F (f) and U(f): the force and velocity (Hunt, 1952; Kim and Allen, 2013). This matrix factors the two-port model into three
2× 2 matrices, separating the three physical elements as matrix algebra. It is a standard impedance convention that the flows I(f)andU(f)
are defined into each port. Thus it is necessary to apply a negative sign on the velocity −U(f) so that it has an outward flow, as required to
match the next cell with its inward flow.

As shown in Fig. G.1, the two-port transmission matrix for an acoustic transducer (loudspeaker) is character-
ized by the equation[

Φi
Ii

]
=
[
A(s) B(s)
C(s) D(s)

] [
Fl
−Ul

]
= 1
T

[
zm(s) Ze(s)zm(s) + T 2

1 Ze(s)

] [
Fl
−Ul

]
, (G.1.1)

shown as a product of three 2 × 2 matrices in the figure, with each factor representing one of the three Hunt
parameters of the loudspeaker.

This figure represents the electromechanical motor of the loudspeaker and consists of three elements: the
electrical input impedance Ze(s), a gyrator, which is similar to a transformer that relates current to force, and
the output mechanical impedance zm(s). This circuit describes what is needed to fully characterize its operation,
from electrical input to mechanical (acoustical) output.

The input is electrical (voltage and current) [Φi, Ii] and the output (load) is the mechanical (force and velocity)
[Fl, Ul]. The first matrix is the general case, expressed in terms of four unspecified functions A(s), B(s), C(s),
and D(s), while the second matrix is for the specific example of Fig. G.1. The three entries are the electrical
driving point impedance Ze(s), the mechanical impedance zm(s), and the transduction T = Bol, where Bo is
the magnetic flux strength and l is the length of the wire crossing the flux. Since the transmission matrix is
antireciprocal, its determinant ∆T = −1, as is easily verified.

Other common examples of cross-modality transduction and current–thermal (thermoelectric effect) and force–
voltage (piezoelectric effect). These systems are all reciprocal: thus the transduction has the same sign.
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G.2 Impedance matrix
These eleven network postulates describe the properties of a system that has an input and an output. For an
electromagnetic transducer (loudspeaker) the system is described by the two-port transmission matrix, as shown
in Fig. G.1. The electrical input impedance of a loudspeaker is Ze(s), defined by

Ze(s) = V (ω)
I(ω)

∣∣∣∣
U=0

.

Note that this driving-point impedance must be causal since it is a function of s; thus it has a Laplace transform.
The corresponding two-port impedance matrix for Fig. G.1 is[

Φi
Fl

]
=
[
z11(s) z12(s)
z21(s) z22(s)

] [
Ii
Ul

]
=
[
Ze(s) −T (s)
T (s) zm(s)

] [
Ii
Ul

]
. (G.2.1)

Such a description allows us to define Thévenin parameters, a concept used widely in circuit analysis and network
models from other modalities.

The impedance matrix is an alternative description of the system but with generalized forces [Φi, Fl] on the
left and generalized flows [Ii, Ul] on the right. A rearrangement of terms allows us to go from the ABCD to the
impedance parameters (Van Valkenburg, 1964b). The electromagnetic transducer is antireciprocal (Postulate P6),
z12 = −z21 = T = Bol.

G.3 Taxonomy of algebraic networks
The postulates are extended beyond those defined by Carlin and Giordano (Sec. 3.10, p. 117) when there is an
interaction of waves and a structured medium, along with other properties not covered by classic network theory.
Assuming quasistatics (QS), the wavelength must be large relative to the medium’s lattice constants. Thus the QS
property must be extended to three dimensions and possibly to the cases of anisotropic and random media.

Causality: P1 As we stated, due to causality the negative properties (e.g., negative refractive index) must be
limited in bandwidth as a result of the Cauchy–Riemann conditions. However, even causality needs to be extended
to include the delay, as quantified by the d’Alembert solution to the wave equation, which means that the delay
is proportional to the distance. Thus we generalize Postulate P1 to include the space-dependent delay. When we
wish to discuss this property, we call it Einstein causality, which says that the delay must be proportional to the
distance x, with impulse response δ(t− x/c).

Linearity: P2 The wave properties of a system may be nonlinear. This is not restrictive, as most physical
systems are naturally nonlinear. For example, a capacitor is inherently nonlinear: As the charge builds up on the
plates of the capacitor, a stress is applied to the intermediate dielectric due to the electrostatic force F = qE. In
a similar manner, an inductor is nonlinear. Two wires carrying a current are attracted or repelled due to the force
created by the flux. The net force is the product of the two fluxes due to each current.

In summary, most physical systems are naturally nonlinear; it’s simply a matter of degree. An important
counterexample is an amplifier with negative feedback and a very large open-loop gain. There are, therefore,
many types of nonlinearity, both instantaneous types and those with memory (e.g., hysteresis). Given the nature of
Postulate P1, even an instantaneous nonlinearity may be ruled out. The linear model is so critical for our analysis,
providing fundamental understanding, that we frequently take Postulates P1 and P2 for granted.

Passive/Active impedances: P3 This postulate is about conservation of energy and Otto Brune’s positive-real
(PR, also called physically realizable) condition that every passive impedance must obey. Following on the work
of his primary Ph.D. thesis advisor Wilhelm Cauer (1900–1945) and Ernst Guillemin, along with Norbert Wiener
and Vannevar Bush at MIT, Brune mathematically characterized the properties of every PR one-port driving point
impedance (Brune, 1931b).

When the input resistance of the impedance is real, the system is said to be passive, which means the system
obeys conservation of energy. The real part of Z(s) is positive if and only if the corresponding reflectance is less
than 1 in magnitude. The reflectance of Z(s) is defined as a bilinear transformation of the impedance, normalized
by its surge resistance ro (Campbell, 1903):

Γ(s) = Z(s)− ro
Z(s) + ro

= Ẑ − 1
Ẑ + 1

,
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where Ẑ = Z/ro. The surge resistance is defined in terms of the inverse Laplace transform of Z(s) ↔ z(t),
which must have the form

z(t) = roδ(t) + ρ(t),

where ρ(t) = 0 for t < 0. It naturally follows that γ(t) ↔ Γ(s) is zero for negative and zero time—namely,
γ(0) = 0, t ≤ 0.

Given any linear PR impedance Z(s) = R(σ, ω) + jX(σ, ω) that has real part R(σ, ω) and imaginary part
X(σ, ω), the impedance is defined as being PR (Brune, 1931b) if and only if

<Z(s) = R(σ ≥ 0, ω) ≥ 0. (G.3.1)

That is, the real part of any PR impedance is nonnegative everywhere in the right half-plane (σ ≥ 0). This is a
very strong condition on the complex analytic function Z(s) of a complex variable s. This condition is equivalent
to any of the following statements (Van Valkenburg, 1964a):

1. There are no poles or zeros in the right half-plane (Z(s) may have poles and zeros on the σ = 0 axis).

2. If Z(s) is PR, then its reciprocal Y (s) = 1/Z(s) is PR (the poles and zeros swap).

3. If the impedance can be written as the ratio of two polynomials (a limited case related to the quasistatics
approximation, Postulate P9) that have degrees N and L, then |N − L| ≤ 1.

4. The angle of the impedance θ ≡ ∠Z lies within [−π ≤ θ ≤ π].

5. The impedance and its reciprocal are complex analytic in the right half-plane; thus each obeys the Cauchy–
Riemann conditions there.

Energy and power: Since Postulate P3 requires the impedance PR condition, it ensures that every impedance is
positive-definite (PD), thus guaranteeing that conservation of energy is obeyed (Schwinger and Saxon, 1968, p.17).
This means that the total energy absorbed by any PR impedance must remain positive for all time. Mathematically
we can state this as

E (t) =
∫ t

−∞
v(t)i(t) dt =

∫ t

−∞
i(t)?z(t) i(t) dt > 0,

where i(t) is any current, v(t) = z(t) ? i(t) is the corresponding voltage, and z(t) is the real causal impulse
response of the impedance [e.g., z(t)↔ Z(s) are a Laplace transform pair]. In summary, if Z(s) is PR, then E (t)
is PD.

As discussed in detail by Van Valkenburg, any rational PR impedance can be represented as a partial fraction
expansion, which can be expanded into first-order poles as

Z(s) = K
ΠL
i=1(s− ni)

ΠN
k=1(s− dk)

=
∑
n

ρn
s− sn

ej(θn−θd), (G.3.2)

where ρn is a complex scale factor (residue). Every pole in a PR function has only simple poles and zeros, which
requires that |L−N | ≤ 1 (Van Valkenburg, 1964b).

Whereas the PD property clearly follows from Postulate P3 (conservation of energy), the physics is not so clear.
Specifically, what is the physical meaning of the constraints on Z(s)? In many ways, the impedance concept is
highly artificial, as expressed by Postulates P1–P7.

When the impedance is not rational, special care must be taken. An example of this is the semi-inductor M
√
s

and the semicapacitor K/
√
s due, for example, to the skin effect in EM theory and viscous and thermal losses

in acoustics, both of which are frequency-dependent boundary-layer diffusion losses (Vanderkooy, 1989). They
remain positive-real but have a branch cut and thus are double-valued in frequency.

Real-time response: P4 The impulse response of every physical system is real, not complex. This requires
that the Laplace transform have conjugate symmetry H(s) = H∗(s∗), where the ∗ indicates conjugation [e.g.,
R(σ, ω) +X(σ, ω) = R(σ, ω)−X(σ,−ω)].

Time invariance: P5 The meaning of time-invariant requires that the impulse response of a system does not
change over time. This requires that the system coefficients of the differential equation describing the system are
constant (independent of time).
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Rayleigh reciprocity: P6 Reciprocity is defined in terms of the unloaded output voltage that results from an
input current. Specifically (same as Eq. 3.8.6, p. 108),[

z11(s) z12(s)
z21(s) z22(s)

]
= 1
C(s)

[
A(s) ∆T

1 D(s)

]
, (G.3.3)

where ∆T = A(s)D(s) − B(s)C(s) = ±1 for the reciprocal and antireciprocal systems, respectively. This is
best understood in terms of Eq. G.2.1. The off-diagonal coefficients z12(s) and z21(s) are defined as

z12(s) = Φi
Ul

∣∣∣∣
Ii=0

z21(s) = Fl
Ii

∣∣∣∣
Ul=0

.

When these off-diagonal elements are equal [z12(s) = z21(s)], the system is said to obey Rayleigh reciprocity.
If they are opposite in sign [z12(s) = −z21(s)], the system is said to be antireciprocal. If a network has neither
reciprocal nor antireciprocal characteristics, then we denote it nonreciprocal (McMillan, 1946). The most compre-
hensive discussion of reciprocity, even to this day, is that of Rayleigh (1896, Vol. I). The reciprocal case may be
modeled as an ideal transformer (Van Valkenburg, 1964a), while for the antireciprocal case the generalized force
and flow are swapped across the two-port. An electromagnetic transducer (e.g., a moving-coil loudspeaker or
electrical motor) is antireciprocal (Kim and Allen, 2013; Beranek and Mellow, 2012); it requires a gyrator rather
than a transformer, as shown in Fig. G.1.

Reversibility: P7 A second two-port property is the reversible/nonreversible postulate. A reversible system is
invariant to the input and output impedances being swapped. This property is defined by the input and output
impedances being equal.

Referring to Eq. G.3.3, when the system is reversible, z11(s) = z22(s) or, in terms of the transmission matrix
variables, A(s)

C(s) = D(s)
C(s) or simply A(s) = D(s), assuming C(s) 6= 0.

An example of a nonreversible system is a transformer with a turns ratio that is not 1. Also, an ideal oper-
ational amplifier (when the power is turned on) is nonreversible due to the large impedance difference between
the input and output. Furthermore, it is active; it has a power gain due to the current gain at constant voltage
(Van Valkenburg, 1964b).

Generalizations of this lead to group theory and Noether’s theorem. These generalizations apply to systems
that have many modes, whereas quasistatics holds when they operate below a cutoff frequency (Table G.1), mean-
ing that, as in the case of the transmission line, there are no propagating transverse modes. While this assumption
is never exact, it leads to highly accurate results because the nonpropagating evanescent transverse modes are
attenuated over a short distance and thus, in practice, may be ignored (Montgomery et al., 1948; Schwinger and
Saxon, 1968, Chaps. 9–11).

We extend the Carlin and Giordano postulate set to include Postulate P7, reversibility, which was refined by
Van Valkenburg (1964a). To satisfy the reversibility condition, the diagonal components in a system’s impedance
matrix must be equal. In other words, the input force and flow are proportional to the output force and flow,
respectively (i.e., Ze = zm).

Spatial invariance: P8 The characteristic impedance and wave number κ(s, x) may be strongly frequency-
and/or spatially dependent or even be negative over some limited frequency ranges. Due to causality, the concept
of a negative group velocity must be restricted to a limited bandwidth (Brillouin, 1960). As Einstein’s theory
of relativity makes clear, all materials must be strictly causal (Postulate P1), a view that must therefore apply to
acoustics but at a very different time scale. We first discuss generalized postulates, expanding on those of Carlin
and Giordano.

Deterministicity (randomness): P9 When the media are uniform and time-invariant, the impedance and trans-
fer functions will be deterministic. When the media are turbulent, the response will be random. When light
propagates through the universe, it is strongly time-varying. Thus, astrophysics will be seen as random, whereas
experiments in the shelter of the relatively uniform environment of the earth will be deterministic. Model calcula-
tion will also be deterministic unless one is trying to create a random, time-varying, turbulent medium.

The quasistatic constraint: P10 When a system is described by the wave equation, delay is introduced between
two points in space and depends on the wave speed. When the wavelength is large compared to the delay, we can
successfully apply the quasistatic (QS) approximation. This method has widespread application and is frequently
used without mention of the assumption. This can lead to confusion, since the limitations of the approximation
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may not be appreciated. An example is the use of quasistatics in quantum mechanics. The QS approximation has
widespread use when the signals may be accurately approximated by a band-limited signal. Examples include
KCL, KVL, wave guides, transmission lines, and most important, impedance. The QS property is not mentioned
in the six postulates of Carlin and Giordano (1964); thus they need to be extended in some fundamental ways.

When the dimensions of a cellular structure in the material are much smaller than the wavelength, can the
QS approximation be valid? This effect can be viewed as a mode filter that suppresses unwanted (or conversely
enhances the desired) modes (Ramo et al., 1965). QS may be applied to a three-dimensional specification, as in a
semiconductor lattice. But such applications fall outside the scope of this text (Schwinger and Saxon, 1968).

Although I have never seen the idea discussed in the literature, the QS approximation is applied when Green’s
theorem is defined. For example, Gauss’s law is not true when the volume of the container violates QS, since
changes in the distribution of the charge have not reached the boundary, when doing the integral. Thus such
integral relationships assume that the system is in quasi-steady-state (i.e., that QS holds).

Table G.1: Several ways of indicating the quasistatic (QS) approximation. For network theory there is only one lattice constant a, which
must be much less than the wavelength (wavelength constraint). These three constraints are not equivalent when the object may be a larger
structured medium, spanning many wavelengths but with a cell structure size much smaller than the wavelength. For example, each cell could
be a Helmholtz resonator or an electromagnetic transducer (e.g., an earphone).

Measure Domain
ka < 1 Wave number constraint
λ > 2πa Wavelength constraint
fc < c/2πa Bandwidth constraint

Formally, QS is defined as ka < 1, where k = 2π/λ = ω/c and a is the cellular dimension or the size of the
object. Other ways of expressing this include λ/4 > a, λ/2π > a, λ > 4a, or λ > 2πa. It is not clear whether it
is better to normalize λ by 4 (quarter-wavelength constraint) or 2π ≈ 6.28 > 4, which is more conservative by a
factor of π/2 ≈ 1.6. Also k and a can be vectors (e.g., Eq. 3.1.5, p. 53).

Sergei Schelkunoff may have been the first to formalize this concept (Schelkunoff, 1943), but he was not the
first to use it, as exemplified by the Helmholtz resonator. George Ashley Campbell was the first to use the concept
in the important application of a wave filter, some 30 years before Schelkunoff (Campbell, 1903). These two men
were 40 years apart and both worked for the telephone company (after 1929, called AT&T Bell Labs) (Fagen,
1975).

There are alternative definitions of the QS approximation, depending on the geometric cell structure. The
alternatives are listed in Table G.1.

The quasistatic approximation: Since the velocity perpendicular to the walls of a horn must be zero, any
radial wave propagation is exponentially attenuated (κ(s) is real and negative, i.e., the propagation function κ(s)
(Sec. 4.4, p. 141) will not describe radial wave propagation), with a space constant of about 1 diameter. The
assumption that these radial waves can be ignored (i.e., more than 1 diameter from their source) is called the
quasistatic approximation. As the frequency is increased and once f ≥ fc = 2co/λ, the radial wave can satisfy
the zero normal velocity wall boundary condition and therefore will not be attenuated. Thus above this critical
frequency, radial waves (also known as higher-order modes) are supported (κ becomes imaginary). Thus for
Eq. 5.2.10 (p. 184) to describe guided wave propagation, f < fc. But even under this condition, the solution is
not precise within a diameter (or so) of any discontinuities (i.e., rapid variations) in the area.

Each horn, as determined by the area function A(r), has a distinct wave equation and thus a distinct solution.
Note that the area function determines the upper cutoff frequency via the quasistatic approximation, since fc =
co/λc, λc/2 > d, and A(r) = π(d/2)2. Thus to satisfy the quasistatic approximation, the frequency f must be
less than the cutoff frequency:

f < fc(r) = co
4

√
π

A(r) . (G.3.4)

We have discussed two alternative matrix formulations of these equations: the ABCD transmission matrix,
used for computation, and the impedance matrix, used when working with experimental measurements (Pierce,
1981, Chap. 7). For each formulation, reciprocity and reversibility show up as different matrix symmetries, as
addressed in Sec. 3.10 (p. 117) (Pierce, 1981, pp. 195–203).

Periodic↔ discrete: P11 As has been shown in the discussion on the Fourier transform, when the time (or fre-
quency) domain response is periodic, the frequency (or time) domain is discrete. This is a fundamental symmetry
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property that must always be obeyed. This is closely related to the causal ↔ complex analytic property of the
Laplace and z transforms.

Summary

A transducer converts between modalities. We propose the general definitions of the eleven system postulates that
include all transduction modalities, such as electrical, mechanical, and acoustical. It is necessary to generalize the
concept of the QS approximation (Postulate P9) to allow for guided waves.

Given the combination of the important QS approximation and these space-time, linearity, and reciprocity
properties, a rigorous definition and characterization of a system can thus be established. It is based on a taxonomy
of such materials formulated in terms of material and physical properties and extended network postulates.



Appendix H

Webster horn equation derivation

H.1 Overview
In this appendix we transform the acoustic equations, Eqs. 5.2.5 and 5.2.6 (p. 183), into their equivalent integral
form, Eq. 5.2.10 (p. 184). This derivation is similar (but not identical) to that of Hanna and Slepian (1924) and
Pierce (1981, p. 360).

H.1.1 Conservation of momentum
The first step is to integrate the normal component of Eq. 5.2.5 (p. 183) over the isopressure surface S , defined by
∇p = 0

−
∫

S
∇p(x, t) · dA = ρo

∂

∂t

∫
S
u(x, t) · dA.

The average pressure %(x, t) is defined by dividing by the total area:

%(x, t) ≡ 1
A(x)

∫
S
p(x, t) n̂ · dA. (H.1.1)

From the definition of the gradient operator, we have

∇p = ∂p

∂x
n̂, (H.1.2)

where n̂ is a unit vector perpendicular to the isopressure surface S . Thus the left side of Eq. 5.2.5 reduces to
∂%(x, t)/∂x.

The integral on the right side defines the volume velocity,

ν(x, t) ≡
∫
S

u(x, t) · dA. (H.1.3)

Thus the integral form of Eq. 5.2.5 becomes

− ∂

∂x
%(x, t) = ρo

A(x)
∂

∂t
ν(x, t)↔ Z (x, s)V , (H.1.4)

where
Z (s, x) = sρo/A(x) = sM(x) (H.1.5)

and M(x) = ρo/A(x) [kgm/m5] is the per-unit-length mass density of air.

H.1.2 Conservation of mass
Integrating Eq. 5.2.6 over the volume V gives

−
∫
V

∇ · u dV = 1
ηoPo

∂

∂t

∫
V

p(x, t)dV.

259
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Figure H.1: Derivation of the horn equation using
Gauss’s law: The divergence of the velocity∇·u within
δx, shown as the shaded region, is integrated over the en-
closed volume. Next the divergence theorem is applied,
transforming the integral to a surface integral normal to
the surface of propagation. This results in the difference
of the two volume velocities δν = ν(x+ δx)− ν(x) =
[u(x + δx) ·A(x + δx) − u(x) ·A(x)]. The flow is
always perpendicular to the isopressure contours.

δx

x

A
(x

)
A

(x
+
δx

)

u(x)

The volume V is defined by two isopressure surfaces between x and x + δx (the shaded region of Fig. H.1). On
the right-hand side we use the definition of the average pressure (i.e., Eq. H.1.1) integrated over the volume dV .

Applying Gauss’s law to the left-hand side1 and using the definition of % (on the right) in the limit δx → 0
give

− ∂

∂x
ν(x, t) = A(x)

ηoPo

∂

∂t
%(x, t)↔ Y (x, s) P (x, s), (H.1.6)

where
Y (x, s) = sA(x)/ηoPo = sC(x). (H.1.7)

C(x) = A(x)/ηoPo [m4/N] is the per-unit-length compliance of the air. Equations H.1.4 and H.1.6 accurately
characterize the Webster plane-wave mode up to the frequency where the higher-order eigenmodes begin to prop-
agate (i.e., f > fc).

H.1.3 Horn properties
Speed of sound co

In terms of M(x) and C(x), the speed of sound and the acoustic admittance are

co =
√

stiffness
mass

= 1√
C(x)M(x)

=

√
ηoPo
ρo

. (H.1.8)

This assumes the medium is lossless. For a discussion of lossy propagation, see Appendix D (p. 241).

H.1.4 Characteristic admittance Yr(x):
Since the horn equation (Eq. 5.2.10) is second-order, it has two eigenfunction solutions P±. The ratios of
Eq. H.1.7 to Eq. H.1.5 are determined by the local stiffness 1/C(x) and mass M(x). The ratio C/M determines
the area-dependent characteristic admittance Yr(x) (∈ R):

Yr(x) = 1√
stiffness ·mass

=

√
Y (x, s)
Z (x, s) =

√
C(x)
M(x) =

√
A(x)
�sρo

�sA(x)
ηo P o

= A(x)
ρoco

> 0 (H.1.9)

(Campbell, 1903, 1910, 1922). The characteristic impedance is Zr(x) = 1/Yr(x). Based on a physical argument,
Yr(x) must be positive and real; thus only the positive square root is allowed. As long as A(x) has no jumps (is
continuous), Yr(x) must be the same in both directions. It is locally determined by the isopressure surface and its
volume velocity.

Radiation admittance

The radiation admittance is defined looking into a horn with no termination (infinitely long) from the input at
x = 0:

Y ±rad(s) = V ±

P±
∈ C. (H.1.10)

The impedance depends on the direction, with + looking to the right and − to the left.

1As shown in Fig. H.1, taking the limit of the difference between the two volume velocities ν(x + δx) − ν(x) divided by δx results in
∂ν/∂x.
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The input admittance Y ±in (x, s) is computed using the upper equation of Eq. 5.2.11 (p. 185) for V (x, s) and
then dividing by the pressure eigenfunction P±. This results in the logarithmic derivative of P±(x, s):

Y ±in (x, s) ≡ V ±

P±
= −1
sM(x)

∂

∂r
ln P±(x, s).

For example, for the conical horn (last column of Table 5.2, p. 190)

Y ±in = Yr(1± co/sro). (H.1.11)

Note that Y +
in(x, s) + Y −in (x, s) = 2Yr = 2A0r

2/ρoco ∈ R, which shows that the frequency-dependent parts of
the two admittances, being equal and opposite in sign, exactly cancel.

As the wavefront travels down the variable-area horn, there is a mismatch in the characteristic admittance due
to the change in area. This mismatch creates a reflected wave, which in the case of the conical horn is = −co/sro.
Due to conservation of volume, there is a corresponding identical forward component that travels forward, equal
to +co/sro. The sum of these two responses to the change in area must be zero in order to conserve volume
velocity.

The resulting equation for the velocity eigenfunctions is therefore

V ±(x, s) = Y ±in (x, s) P±(x, s).

Propagation function κ(s) The eigenfunctions of the lossless wave equation propagate as

P±(x, s) = e∓κ(s)x√
A(x)

,

where κ(s) =
√

Z (x, s)Y (x, s) = ±s
√
MC. The velocity eigenfunctions V ±(x, s) may be computed from

Eq. H.1.4.
From the above definitions,

κ(s) =

√
sρo

��
�A(x)
s��
�A(x)

ηoPo
= s

co
.

Thus κ(s) and s are the eigenvalues of the differential operations ∂/∂x and ∂/∂t on the pressure P (x, s). See
Appendix D for the inclusion of visco-thermal losses.
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Appendix I

Quantum Mechanics and the WHEN

While it is clear that both Schrödinger’s equation and Dirac’s equations are highly accurate, after about 100 years,
it is not clear why. Both of these theories seem to violate classical electromagnetics (EM), such as Ohm’s law,
since they are built on energy principles rather than electric and magnetic fields. One point I find disturbing is that
QM defines a probabilistic wave function, and appears to not be causal. These two properties are in conflict. How
can the past be probabilistic, and how can the future not be?

Here we delve into this question, by providing a classical (i.e., EM-based) derivation for the hydrogen atom,
one of the most important and obvious successes of quantum mechanics (QM). The problem with QM is not that
it fails—rather, it succeeds, without obvious basis. The problem is that we cannot understand the basic principles,
and it seems to be in contradiction with any principles of a physical theory.

Based on the Rydberg formula, we determine the reflection coefficient, and thus the radiation impedance seen
by the electron, in a radial coordinate system centered on the proton. Since the electron and proton both have spin
1
2 , their magnetic fields must attractively align, accounting for the near-field vector potential, and complementing
the far-field attraction due to their opposite signs. As the electron and proton approach each other, due to their
far-field potential attraction, the magnetic near field becomes more attractive at close range, due to the magnetic
dipoles of the two “particles,” causing them to merge with neutral net magnetic moment and neutral charge, giving
a highly stable hydrogen atom. However, given a sufficiently strong distorting field, this highly symmetric state
could be disturbed, leading to photon radiation, constrained by the radial eigenstates. It seems more clear than
ever that photons and electrons are in a state of equilibrium at the outskirts of very large Rydberg atoms.1

100 nm 1000 nm 10 000 nm
visible

Hu-αPf-αBr-αPa-αBa-αLy-α

Figure I.1: Diagram of the wavelength spectrum of hydrogen for the Lyman, Balmer, and Paschen series, as a function of each line’s
wavelength. The notation “Ly-α” indicates the longest wavelength λ11 = 122 [nm] (i.e., lowest frequency of 2.46 [GHz]) for the Lyman
series. Figure citation: https://en.wikipedia.org/wiki/Hydrogen spectral series

I.1 Equation for Rydberg eigenmodes
Like every tuned resonant circuit, atoms have well-defined resonant frequencies, or eigenmodes. Figure I.1 shows
the observed radiation spectra for hydrogen. From the very beginning, it has been clear that there is a pattern to
these spectral lines. In 1880 Rydberg easily fitted a formula that quantifies the observed eigen spectral lines of
hydrogen in terms of the reciprocals of the radiated wavelengths:

1
λnm

= R∞

(
1
n2 −

1
m2

)
,

fnm
coR∞

= 1
n2 −

1
m2 , (I.1.1)

1https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.121.193401
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Figure I.2: Rydberg frequencies in [GHz] and the corresponding wavelengths, computed from the Rydberg formula λ−1
nm =

R
(

1
n2 − 1

m2

)
, where integer n defines the series (Lyman: n = 1, Balmer: n = 2, Paschen: n = 3, etc.) and integer m > n de-

fines the outer transition line (see Fig. I.3). For example, according to the lower panel (green series), the Lyman series line λ1,2 = 122 [nm]
(n = 1 and m = 2), in agreement with the lower panel of this figure, Figs. I.3 and I.1. The frequency of the Paschen series line (3,6) is at
1.094 [µm] (0.3 [GHz]) (upper panel)
(http://www.physics.drexel.edu/%7Etim/open/hydrofin/).

all based on these simple observations. Here R∞ = 1.097× 107 [m−1]; co = 3× 108 [m/s] is the speed of light;
fnm are the dimensionless Rydberg integer frequencies; and n,m ∈ N are positive integers ∈ N, where n labels
the series and m > n (λ > 0) describes the transition from orbit m to orbit n, as described in the caption of
Fig. I.3.

I.1.1 The Rydberg atom model

In 1909 Rutherford demonstrated that the atom consisted of a dense core (the proton) surrounded by electrons.
This view was supported by the spectrum of the atom, which allows for a radiation spectrum caused by electrons
jumping from one energy level to another. It was then noted by Bohr in 1913 (Bohr, 1954) and others that the
wavelengths of hydrogen, as described by Eq. I.1.1, are consistent with Fig. I.2, where the reciprocal wavelength
[m−1] is given by Eq. I.1.1, having frequencies fnm = c/λnm [Hz]. The challenge of the 1920s was to explain
these intuitive and simple models of hydrogen. This gave rise to the birth of quantum mechanics, the history of
which is nicely summarized in Condon and Morse (1929).
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Figure I.3: This diagram defines hydrogen’s allowed electron transitions, defining the Lyman (n = 1), Balmer (n = 2), and Paschen
(n = 3) series. The numbers represent the wavelengths λ [nm] of the photons having frequencies fnm = co/λnm, following an electron
transition from level n to m (taken from: https://en.wikipedia.org/wiki/Hydrogen spectral series).
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It was clear from the days of Bohr that the Rydberg formula did not follow the typical rules of eigenspectra,
so much so that Arnold Sommerfeld wrote (Sommerfeld, 1949, p. 201):

The lines of this spectrum cumulate at the limit given by the Rydberg constant R. The adjoining
continuum lies in the near ultraviolet range. Both the discrete and the continuous spectrum are given
by the Schrödinger equation. This equation reduces to a simple mathematical formula the enigma of
the spectral lines, with their finite cumulation point, the behavior of which differs so fundamentally
from that of all mechanical systems.

I.1.2 Rydberg wave equation
The objective of this analysis is to demonstrate that one can define a classical Sturm-Liouville model of the
enigmatic Rydberg atom, by the use of the Webster horn equation

1
A(r)

∂

∂r
A(r) ∂

∂r
ψ(r, t) = 1

c2o

∂2

∂t2
ψ(r, t), (I.1.2)

which is a one-dimensional wave equation for the electric potential ψ(r, t) propagating in a wave guide having
area A(r) as a function of the range, where r is the range variable (the axis of wave propagation).

We shall show that given the Rydberg spectrum (Eq. I.1.1), we may accurately estimate the electric reflectance
Γ(s) looking out from the origin (i.e., the proton location, as indicated by the small red dot in Fig. I.3). The
radiation impedance Zrad(s) seen by the proton is related to the reflectance Γ(s) by the relation

Zrad(s) = ro
1 + Γ(s)
1− Γ(s) . (I.1.3)

This formula is the basis of the Smith chart used in both physics and engineering studies. It follows that once Γ(s)
is known (i.e., evaluated given Eq. I.1.1), the radiation impedance may be computed. It has been shown that the
area function A(r) may be found given the radiation impedance (Sondhi and Gopinath, 1971; Youla, 1964).

0 2 4 6 8 10 12 14 16 18 20

2.6

2.8

3

3.2

2 2.5 3 3.5

-20

0

20

Figure I.4: The top panel is a plot of Eq. I.1.1, showing how the eigenmode frequencies fl depend on the eigen-number index l. As the
mode number increases, the frequency reaches an asymptote at coR ≈ 3.29 [GHz], with a wavelength limit near 1/R ≈ 91.2 [nm]. The
lower panel shows the inverse mapping from frequency to the mode index number φ(f). This figure is for the Lyman series (n = 1 and
m = 1, . . . , 20). The inverse of this relationship is l = φ−1(fl) may be derived from Eq. I.1.1, which provides the pole frequencies required
to satisfy Eq. I.1.3. Note that for frequencies greater than co/R the phase switches from purely real to imaginary, accounting for the free
electrons that must exist above the upper accumulation frequency (i.e., 3.29 [GHz] for this example).

I.2 Rydberg solution methods
The basic idea behind the method is to use Eq. I.1.3, by noting that the poles of the impedance are determined
by the roots of the denominator of Zrad. Specifically, if sp is an impedance pole, then it must satisfy Γ(sp) ≈ 1.
Except for losses due to radiation, the atom is lossless; thus |Γ(s)| = 1. Namely, it must be of the form

Γ(s) = e−φ(f), (I.2.1)



266 APPENDIX I. QUANTUM MECHANICS AND THE WHEN

where the phase φ(f) ∈ R and s = σ + ω is the complex Laplace radian frequency, with ω = 2πf [Hz].
Since we know the eigenmode frequencies, which obey φ(fno,m) = 2πm, we may find φ(f), as follows: For a
given series index no, and given the eigenfrequencies fm, we seek the phase mode function φno(f) that maps the
eigenfrequencies to their mode index m, i.e.,

φno(fm) = 2πm.

I.2.1 Group delay τ(s)
The phase φ(ω) is related to the group delay τ(ω) by the relation

τ(ω) = − ∂

∂ω
φ(ω).

Here one may assume that the phase is complex analytic,2 thus allowing a causal damping term into the reflectance
phase Eq. I.2.1. This follows naturally because the reflectance must be causal (Postulate 3.10.2, p. 121). In the
time domain the delay may be written in terms of the inverse LT of the group delay,

Γ(s) = e
−
∫ s
o
τ(s)ds

.

Typically one uses the reflectance phase 2πφ(f); thus the group delay is τ(f) = −∂φ(f)/∂f , which is
physically interpreted here as the frequency-dependent delay from the proton to the radius of the electron’s orbit.
Thus this delay is given by

τ(f) = n
∂

∂f

(
1− n2

coR
f

)−1/2

= n3

2coR

(
1− n2

coR
f

)−3/2

,

which is constant for low frequencies and then rises to∞ as frequency approaches the Rydberg frequency (f →
coR/n

2).
One may solve Eq. I.1.1 for m, for the case of the Lyman series (no = 1), by the use of the following identity

for the Rydberg eigenfrequencies fnm, which follow directly from Eq. I.1.1, with m = no + l (with no,m, l ∈ N)

fnm = co
λnm

= coR

(
1
n2
o

− 1
(no + l)2

)
= coR

n2
o

(
1− 1

(1 + l/no)2

)
. (I.2.2)

Note that as l → ∞, fno,l →= coR/n
2
o, which is Sommerfeld’s “finite cumulation point” [Hz] fno,∞ for the

Lyman series (no = 1).
We can solve Eq. I.2.2 for the mode number l/n < 1 as a function of mode frequency:

n2 fnl
coR

= 1− 1
(1 + l/n)2 Starting from Eq. I.2.2

1
(1 + l/n)2 = 1− n2 fnl

coR
Solving for l/n

(1 + l/n)2 = 1
1− n2 fnl

coR

l

n
= ± 1√

1− n2 fnl
coR

− 1 φ(fnl)/2π = l = m− no ∈ N, (I.2.3)

as summarized in the lower panel of Fig. I.4.

I.2.2 Finding the area function
Once the phase has been determined, we can compute the impedance using Eq. I.1.3. We may then decompose the
impedance by using the analytic continued fraction algorithm (or Cauer synthesis), discussed in Sec. 3.8, p. 107.

2It follows that these relationships are related by a Hilbert transform.
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I.3 Euclid’s formula and the Rydberg atom model
Fundamental to quantum mechanics is the Rydberg formula, which describes the quantized energy levels of
atoms:3

νn,m = coR∞Z
2
n

(
1
n2 −

1
m2

)
, (I.3.1)

where νn,m are the possible eigenfrequencies, co is the speed of light, R∞ ≈ 1.097×107 is the Rydberg constant,
Zn is the atomic number, along with positive integers m > n ∈ N, which represent the principal quantum
numbers that label all possible allowed atomic eigenstates. Integer n indicates the lowest (rest) atomic eigenstate
while m labels the higher (excited) state.4 When n = 1, the series is the Lyman series corresponding to hydrogen
(Z1 = 1). When n = 1, m = 2, and Z1 = 1, the frequency is

ν1,1 = coR∞
�
��

�
��*

3
4(

1
12 −

1
22

)
= 2.5× 1015 [Hz], (I.3.2)

and the wavelength is λ = co/ν = 4× 108/R∞ = 36.36 [m].
An open question in this model is: Why are states either empty or filled? The amplitudes of the modes of a

string or organ pipe are not quantized. What is it about the atom that forces the energy to be quantized?
Given observed frequencies νn,m it is possible to find the area function that traps the photons into the Rydberg

eigenstates. Eq. I.3.1 may be rewritten as

νn,m = coRZ
2
n4
(
m2 − n2

(2nm)2

)
.

It is interesting to compare Eq. I.3.1 to Euclid’s formula Eq. 2.5.6 (p. 41):

a = m2 − n2, b = 2mn, c = m2 + n2, (I.3.3)

where m > n ∈ N. Euclid’s formula is equivalent to the Pythagorean theorem for integers, since

c2 = a2 + b2, (I.3.4)

with {a, b, c} ∈ N. Here a < b < c.
If we interpret the quantum numbers as multiples of a quarter wavelength, then the Rydberg formula is con-

gruent to the Pythagorean theorem. Given the symmetry, this cannot be an accident.
In terms of the lengths of the right triangle {a, b, c}, Rydberg’s formula becomes

νn,m = coRZ
2
n4
( a
b2

)
.

But since b2 = c2 − a2,

νn,m = co
RZ2

n

a
4
(

a2

c2 − a2

)
= co

RZ2
n

a
4a

2

c2

(
1

1− (a/c)2

)
.

In terms of quantized (discrete) angles, sin(θn,m) = a/c,

νn,m = co
RZ2

n

a
4
(

sin2 θ

1− sin2 θ

)
= co

RZ2
n

a
4
(

sin2 θ

cos2 θ

)
= co

RZ2
n

a
4 tan2 θn,m.

3https://www.youtube.com/watch?v=e0IWPEhmMho
4http://en.wikipedia.org/w/index.php?title=Rydberg_formula
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I.3.1 Eigenmodes of the Rydberg atom
One way to think of eigenmodes is to make an analogy to a piano string or an organ pipe. In these much simpler
systems, there is an almost constant delay, say τ , due to a characteristic length, say L = τco, such that the
eigenmodes of a string are given by integer multiples of a half wavelength νn = nco/2L, while the eigenmodes of
the organ pipe are multiples of a quarter wavelength. The distinction is the boundary conditions. For the string the
endpoint boundary conditions are pinned displacement (i.e., zero velocity). The organ pipe is closed at one end
and open at the other, resulting in multiples of a quarter wavelength νn = nco/4L. In each case ν = n/τ , where
τ = 2L/co is the round-trip delay; thus ν = nco/2L. We suggest looking at the Rydberg formula in the same
way, but with very different eigenfrequencies (Eq. I.3.1). Sommerfeld (1949, p. 201) makes a very interesting
comment regarding Eq. I.3.1:

This equation reduces to a simple mathematical formula the enigma of the spectral lines, with their
finite cumulation point, the behavior of which differs so fundamentally from that of all mechanical
systems.

I.3.2 Discussion
The Rydberg frequencies fnl (n = 1, l = 1, . . . ,∞) has poles in the radiation impedance (Eq. I.1.3) when
φl(fnl) ∈ N. Working backwards from the Rydberg formula (Eq. I.2.1), we have solved for φ(fnl) indicating
where this condition is valid (Eq. I.2.3). Since the reflectance and the impedance must be causal complex analytic
functions of Laplace frequency s, we must replace the discrete frequency fnl with s:

2πfnl → s = σ + ω,

thereby forcing l(s) to be a complex analytic function of s. Then the poles of the radiation impedance must satisfy

Γ(snl) = e2πl(fnl) = 1,
resulting in eigenfrequencies at fnl.

The next step in this analysis is to determine the area function A(r) given Zrad (Eq. I.1.3). To do this we must
solve an integral equation for A(r), as discussed by Sondhi and Gopinath (1971) and by Youla (1964).

Perhaps this could be done using an analytic representation for the area function,

A(r) =
∑
k

akr
k.

I.4 Relations between Sturm-Liouville and quantum mechanics
If we compare the Schrödinger equation (SE) for hydrogen with the corresponding Sturm-Liouville equation we
can begin to appreciate their differences. The QM equation for hydrogen is

ı~
∂

∂t
ψ(x, t) = − ~2

2mo
∇2
rψ(x, t) + V (r)ψ(x, t)

= − ~2

2mo

1
r2

∂

∂r
r2ψ(x, t) + V (r) ψ(x, t) (I.4.1)

= − ~2

2mo

[
2
r

∂

∂r
ψ(x, t) + ∂2

∂r2ψ(x, t)
]

+ V (r) ψ(x, t), (I.4.2)

whereas the horn equation is given by Eq. I.1.2.
There are several obvious and disturbing differences between these two equations. First, the SE is, of course,

first-order in time. Diffusion equations have no delay and thus cannot have traditional eigenmodes, which result
from standing waves in a wave equation, due to boundary conditions. Second, the EM horn equation is of Sturm-
Liouville (SL) form, which is a true wave equation (vs. the SE, which is a diffusion equation). The obvious
question arises: Is there a potential V that would allow these two formulations to be equivalent? If so, then this
would provide an explanation as to why the SE is successful in explaining the properties of Rydberg atoms.

To explore this possibility we may expand the two differential equations and directly compare them. Expand-
ing Eq. I.1.2 gives

1
c2o

∂2

∂t2
ψ(r, t) = 1

A(r)
∂

∂r
A(r) ∂

∂r
ψ(r, t) (I.4.3)

= ∂2

∂r2ψ(r, t) + 1
A(r)

∂A(r)
∂r

ψ(r, t). (I.4.4)
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Between these two equations we may remove ψ′′:

ı~
∂

∂t
ψ(x, t) = − ~2

2mo

[
2
r

∂

∂r
ψ(x, t) + 1

c2o

∂2

∂t2
ψ(r, t)− 1

A(r)
∂A(r)
∂r

ψ(r, t)
]

+ V (r) ψ(x, t). (I.4.5)

It seems that this may isolate the time and spatial parts (as in separation of variables).

I.4.1 The exponential horn
A relevant and motivational example is the solution of the exponential horn, having area functionA(r) = Aoe

2mr.
This case is interesting because it has a closed-form solution, which seems relevant and perhaps even related to
the hydrogen atom.

Assuming that %(r, t)↔ P (r, ω) are a Fourier transform pair, with A(r) = Aoe
2mr, Eq. I.1.2 reduces to

∂2 P (r, ω)
∂r2 + 2m∂ P (r, ω)

∂r
= κ2 P (r, ω)↔ 1

c2o

∂2%

∂t2
, (I.4.6)

with κ(s) = s/co.

Exercise #1
Show that Eq. I.4.6 follows from Eq. I.1.2.

Solution: Starting from Eq. I.1.2 with area A(r) = Aoe
2mr

1
��Aoe

2mr
∂

∂r

(
��Aoe

2mr ∂%

∂r

)
= 1
c2o

∂2%

∂t2

%rr(r, t) + 2m%r(r, t) = 1
c2o

∂2%

∂t2
↔ κ2 P (r, ω),

which is the time-domain version of Eq. I.4.6. �

Since this equation is second-order in time with constant coefficients, it has two closed-form solutions:

P±c (r) = P±o (ω) e−mre∓
√
m2+κ2 r

= P±o (ω) e−mre∓j
r
co

√
ω2−ω2

c ,

with ωc = mco. The two wave amplitudes P±0 (ω) must be determined from the boundary conditions.

Exercise #2
Shown that P±(r, ω) satisfy Eq. I.4.6.

Solution: Taking partials with respect to r,

∂r P±(r, ω) =
(
−m∓

√
m2 + κ2

)
P±(r, ω)

∂rr P±(r, ω) =
(
−m∓

√
m2 + κ2

)2
P±(r, ω)

=
(

2m2 + κ2 ± 2m
√
m2 + κ2

)
P±(r, ω).

Thus Eq. I.4.6 reduces to(
2m2 + κ2 ± 2m

√
m2 + κ2

)
+ 2m

(
−m∓

√
m2 + κ2

)
= κ2,

which is an identity. �

Next consider the Fourier series (or Fourier transform) of the area function,

A(r) =
∑
k

ake
2mkr.

It follows from the linearity of the wave equation that the general solution of Eq. I.4.6 is

P±(r, ω) =
∑
k

a±k (ω) e−mkr e∓
√
m2
k
+κ2 r.

Here we have combined P±(ω) and ak as coefficients a±k (ω).
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∇×(): see curl, 172
∇·(): see divergence, 172
F: see fractional numbers, 15
∇(): see gradient, 172, 182
∇(φ(x)), 196
∇2(): see Laplacian, 25, 172
N: see counting numbers, 14, 217
P: see primes, 14
Q: see rational numbers, 14
T (s): see transmission matrix, 107
∇2(): see vector Laplacian, 172
Yr: see characteristic admittance, 190
Yin input admittance, 142
Z: see integers, 14
Zr: see characteristic impedance, 190
κ(s) propagation vector, 54
κ(s), definition, 141
A‖,A⊥, 104
δk Dirac pulse, 236
δ(t): Dirac impulse, 120
E,D,H,B: Definitions, 203
E,D,H,B: Units, 205
κ(s) propagation function, 54
ln ζ(s), 233
⊥: see perp p. 218, 14
ρo = 1.2 [kg/m3] (air density), 185
∧(): see wedge, 172
ζ(s) function: See zeta function, 240
ζ(s), Riemann zeta function, 26
ζ(x), Euler zeta function, 26
co = 343 [m/s] (air sound speed), 183
u(t) Heaviside step, 120
u(t) step function, 118
uk step function, 236
z-transform, 61, 112
gOd: ∇2 (aka Little god), 202
ceil(x), 220
compan, 63
conv(A,B), 63, 84
deconv(), 84
deconv(A,B), 63
fix(x), 220
floor(x), 30, 220
mod(x,y), 33
poly(), 63, 84
polyder(), 63
polyval(), 63, 84
rem(x,y), 33
residue(N,D), 63, 84

roots(), 63, 82, 84
round(x), 220
roundb(x), 220
DoG, 172, 202
gOd, 172, 202
1-port, 123
2-port, 107, 123

abacus, 13
ABCD: see transmission matrix, 111
acoustic properties of air (Mason, 1928), 53, 243
adiabatic expansion, 242
adiabatic expansion, speed of sound, 53, 183
adiabatic process, 53
admittance, characteristic, 142
admittance, input, 142
admittance: see impedance, 111
analytic continuation, 69, 80, 159
analytic continuation and the LT −1, 160, 238
analytic functions, 19, 72, 134, 136, 171
analytic geometry, 86, 90
analytic, complex, 74, 121
analytic, evolution operator, 54
anti-reciprocal, 123
anti-reciprocal, see reciprocity, 122
Assignments: AE-1, 76
Assignments: AE-2, 100
Assignments: AE-3, 129
Assignments: DE-1, 138
Assignments: DE-2, 153
Assignments: DE-3, 167
Assignments: NS-1, 21
Assignments: NS-2, 36
Assignments: NS-3, 46
Assignments: VC-1, 187
Assignments: VC-2, 209
atmospheres [atm] definition, 53
augmented matrix, 95

Bardeen, John, 75
Beranek, Leo, 214
Bernoulli, Daniel, 51
Bernoulli, Jakob, 8
Bernoulli, Johann, 8
Bessel function, 149, 163, 164, 166
Bessel function roots, 184
Bethe, Hans, 75
Bhāskara II, early calculus, ix
Bhâskara II, 51
bilinear transformation, 84, 128, 220, 254
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Boas, Ralph, 214
Bode, Hendrik, 51, 214
Bombelli, 2, 5, 17, 135
Brahmagupta, 3, 13, 42, 45, 51, 67
branch cut, 74, 126, 145–148, 206
branch index, 126
branch point, 146–149, 206
Brillouin zones, 141
Brillouin, Léon, 51, 54, 75, 185, 194, 214
Brune condition, 73, 137, 144
Brune impedance, 73, 85, 143, 151, 163
Bull-Dog, 201

calendar, human, 6
Campbell’s electrical wave filters, 242
Campbell, George Ashley, 185, 194, 260
Cantor, 15
Cardano, 54
Cauchy, 74, 127, 145, 165
Cauchy’s integral formula, 133, 151
Cauchy’s integral theorem, 26, 133, 150, 151
Cauchy’s residue theorem, 65, 119, 133, 151, 163, 177
Cauchy, Augustin-Louis, 9, 25, 51
Cauchy-Riemann conditions, 11, 136
Cauer synthesis, 34
causality, 113
causality: P1, 253
CFA matrix, 250
CFA: see continued fractions, 31
characteristic admittance, 142, 190
Characteristic impedance, in vacuum, ro, 208
Chebyshev, 24
Chinese four stone problem: see puzzles, 20
chord-tangent methods, 127
CoC, 202
codomain, 74
CoG, 202
colorized plots: see plots, colorized , 125
companion matrix, 43, 44, 62–64
companion matrix, roots and eigenvalues, 61, 69
completing the square, 55, 86
complex analytic, 72, 136, 145, 146
complex analytic admittance, 141
complex analytic derivative, 135
complex analytic function, 53, 54, 72, 74, 117, 121,

125, 127, 128, 134–137, 141, 143–150, 152,
162–165, 178, 180, 182

complex analytic function, calculus, 144
complex analytic function: history, 135, 136
complex analytic functions, 11
complex analytic scalar product, 90
complex analytic: definition, 74
complex analytic: see causal, 121
complex frequency, 26, 136, 141, 151, 177
complex frequency plane, 144
complex frequency, see Laplace frequency, 162
complex numbers, 15
complex numbers, Newton’s view, 135

complex numbers: history, 17
complex numbers: polar representation, 16
complex scalar product, 92
composition, 25, 42, 84, 86, 87, 90, 107, 111, 127, 128
composition: line and sphere, 127
compressible, 199
conjugate of a complex number, 16
conjugate variables, 109, 110, 152
conservation of energy, 6, 52, 73, 85, 109, 135, 143, 144
conservative field, 137, 179, 199
continued fractions, 29, 31–34, 39, 43
convex hull, See Gauss-Lucas, 60, 68
convolution, 61, 63, 82, 83, 113, 164
convolution: continuous time definition, 109, 164
convolution: discrete time definition, 61
coprimes, 14, 15, 28, 30, 31
counting numbers, 14
CRT: Cauchy’s residue theorem, 133
cryptography, 20
cubic, 54
curl∇×(), 25, 172, 182, 201

d’Alembert, 7–9, 141, 175, 190, 194, 195, 205
d’Alembert’s solution to the wave equation, 53
d’Alembert, Jean le Rond, 51, 53, 82
da Vinci, Leonardo, 6
day: seconds in, 6
deconvolution, 63, 83
degree vs. order, 149
degree, fractional F, 220
degree, irrational I, 220
degree, polynomials, 54, 82, 220
degrees of freedom, 201
derivative, fractional F, 149
derivative, half, 234
derivative, order, 149
Descartes, René, 5, 51, 82
determinant, 91, 94, 96, 98, 222, 223
Deterministic, 256
Deterministic: P9, 253
DFT, 112
Diaphanous, 1
diffusion equation, 180, 181, 194
digital filter, 60, 61
Diophantus, 2, 3, 41
Dirac pulse, 236
dispersion relation, 141
dispersion relation, see propagation function, 141
dispersive wave propagation, 54
divergence, 172
divergence ∇·(), 25, 182, 201
division with rounding, 30
DoC, 202
DoF: degrees of freedom, 201
DoG, 201, 202
domain, 74
domain-coloring: see plots, colorized, 125
driving-point impedance, 254
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DTFT, 112
dynamic stiffness of air, 53

eigenanalysis, 4, 227
eigenanalysis: 2x2 matrix, 65, 230
eigenanalysis: Pell’s equation, 43
eigenanalysis: reciprocal system, 231
eigenfunction of d/dt, 165
eigenmodes, 23
eigenmodes: physical explanation, 178
eigenspace, see vector space, 184
eigenvalues, 43, 44, 46, 62, 64, 65, 227
eigenvalues of the companion matrix, 61
eigenvalues, Fibonacci sequence, 65
eigenvalues, Pell’s equation, 65, 228
eigenvectors, 46, 228
Einstein, Albert, 51, 53, 241
elimination, 87
elliptic differential equation, 180
emf, 204
energy, 6, 52, 109, 152, 254, 255
energy conservation, 6
entire functions, 71
entropy, 28
epicycle, 52
equations, linear, 67
Eratosthenes, 26, 27, 235
error function, 234
essential singularity, 146, 147
Euclid, 15
Euclid’s formula, 1, 3, 41, 106, 267
Euclid’s formula, derivation: DE-2, 41
Euclidean algorithm, 28, 29
Euclidean length, 88
Euler, 7–9, 240
Euler product formula, 60
Euler product formula: see Riemann ζ function, 60
Euler’s equation, 183
Euler’s functional zeta equation, 238
Euler, Leonhard, 51, 60, 127
evanescent modes, 193
evolution, 181
evolution operator κ(s), 54
extended complex plane, Riemann, 127
exterior product, 89

factoring, 54
Fermat, 5
Fermat, Pierre de, 51, 82
Feshbach, Herman, 214
Feynman, Richard, 214
FFT, 112
Fibonacci recursion formula, 13
Fibonacci sequence, 43, 44, 62, 91
Fibonacci sequence eigenanalysis, 48
Fletcher, Harvey, 51
flux-flow relation, 110
Fourier Series, 112
Fourier transform, 112

Fourier transform properties, 115
Fourier transform table, 116
fractional numbers: F, 15
fractional-degree F, 149
freight-train, 194
freight-train problem, 167, 193
frequency domain, 53, 144, 145
frequency, complex: Laplace frequency, 54, 162
frequency-domain, 112, 113
Fry, Thorton Carle, 123, 214
FTC: fundamental theorem of calculus, 133
FTCC: fundamental theorems of complex calculus, 135
FTVC, 200
FTVC: fundamental theorem of vector calculus, 179
function, causal, 121
function, circular, 74
function, inverse, 74
function, periodic, 74, 121
functions: see complex analytic, 74
fundamental theorem of arithmetic, 235
fundamental theorem: algebra, 25, 26, 82, 84
fundamental theorem: arithmetic, 15, 18, 24, 26
fundamental theorem: calculus, 135
fundamental theorem: calculus (Leibniz), 26
fundamental theorem: complex calculus (Cauchy), 26,

51, 127, 136, 153
fundamental theorem: mathematics, 52
fundamental theorem: prime numbers, 24
fundamental theorem: real calculus (Leibniz), 153
fundamental theorem: scalar vs. vector, 133
fundamental theorem: vector calculus, 10, 172, 179,

199, 200, 202
fundamental theorem: vector calculus (Helmholtz), 26
fundamental theorems: table of, 133

Galileo, Galilei, vi, 5, 6, 51, 74, 177, 179
Gamma function, 238
Gauss, 145
Gauss’s law, 197, 204
Gauss, Carl Friedrich, 25, 51
Gauss, CFA vs. GCD, 32, 251
Gauss, GCD vs. CFA, 251
Gauss-Lucas theorem, 59, 60, 68
Gaussian elimination, 86, 93
GCD, 28, 29
GCD vs. CFA, Gauss, 31
GCD: see greatest common divisor, 20
generalized admittance, 142
generalized complex scalar product, 92
generalized force and flow, 109
generalized impedance, 109, 110, 142, 182
generalized vector product, 174
geometric series, 70
Gibbs ringing, 89, 114, 118
gOd, 202
gradient ∇(), 25, 172, 182, 201
gravity, 6, 51–53, 90, 173, 179
gravity waves, 53
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greatest common divisor, 20, 28, 29, 31, 249
Green, 214
Greens Theorem, 137
group delay, 141
gyrator, 112, 122, 123, 253

Halley, viii
Hankel function, 190
harmonic functions, 137
Heaviside step function, 118
Heaviside, Oliver, 51
Heisenberg, Werner, 42, 65, 75
Helmholtz, 199
Helmholtz portrait, 200
Helmholtz’s decomposition theorem, 10, 24, 172, 179,

199, 200
Helmholtz’s decomposition: see FTVC , 199
Helmholtz, Hermann von, 7, 51, 214, 241
Hilbert space, 88, 92, 112
Hilbert space, see vector space, 184
Hilbert, David, 51
Homework, see Assignments, 21
horn equation, 175, 184, 185, 190, 193, 196
horn equation, derivation, 259
horn, conical, 192
horn, exponential, 192
horn, uniform, 190
Hunt, Fredrick, 214
Huygens, 183
Huygens principle, 195
Huygens, Christiaan, 51
Hydrogen spectrum, 267
hyperbolic differential equation, 180

IEEE-754, 15, 19, 54, 63
immittance, 142
impedance, 11, 73, 85, 109, 111, 112, 117, 123, 137,

141, 143, 144, 152, 162, 163
impedance composition, 111
impedance matrix, 108
impedance network, 107, 109
impedance, Brune, 85
impedance, generalized, 110, 182
impedance, Kirchhoff’s laws, 110
impedance, Ohm’s law, 110
impedance, Thévenin, 108
implicit function theorem, 72
impulse function, 120
impulse response, 220
incompressible, 199
inner product: see scalar product, 87
integers, 14
integers, utility of, 17
integral definition of∇×H(x), 198
integral definition of∇·D(x), 197
integral definition of∇φ(x), 196
integral formula, Cauchy, 151
integral theorem, Cauchy, 151
integration by parts, 185

integration, half, 234
intensity, 141
internet security, 20
intersection, 86, 91
intersection of curves, 86, 91, 93
intersection of sets, 86
intersection point, 91
Inverse Laplace transform, 162
irrational poles, 146
irrotational, 174, 199, 200

Kepler’s theory of planetary motion, 52
Kepler, Johannes, 52
Kirchhoff’s laws, 110, 182
Kirchhoff’s portrait, 200
Kirchhoff, Gustav, 25, 51, 241
Klein, Felix, vii

Lagrange, Joseph-Louis, 5, 51
Lamb, Willis, 214
Laplace and the speed of sound, 7
Laplace frequency, 54, 111, 113, 118, 144, 162
Laplace frequency plane, 144
Laplace transform, 117, 118, 162
Laplace transform, impedance, 144
Laplace transforms: Functional properties, 119
Laplace transforms: Properties I, 118
Laplace transforms: Table II, 120
Laplace transforms: Table III, 234
Laplace’s equation, 180
Laplace, Pierre-Simon, 53
Laplacian∇2, 152, 172, 174, 180, 182, 184, 201
Laplacian, scalar: ∇2, 25
Laplacian, vector ∇2, 25
Laplacian, vector: ∇2, 202
Laplacian: N dimensional, 175
laws of gravity, 52
Lec20: zeta function, Euler, 240
Lec20: zeta function, Riemann, 240
Leibniz, viii
length, Euclidean, 88
Leonardo da Vinci, 5
light, speed of, 203
Lighthill, James, 214
linear equations, 82
linearity: P2, 253
log function, 126, 150
logarithmic derivative, 56, 59, 146, 149, 150
logarithmic derivative: definition, 56
Lord Kelvin, 11
Lord Kelvin: William Thompson, 51
Lord Rayleigh, 51, 214
Lord Rayleigh: John William Strutt, 51
Lorentz force, 122, 206

Möbius transformation, see bilinear, 84
matrix algebra, 86
matrix composition, 111
matrix inverse, 16, 91, 94
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matrix inverse, derivation, 99
matrix: non-square inverse, 66
Maxwell’s equation: matrix form, 203
Maxwell’s equations, 11, 25, 133, 203, 205
Maxwell’s equations, potential solutions, 207
Maxwell’s equations: d’Alembert solution, 205
Maxwell’s equations: variable names and units, 203
Maxwell’s matrix wave equation, 205
Maxwell, James, 25, 51
ME: Maxwell’s equations, 203
meromorphic function, 146
Mersenne, 5, 141, 177
Mersenne and the speed of sound, 52
Mersenne primes, 7
minimum phase, 142, 144
modal-analysis, 65, 184
modulo, 220
monic polynomial, 25, 54, 59, 61, 62, 64, 220
Morse, Phillip, 214
music, 1, 2, 5, 23, 52

Natural numbers: see counting numbers, 14
Needham, Joseph, 1
network postulates, 253
network, algebraic, see Transmission matrix, 117
networks, algebraic, 254
Newton, viii, 5, 7, 51–53, 56–58, 60, 74, 110, 127, 179,

183
Newton and the speed of sound, 53
Newton’s laws, 182
Newton’s laws of motion, 52
Newton’s root finding method, 56–58, 60, 63, 64
non-reciprocal, see reciprocity, 122
nonlinear algebra, 121
norm, see scalar product, 87
Norton parameters, 205
NOVA, fusion experiment, 206
NS-1, 21
NS-2, 36
NS-3, 47
Nyquist sampling, 113, 122, 193, 194
Nyquist sampling of lumped-element models, 193, 194
Nyquist, Harry, 51, 113, 122, 193, 194

octave, 1, 24
Ohm’s law, 110–112, 123, 182
Olson, Harry, 214
order vs. degree, 149
order, derivatives, 220
order, fractional F, 149

P10: quasistatic, 122
P11: periodic↔ discrete, 123
P1: causality, 121
P2: linearity, 121
P3: passive, 122
P4: real, 122
P4: time-invariant, 122
P6: reciprocal, 122

P7: reversible, 122
P8: space-invariant, 122
P9: deterministic, 122
parabolic differential equation, 180
partial fraction expansion, 71, 149, 151
Pascal, Blaise, 51, 53
Pascals [Pa] definition, 53
passive, 254
passive: P3, 253
passwords, 20
Pauli, Wolfgang, 75
Pell’s equation, 42
Pell’s equation, Heisenberg’s view, 13, 42
Periodic↔ discrete, 257
periodic↔ discrete: P11, 253
Pipes, L.A., 214
Plimpton-322, 42
plots, colorized: atan(z) , 134
plots, colorized: 1
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plots, colorized: reference condition, 125
plots: see Time Line, 3
PNT: prime number theorem, 24
Poincare, Henri, 51
point at infinity, 127, 128
Poisson’s equation, 181
Poisson, Siméon Denis, 180
poles, 118, 220
poles, degree, 149
poles, fractional F, 149, 220
poles, simple, 151
polynomials, 4, 54
polynomials, long division, 83
positive definite operator, 143, 255
positive-real, 73, 122, 142, 144, 147, 255
postulates, 53, 117, 121–123, 253
postulates, Feynman’s view, 117
potential, 52, 110, 171–173, 178
power, 109, 110, 141, 143, 152, 255
Poynting scalar product, complex, 90
Poynting vector, 205
PR: see positive-real functions, 73
prime, 240
prime number theorem, 14, 24, 28
prime sieve, 26
primes, 14, 20, 24
primes, Eratosthenes, 26
primes, Mersenne, 7
Principia, viii, 7, 53, 133
probability: average, 124
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probability: event, 123
probability: expected value, 124
probability: experiment, 123
probability: observable, 123
probability: random variable, 124
probability: sampling noise

√
2/N , 123

probability: the mean of many trials, 123
probability: the number of events, 123
probability: trial, 123
probability: uncertainty, 123
propagation function, 111, 141
propagation function, conical horn, 192
propagation function, exponential horn, 192
propagation function, uniform horn, 190
propagation function, with losses, 141, 241, 244
propagation of waves, 182
propagation vector, 53, 177
public-key security, 20
public-key, see cryptography, 20
puzzles, 20, 102
Pythagoras, 1
Pythagorean triplets, 3, 13, 41, 106
Pythagoreans, 1, 5, 15, 18, 19, 41, 51, 67
Pythagoreans, fate, 5

quadratic, 82
quadratic equation, solution, 54, 55
quantum eigenstates, 69
quantum mechanics, 23, 65
quartic, 54
quasistatics, 122, 241, 256
quasistatics: P10, 253
quintic, 54

Ramo, Simon, 214
Rankine, William, 53
rational function, 84, 85, 146
rational function: see partial fraction expansion, 84
rational numbers, 14
Rayleigh reciprocity, see reciprocity, 122
real: P4, 253
reciprocal system: eigenanalysis, 231
reciprocal, see reciprocity, 122
reciprocity, 108, 109, 122, 231, 256
reciprocity: P6, 253
reduced form, 14, 30
reflectance, 85, 142
region of convergence: see RoC, 71, 121
relatively prime, coprime), 14
removable singularity, 146
residue, 63, 71, 147, 149, 152
residue expansion, 34, 62, 84
residue theorem, Cauchy, 151
residue, definition, 151
reversible system, eigenanalysis, 231
reversible systems, 122, 256
reversible: P7, 253
RHP, 137
Riemann, 145

Riemann ζ(s): definition, 80
Riemann sheet, 145, 146
Riemann sheets, 74
Riemann sphere, 127
Riemann zeta function, 26, 80, 233
Riemann, Bernard, 51
right half-plane, see RHP, 137
RoC, 19, 59, 71, 119, 133, 137, 145, 146
RoC, RoD: definition, 69, 121
roots of Bessel functions, 184
roots of polynomials, 54
roots of the companion matrix, 61
Rydberg atom, 64, 184, 267
Rømer, Ole, 7, 41

Salmon, Vince, 23
sampling noise:

√
2/N , 124

sampling theorem, 113, 122, 193, 194
scalar field, 172
scalar product, 83, 87–89, 116, 201
scalar product, generalized complex, 89
scalar product, see norm, 87
scalar product, triple, 89
Schrödinger’s equation, 23
Schrödinger, Erwin, 23, 65
Schwarz inequality, 89, 92, 93
seconds in a day, 6
semiinductor, 148
semitone, 1
separation of variables, 193
set theory, 15
set theory symbols defined, 218
Shannon entropy, 28
sheet-index, 147
sieve, 26
sieve of Eratosthenes, 235
signal processing, digital, 45
signals, 112
simple pole, 59
singlar value decomposition (SVD), 66
singular circular: see RoC definition, 121
singularity, 146
solenoidal, see incompressible, 200
solenoidal, see irrotational, 200
Sommerfeld, 75
Sommerfeld, Arnold, 51, 214
spatial invariant, 256
spatial invariant: P8, 253
spectrum: see eigenvalues, 178
speed of light, 53, 203
speed of light, first measurements, 7
speed of light, in vacuum co, 208
speed of light: Feynman’s view, 7
speed of sound, 7, 53, 243
speed of sound with losses, 141, 241
speed of sound: adiabatic expansion, 53
speed of sound: Mersenne measures of, 52
speed of sound: Newton’s first calculation, 53
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speeds of sound, two, 53
spiral of Fibonacci, 44
spiral of Theodorus, 19, 20
step function, 120, 236
step function, Heaviside, 118
Stokes theorem, 204
Stokes, George, 25, 214
stream 1, 11, 13, 24
stream 2, 11, 24–26, 51
stream 3, 24–26, 45
stream 3a, 11, 133
stream 3b, 11, 171
Sturm-Liouville, 186, 193
surge admittance/impedance, 142
surge impedance: characteristic impedance, 143
SVD: singlar value decomposition, 66
symmetry, causality, 121
symmetry, conjugate, 255
symmetry, matrix, 257
symmetry, periodic, 119, 258
symmetry, periodicity, 121
symmetry, time-frequency, 115
symmetry, various, 115, 117
system postulates, 144
system postulates, summary, 123
systems, 117

Taylor series, 67, 68, 70, 72, 136, 145, 196
Taylor series, see analytic functions, 144
telegraph equation, 182
telephone equation, 182
tesla, 203
Thévenin parameters, 107, 108, 204, 205, 232, 254
thermal admittance, 181
thermal conductivity, 181
thermodynamics, speed of sound, 242
thermodynamics: development of, 53
Time Line: 16 BCE-17 CE, 3
Time Line: 16–19 CE, 9
Time Line: 17–19 CE, 5
Time Line: 17-20 CE, 52
time travel, 141
time-domain, 113
time-invariant, 255
time-invariant: P5, 253
train problem: See DE3, 167
train-mission-line problem, 167, 193, 194
transmission line, 85, 111, 134, 184
transmission line, generalization, 184
transmission matrix, 107, 108, 111, 112, 122, 190, 253,

254, 257
trapdoor function, 20
triangle inequality, 89, 96, 131, 222
triple product, scalar, 88
triple product, vector, 89

Units: E,D,H,B, 205

vacuum, 53

VC-1, 187
VC-2, 209
vector cross-product, 89
vector exterior-product, 89
vector identity: ∇×∇×, 201
vector identity: ∇×∇, 201
vector identity: ∇·∇×, 201
vector identity: gOd, 202
vector identity: Laplacian, 201
vector identity: DoG, 172
vector identity: gOd, 172
vector inner product: see scalar product, 89
vector Laplacian ∇2(), 172, 175
vector operator mnemonics, definitions, 201
vector operator mnemonics: DoG, gOd, DoG, CoC,

173
vector product, 88, 89, 201
vector product, generalized, 88
vector product, triple, 89
vector space, 87, 88, 201
vector space, Fourier transform, 93
vector triple product, 89
vector wedge-product, 88–90, 93, 172, 228
vector, three, 89
vector, unit, 89
vectors, 86
visco-thermal loss, 53, 141, 184, 241, 244
viscosity of air, 243

wave equation, 53, 183
wave equation, acoustics, 182
wave evolution, 54, 181
wave filters, 242
wave number: see propagation function, 53
wavelength, 141
webers, 203
Webster horn equation, derivation, 259
Webster horn equation, see horn equation, 184
Webster Laplacian, 184
wedge-product: see vector wedge-product, 89

year: days in, 6
year: improved composite definition, 6

z-transform, 43
Zeno’s paradox, 133
zeros, 118, 220
zeta function poles, 237
zeta function RoC, 80, 236
zeta function, Euler, 26
zeta function, poles, 81
zeta function, product formula, 80, 235
zeta function, Riemann, 26, 80
zeta function: definition, 235
Zhang, Yiming, 250
zviz.m, see plots, colorized, 125


