Instructor & Course Coordinator: Jont Allen Prerequisites: One of: MATH 384, 385, 386: Differential Equations Target Audience: Fourth year undergraduates Text: *Neuroscience, a mathematical primer*; Author: Alwyn Scott Alternate instructors: Viktor Gruev, Mark Hasegawa-Johnson; Zhi-Pei Liang

Outline: This course presents an introduction for an engineering audience of research and models of brain function. This is an important topic usually taught to students of neuroscience, reformulated for the Electrical and Computer Engineering undergraduate student. Neuroscience courses presently taught in the neuroscience department do not present the topic in a mathematical framework. This version of the course will take a more qualitative modeling approach to brain signal processing. Neural circuits and system delve into Boolean signal processing, based in nonlinear diffusion equations and delay-and-add synaptic signal processing.

The more than 200 year history is highly relevant so that students learn from the past discoveries rather than trying to "reinvent the wheel." To work in machine learning, mastery of what we know today about brain signal processing is essential. Homework sets cover key topics; There are three exams: two midterm Exams, and a final.

The material is presented in the order as suggested by the Textbook author (A. Scott), in the preface (p. ix), in four parts:

- I. Introduction and History: Historically relevant material, plus a broad overview.
- II. Structure of a Neuron: Function, physiology and models.
- III. Neuronal Assemblies: Various brain circuits.
- IV. Chapter 10: Brain theories.

Syllabus:¹

			Part I. Introduction and History	
Lec	W/D	Ch	Description	
1	4/25	20	Instruction Begins Jan 25, 2020	
			Introduction to Neruoscience for engineers; Some history	
2	27		Structure of a nerve cell	
3	29		Organization of the brain; Density and numbers of neurons	
4	5/1	12	Hierarchical nature of brain dynamics; Integration of the five sensory inputs	
5	3		Feedback: negative vs. positive; causality	
6	5		Biological reductionism; Objections to reductionism;	
7	6/8		Possibile numbers of amino acids vs actual number; Biodiversity	

			Part II. Structure of a Neuron			
L	W/D	Ch				
8	10	12	The generic neuron			
9	12	2	Synapses			
10	7/15		McCulloch-Pitts model			
-	17		University Holiday; No Class			
11	19		Real neurons (Fig. 2.1); $\Sigma\Delta$ codec			
12	8/22		Lipid bilayers; Active membrane Impedances			
13	24	3	Channels and pumps			
14	26		Neural information transmission			
15	9/1		Exam I (Optional in class review)			
			Neural Modeling			
16	3	4	Ionic currents (conduction vs diffusion currents)			
17	5		Nernst, Planck and Einstein relations; Membrane models; Resting potentials and pumps			
18	10/8	7	Squid voltage patch methods; op-amp technology and methods			
19	10	9	Modeling the membrane;			
20	12		Active fiber branching			
21	11/15		Role of calcium and short-term memory			
22	17		Dendritic logic			

¹Based on suggestions in Scott Preface.

			Part III: Neuronal Assemblies		
L	W/D	Ch	Description		
23	19		$\Delta\Sigma$ modulation codec (Large dynamic range; noise dynamics)		
			https://en.wikipedia.org/wiki/Delta-sigma_modulation		
24	12/22	11	Cell assemblies; Associative networks		
-	24		University Holiday; No Class		
25	26		Real assemblies and their roles		
26	13/29	4	Hodgkin-Huxley; Spike generation concepts		
27	31		Space and voltage clamping (HW using HH matlab model)		
			https://virtualrat.org/hodgkin-huxley-model-action-potential-squid-giant-axon		
28	2		Leading edge models		
			Signal velocity (spikes, sound, light) (p. 148); Frog, cat, rabbit, squid motor nerves		
29	14/5		FritzHugh-Nagumo model		
30	7		Review of HH and modeling		
31	9		Exam II: (Optional in class review)		

			Part IV: Brain Theories
L	W/D	Ch	Description
32	15/12	10-a	Nets without circles (No feedback)
33	14	10-a	Nets with circles (Feedback)
34	16	10-b	Learning networks
35	16/19	10-b	Learning with feedback (back-tracing)
36	20	8	Ephaptic Evidence (Robustness models). (p. 165)
37	21	10-c	Field theories of Neocortex
38	17/24	10-c	Field theories of Neocortex
39		26-d	Control theory
40		28-е	Model of brain signal processing
41	18/19	31-f	Boolean logic decision processing
42	21		Last day of class; Review for Final (May 5)

Final Grade: The final grade will be based on a weighted average of the two midterm exams and the final exam (95%), and a 5% weight for the home works and class participation. An extra hour of 497 credit is given for a student project (with approval of the instructor).

Course outline by lecture, week and chapter.

References

- Agmon-Snir, H., Carr, C. E., and Rinzel, J. (1998). The role of dendrites in auditory coincidence detection. *Nature*, 393(6682):268.
- Dayan, P. and Abbott, L. F. (2001). *Theoretical neuroscience: computational and mathematical modeling of neural systems*. Computational Neuroscience Series.
- Eliasmith, C. and Anderson, C. (2004). Neural engineering: Computation. *Representation, and Dynamics in Neurobiological Systems*.
- Koch, C. (2004). Biophysics of computation: information processing in single neurons. Oxford university press.
- Scott, A. (2002). Neuroscience: A mathematical primer. Springer Science & Business Media.