1 Problems NS1

Topic of this homework: Fundamental theorem of algebra, polynomials, analytic functions and their inverse, convolution, Newton's root finding method, Riemann zeta function.

Deliverable: Answers to problems
Note: The term 'analytic' is used in two different ways. (1) An analytic function is a function that may be expressed as a locally convergent power series; (2) analytic geometry refers to geometry using a coordinate system.

Problem \# 1: A two-port network application for the Laplace transform

Figure 1: This three-element electrical circuit is a system that acts to low-pass filter the signal voltage $V_{1}(\omega)$, to produce signal $V_{2}(\omega)$. It is convienent to define the dimentionless ratio $s / s_{c}=R C s$ in terms of a time constant $\tau=R C$ and cutoff frequency $s_{c}=1 / \tau$.

- 1.1: Find the 2×2 ABCD matrix representation of Fig. 1. Express the results in terms of the dimentionless ratio s / s_{c} where $s_{c}=1 / \tau$ is the cutoff frequency and $\tau=R C$ is the time constant.
- 1.2: Find the eigenvalues of the 2×2 ABCD matrix.
- 1.3: Assuming that $I_{2}=0$, find the transfer function $H(s) \equiv V_{2} / V_{1}$. From the results of the $A B C D$ matrix you determined above, show that

$$
\begin{equation*}
H(s)=\frac{s_{c}}{s+s_{c}} . \tag{NS-1.1}
\end{equation*}
$$

- 1.4: The transfer function $H(s)$ has one pole. Where is the pole and residue?
- 1.5: Find $h(t)$, the inverse Laplace transform of $H(s)$.
- 1.6: Assuming that $V_{2}=0$ find $Y_{12}(s) \equiv I_{2} / V_{1}$.
- 1.7: Find the input impedance to the right-hand side of the system, $Z_{22}(s) \equiv V_{2} / I_{2}$ for two cases:

1. $I_{1}=0$
2. $V_{1}=0$

- 1.8: Compute the determinant of the $A B C D$ matrix. Hint: It is always ± 1.
- 1.9: Given the result of the previous problem Eq. NS-1.1, compute the derivative of $H(s)=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0}$.

Problem \# 2: Train-mission-line We wish to model the dynamics of a freight-train having N such cars, and study the velocity transfer function under various load conditions.

As shown in Fig. 2, the train model consists of masses connected by springs.

Physical description:

Figure 2: Depiction of a train consisting of cars, treated as a mass M and linkages, treated as springs of stiffness K or compliance $C=1 / K$. Below it is the electrical equivalent circuit, for comparison. The mass is modeled as an inductor and the springs as capacitors to ground. The velocity is analogous to a current and the force $f_{n}(t)$ to the voltage $\phi_{n}(t)$. The length of each cell is $\Delta[\mathrm{m}]$. The train may be accurately modeled as a transmission line (TL), since the equivalent electrical circuit is a lumped model of a TL.

Use the ABCD method to find the matrix representation of the system of Fig. 2. Define the force on the nth train car $f_{n}(t) \leftrightarrow F_{n}(\omega)$, and velocity $v_{n}(t) \leftrightarrow V_{n}(\omega)$.

Break the model into cells consisting of three elements: a series inductor representing half the mass $(M / 2)$, a shunt capacitor representing the spring $(C=1 / K)$, and another series inductor representing half the mass $(L=M / 2)$, transforming the model into a cascade of symmetric $(\mathcal{A}=\mathcal{D})$ identical cell matrix $\mathcal{T}(s)$.

- 2.1: Find the elements of the $A B C D$ matrix \mathcal{T} for the single cell that relate the input node 1 to output node 2

$$
\left[\begin{array}{l}
F \tag{NS-1.2}\\
V
\end{array}\right]_{1}=\mathcal{T}\left[\begin{array}{c}
F(\omega) \\
-V(\omega)
\end{array}\right]_{2}
$$

- 2.2: Express each element of $\mathcal{T}(s)$ in terms of the complex Nyquist ratio $s / s_{c}<1$ $\left(s=2 \pi j f, s_{c}=2 \pi j f_{c}\right)$. The Nyquist sampling cutoff frequency f_{c} is defined in terms the minimum number of cells (i.e., 2) of length Δ per wavelength:
The Nyquest sampling theorm says that there are at least two cars per wavelength (more than two time samples at the highest frequency). From the figure, the distance between cars $\Delta=c_{o} T_{o}[\mathrm{~m}]$ where

$$
c_{o}=\frac{1}{\sqrt{M C}} \cdot \quad[\mathrm{~m} / \mathrm{s}]
$$

The cutoff frequency obeys $f_{c} \lambda_{c}=c_{o}$ where the Nyquist wavelength is $\lambda_{c}=2 \Delta$. Therefore the Nyquist sampling condition is

$$
\begin{equation*}
\omega<\omega_{c}=2 \pi f_{c} \equiv \frac{2 \pi c_{o}}{\lambda_{c}}=\frac{2 \pi c_{o}}{2 \Delta}=\frac{\pi}{\Delta \sqrt{M C}} \tag{NS-1.3}
\end{equation*}
$$

- 2.3: Use the property of the Nyquist sampling frequency $f<f_{c}(E q . N S-1.3)$ to remove higher order powers of frequency

$$
\begin{equation*}
1+\left(\frac{s}{s_{c}}\right)^{2^{0}} \approx 1 \tag{NS-1.4}
\end{equation*}
$$

to determine a band-limited approximation of $\mathcal{T}(s)$.

Problem \# 3

Now consider the cascade of N such $\mathcal{T}(s)$ matrices, and perform an eigen-analysis.

- 3.1: Find the eigenvalues and eigenvectors of $\mathcal{T}(s)$, as functions of s / s_{c}.

Problem \# 4

Finally, find the velocity transfer function:

- 4.1: Assuming that $N=2$ and that $F_{2}=0$ (two half-mass problem), find the transfer function $H(s) \equiv V_{2} / V_{1}$. From the results of the \mathcal{T} matrix, find

$$
H_{21}(s)=\left.\frac{V_{2}}{V_{1}}\right|_{F_{2}=0}
$$

Express H_{12} in terms of a residue expansion.
-4.2: Find $h_{21}(t) \leftrightarrow H_{21}(s)$.

- 4.3: What is the input impedance $Z_{1}=F_{1} / V_{1}$, assuming $F_{2}=-r_{0} V_{2}$?
- 4.4: Simplify the expression for Z_{2} assuming:

1. Assuming the characteristic impedance $r_{0}=\sqrt{M / C}$
2. terminate the system in $r_{o}: F_{2}=-r_{0} V_{2}$ (i.e., $-V_{2}$ cancels)
3. Assume higher order frequency terms are less than $1\left(\left|s / s_{c}\right|<1\right)$
4. Let the number of cells $N \rightarrow \infty$. Thus $\left|s / s_{c}\right|^{N}=0$.

When a transmission line is terminated in its characteric impedance r_{o}, the input impedance $Z_{1}(s)=r_{o}$. Thus when we simplify the expression for $\mathcal{T}(s)$ it should be equal to r_{o}. Show that this is true for this setup.

- 4.5: State the ABCD matrix relationship between the first and Nth node in terms of the cell matrix. Write out the transfer function for one cell: H_{21} ?
- 4.6: What is the velocity transfer function $H_{N 1}=\frac{V_{N}}{V_{1}}$?

System Classification

Problem \# 5: Answer the following system classification questions about physical systems, in terms of the system postulates.

- 5.1: Provide a brief definition of the following properties: L/NL : linear(L)/nonlinear(NL): TI/TV : time-invariant(TI)/time varying(TV):

P/A : passive (P)/active(A):
C/NC : causal(C)/non-causal(NC):
$\mathrm{Re} / \mathrm{Clx}$: $\mathrm{real(Re)/complex(Clx):}$

- 5.2: Along the rows of the table, classify the following systems: In terms of a table having 5 columns, labeled with the abbreviations: L/NL, TI/TV, P/A, C/NC, Re/Clx:

					Categry		
$\#$	Case:	Definition	L/NL	TI/TV	P/A	C/NC	Re/Clx
1	Resistor	$v(t)=r_{0} i(t)$					
2	Inductor	$v(t)=L_{d i}^{d t}$					
3	Switch	$v(t) \equiv\left\{\begin{array}{ll\|l\|l\|l}0 & t \leq 0 \\ v_{0} t>0 . \\ t\end{array}\right.$					
5	Transistor	$I_{\text {out }}=g_{m}\left(V_{\text {in }}\right)$					
7	Resistor	$v(t)=r_{0} i(t+3)$					
8	modulator	$f(t)=e^{i 2 \pi t} g(t)$					

- 5.3: Using the same classification scheme, characterize the following equations:

$\#$	Case:	L/NL	TI/TV	P/A	C/NC	Re/Clx
1	$A\left(x\left(\frac{d^{2} y(t)}{d t^{2}}+D(t) y(x, t)=0\right.\right.$					
2	$\frac{d y(t)}{d t}+\sqrt{t} y(t)=\sin (t)$					
3	$y^{2}(t)+y(t)=\sin (t)$					
4	$\frac{\partial^{2} y}{\partial t^{2}}+x y(t+1)+x^{2} y=0$					
5	$\frac{d y(t)}{d t}+(t-1) y^{2}(t)=i e^{t}$					

