
1 Problems NS3

Topic of this homework: Neuron and synapse terminology; Postulates of systems; Analysis of a diffusion transmission line.

Problem # 1: Analyize the circuit of the OpAmp with feedback.

-1.1: Set up the equations and solve for various properties of the OpAmp.

- 1. In qualitative terms, what is the ratio of the input to output impedance.
- 2. Describe the purpose and setup for the *space-clamp* circuit.
- 3. Find the formula for the transfer function $H = V_o/V_+$.

Problem # 2: Analyize a Δ long patch of membrane.

-2.1: Set up the equations to estimate the properties of a mylinated nerve fiber.

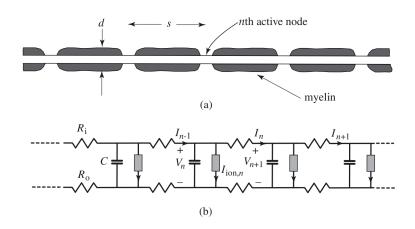


Figure 1: Diagram of the Frog axon showing the physical and electrical circuit (Scott, p. 142).

Standard frog axon

Distance between nodes (s) = 2 mm. Outside fiber diameter $(d) = 14 \ \mu$ m. Internal resistance/length $(r_i) = 140$ –145 megohm/cm. External resistance/length $(r_o) \ll r_i$. Capacity of myelin/length $(c_m) = 10$ –16 pF/cm. Capacity of active node $(C_n) = 0.6$ –1.5 pF. Experimental impulse speed $v_e = 23$ m/s.

Figure 2: Parameters measured for the Frog axon (Scott, p. 143)

1. Assume the following

$$\lambda_o f_{\max} = v_e = 23 \text{ [m/s]}$$

= $\lambda_o/2 \text{ [mm]}$

From a previous homework we assumed that $\Delta = \lambda/2$ and $\tau = RC$. Here $\Delta = s$ is taken to be the distance between nodes.

Find f_{max} .

2. Find the time constant ($\tau = RC$) and the cutoff frequency $f_c = 1/2\pi\tau$. Compare f_c to f_{max} .

Problem # 3: Thermodynamics of the cell membrane

-3.1: Set up the equations to estimate the equilibrium sodium and potassium concentrations.

1. Define the three membrane currents that re the most important to action potentials (spikes).

$$\begin{split} J_{\text{disp}} &= C_o \frac{d}{dt} v(t) \\ J_c(s) &= q \mu_{\text{Na}} [\text{Na}^+] E = q \mu_{\text{Na}} [\text{Na}^+] \frac{dV}{dx} \\ J_d &= -q D_{\text{Na}} \frac{d}{dx} [\text{Na}^+] \end{split}$$

- 2. What is the relation between the conduction and diffusion currents under equilibrium conditions?
- 3. Derive the relation between the voltage and $[Na^+]$ when the system is in the equilibrium condition?
- 4. Integrate the differential equation and derive the relation between the Na⁺ concentrations on the two sides of the membrane and the voltage across the membrane $V = V_o V_i$. Hint: see pp. 57-59.

History

Problem # 4: Relevant historical questions

- -4.1: Provide a brief definition of the following properties:
- 1. Albert Einstein.
- 2. Hodgkin and Huxley.
- 3. Hermann Helmholtz.