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4 1. A Short History of Neuroscience
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Figure 1.1. An early oscillogram of the change in membrane conductance (band)
and membrane voltage (line) with time during the passage of a nerve impulse on
a squid axon. (Time increases to the right, and the marks along the lower edge
indicate intervals of 1 ms.) (Courtesy of K.S. Cole.)

a maximum value of about 100 millivolts (mV) in a fraction of a millisecond
(ms), and this initial rise is called the wave front or leading edge of the nerve
impulse. The impulse voltage then relaxes more slowly back to its resting
level over a time interval of several milliseconds. The broad band also shown
in the figure is a measure of changes of membrane permeability (or ionic
conductance) from a resting value.3

Curiously overlooked by Western scientists was an important paper that
also appeared in 1938 by the Soviet scientists Yakov Zeldovich and David
Frank-Kamenetsky [71]. Addressing the problem of flame-front propaga-
tion, they proposed a simple nonlinear partial differential equation (PDE)
for nonlinear diffusion in an active medium in which the independent vari-
ables were time and distance in the direction of propagation. In this paper,
the authors solved their nonlinear PDE for an analytic solution describing
a stable traveling wave: the flame front.

As we will see in Chapter 5, this simple equation also predicts both the
speed of a nerve impulse on a squid axon and the shape of its leading
edge. If these results had been noted by applied mathematicians and be-

3To measure ionic conductance, an ac bridge was balanced at the resting level of
membrane permeability; thus, the width of the band indicates unbalance of the bridge,
which stems from the change of permeability during the impulse.
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Figure 1.2. Comparison of the squid giant axon (left) and the sciatic nerve bundle
controlling the leg muscle of a rabbit (right). There are about 375 myelinated
fibers in the rabbit nerve, each conducting an individual train of nerve impulses
at up to 80 m/s, about four times faster than the impulse velocity on a squid
nerve. (Data from Young [70].)

the qualitative nature of nerve impulse propagation. Continuing throughout
the 1970s, this tardy yet essential effort has deepened our understanding
of several key phenomena, including all-or-nothing propagation, threshold
conditions for nerve impulse formation, impulse stability, impulse response
to variations in fiber geometry, decremental conduction, speed of periodic
impulse trains, and effects of temperature and narcotization, all of which
are considered in this book.

Presently, the propagation of a nerve impulse on a smooth fiber is a
well-understood area of mathematical biology, the salient features of which
should be appreciated by all serious students of neuroscience.

Interestingly, the sciatic nerve—first studied by Galvani in the late
eighteenth century and used as a basic preparation for much subsequent
neuroscience research—is not a smooth fiber; in fact, it is not even a single
fiber. Like all vertebrate motor nerves, the sciatic nerve is a bundle of in-
dividual fibers, each carrying a different train of impulses from the spinal
cord to a muscle, as was emphasized in a classic image prepared by J.Z.
Young from which Figure 1.2 is drawn.

In this figure, we see a squid nerve compared with a rabbit sciatic nerve
bundle on the same scale of distance showing that the rabbit nerve has
about 375 information channels to one for the squid nerve. Because rabbit
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Figure 2.1. A cartoon of a typical nerve cell, or neuron, showing dendrites that
gather incoming information from input synapses and an axon carrying outgoing
signals through the branches of the axonal tree to other neurons or muscles.

• Axons: The axon, or outgoing channel of a neuron carries information
away from the cell body and toward the output terminals. As indicated
in Figure 1.2 of the previous chapter, an axon may be a relatively large
fiber, such as the squid giant axon, or one of the many smaller fibers
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Figure 2.2. Sketches of a chemical synapse. (a) A nerve impulse arrives at the
synapse, inducing a vesicle to fuse with the presynaptic membrane. (b) The pro-
cess of exocytosis, wherein a vesicle is releasing its neurotransmitter molecules
into the synaptic cleft. (The drawings are not to scale.)
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Figure 3.1. (a) A lipid (fatty) molecule (redrawn from Goodsell [3]). (b) A
monomolecular lipid layer on water surface. (c) A bimolecular soap film. (d)
A lipid bilayer.

bright light, you will at first observe the colored interference bands of the
film that are familiar from childhood observations of soap bubbles. These
color bands indicate that the film thickness is of the order of a wavelength
of visible light (∼ 4000 Å , or 400 nm) [1]. If you watch the film for a
few minutes, however, it undergoes a dramatic change. Without breaking,
the film becomes almost completely reflectionless, which indicates that its
thickness has suddenly reduced to a value well below the wavelength of
visible light, causing it to appear black. You are now observing a bimolecular
soap film with the structure shown in Figure 3.1(c). (Within this film, a
thin layer of water remains that attracts their charged head groups.)

Because the membrane of a biological cell is totally immersed in water,
an energetically favorable structure is the lipid bilayer film, shown in Figure
3.1(d), and extended films can assume a variety of interesting geometries.
If the film is a closed surface, for example, its natural form will be a sphere
because that shape minimizes total energy, just as for soap bubbles.2 Re-

2Collections of bubbles are yet more intricate. The next time you are washing up,
you might take a careful look at a handful of soapsuds under a good light, noting that
interior divisions tend toward a fourteen-sided figure, called a tetrakaidekahedron by Lord
Kelvin. Just as the hexagon fills a two-dimensional area with a minimum boundary, this
14-gon is a space-filling shape with minimum wall area [19].
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Figure 3.3. (a) A capacitor in a vacuum. (b) A capacitor that is filled with a
material substance.

• The electrical capacitance of a lipid bilayer is about 1 microfarad
(µF) per square centimeter.

• The electrical conductivity (or ionic permeability) of a pure lipid
bilayer is very small, corresponding to that of a good insulator such
as quartz.

• Membrane permeability is very sensitive to the presence of intrin-
sic proteins. If certain proteins are dissolved in the lipid bilayer,
membrane conductivity increases by several orders of magnitude.

• With a proper choice of embedded membrane proteins, the switching
action of a nerve membrane can be reproduced [10].

Because these observations are relevant to studies of the nerve, let us
consider them in greater detail.

3.2 Membrane Capacitance

As we will see in the following chapter, the electrical capacitance of a nerve
membrane plays a key role in the dynamics of its switching; thus, it is
important for neuroscientists to understand what a capacitor is and the
nature of the electric charge that it stores.

Consider first the vacuum capacitor shown in Figure 3.3(a) in which two
parallel conducting plates of area A are separated by distance d. The plates
are insulated from each other by a vacuum, so how does electric current
manage to flow into the capacitor on the upper wire and out of it on the
lower wire? Does electric current actually flow through the vacuum?

To answer such questions, let us connect a battery of voltage V across
an uncharged capacitor with its positive (negative) terminal to the upper
(lower) wire. Initially, current will flow into (out of) the upper (lower) plate,
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Figure 3.4. An electric circuit model for a unit area of the lipid bilayer membrane
shown in Figure 3.2.

3.4 A Membrane Model

We are now in a position to assemble an electrical model for a lipid bilayer
membrane that is permeable to an arbitrary number of ionic species, taking
account of the following current components.

First, there is the capacitive component, which from Section 3.2
contributes a current density of

Jcap = C
dV

dt
,

where C = κε0/d is the capacitance per unit area of the bilayer. This
current is represented as the left-hand branch in Figure 3.4, where in the
context of Figure 3.2

V ≡ V2 − V1 .

In addition to the capacitive current, there is also an ionic current for
each species of ion that is able to pass through the membrane. Let us first
consider the sodium ion current, which is represented as the second branch
(counting from the left) in Figure 3.4.

From the previous section, sodium ion current consists of two inde-
pendent components: conduction current (which flows in response to the
voltage difference across the membrane) and diffusion current (which re-
sponds to the difference of sodium ion concentrations on the two sides of the
membrane). Although they can be independently adjusted, these two com-
ponents are linked by the Einstein relation between mobility and diffusion
constant for each ion.
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Figure 4.2. Figures related to the Hodgkin–Huxley determination of membrane
conductances. (a) The applied voltage as a function of time. (b) Measurements
of total ionic current and potassium current, from which sodium current can be
calculated. (c) Sodium and potassium conductances at V = Vj as functions of
time. (See the text for details.)

where these diffusion potentials depend on the ratios of outside to inside
ion concentrations.

To measure the individual (sodium plus potassium) components of
membrane conductivity, Hodgkin and Huxley proceeded as follows [16].

(1) As indicated in Figure 4.2(a), the space-clamped membrane voltage
was suddenly changed from the resting value (V = 0) at t = 0 to Vj , where

VNa > Vj > 0 ,

and held there under voltage clamping. At this voltage, the total ion cur-
rent, Jion(Vj , t), through the membrane was measured as a function of time,
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Figure 4.3. (a) Sketch of a squid axon. (b) A corresponding differential circuit
diagram that can be used to derive the cable equation for impulse propagation.

where i is the longitudinal (x-directed) current flowing through the nerve.
From conservation of electric charge, we also know that to first order in ∆x

i(x, t)−i(x+∆x, t) =
(

c
dV (x + ∆x/2, t)

dt
+ jion(x + ∆x/2, t)

)
∆x . (4.9)

Combining these two equations to eliminate i and taking the limit as ∆x →
0 yields the following nonlinear diffusion equation:

1
rc

∂2V

∂x2 − ∂V

∂t
=

jion
c

. (4.10)

Motivated by familiarity with a related partial differential equation that
arose in the analysis of telegraph lines, Equation (4.10) is often called the
“cable equation” by electrophysiologists, but this name is misleading. Prop-
agation of dits and dahs over a telegraph line is a linear electromagnetic
phenomenon, whereas Equation (4.10) represents nonlinear electrostatic
diffusion.6

From the perspectives of modern nonlinear science, Equation (4.10) is
a nonlinear field equation out of which emerges an elementary particle of
neural activity: the nerve impulse [35]. It is nonlinear because of the nonlin-
ear dependencies of jion on m, h, and n, which in turn depend nonlinearly
on V .

Let us now analyze the cable equation to understand how a nerve impulse
emerges from the mathematical structure that we have developed.

6Using Maxwell’s equations, one can take magnetic effects into account in the deriva-
tion of Equation (4.10), but the error involved in neglecting this correction is about one
part in 108 [33].
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to zero with increasing time as solutions of the full PDE given by Equation
(4.10). (See Sections 5.4 and 6.5.2 and Appendix D for discussions of nerve
impulse stability criteria.)
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Figure 4.5. A full-sized spike (at v = 18.8 m/s) and an unstable threshold impulse
(5.66 m/s) for the Hodgkin–Huxley axon at 18.5oC. (Redrawn from Huxley [21].)

The smaller-amplitude traveling wave solution, with a speed of 5.66 m/s,
was found by Huxley in 1959 using an electronic computing machine [21].
This solution is unstable in the sense that deviations from it diverge with
increasing time as solutions of the full PDE given by Equation (4.10).
Slightly smaller solutions decay to zero, and slightly larger solutions grow
to become the fully developed nerve impulse; thus, this unstable solution
defines threshold conditions for igniting an impulse.

In the language of modern nonlinear theory, the stable traveling wave of
greater amplitude can be viewed as an attractor in the solution space of
the PDE system of Equation (4.10); thus, solutions lying within a basin of
attraction converge to the attractor as t → +∞. The lower-amplitude un-
stable solution, on the other hand, lies on a separatrix dividing an impulse’s
basin of attraction from that of the null solution.

4.6 Degradation of a Squid Nerve Impulse

By the middle of the 1960s, electronic computing machines had devel-
oped to a level where the original Hodgkin–Huxley calculations were fairly
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Figure 4.7. Decremental propagation of an impulse on an H–H axon that is
narcotized by the factor η = 0.25 (sketched from data in [9] and [25]).

where the two solutions merge. For yet smaller values of η, no traveling-wave
solutions exist.

To appreciate the physical significance of these results, look at the (v, η)
parameter plane of Figure 4.6. The curve plotted in this plane shows the
loci of parameters where a balance is established between the rate at which
energy is generated by the ionic batteries in Equation (4.5) and the rate at
which it is dissipated by the ionic currents associated with a nerve impulse.

The upper curve indicates stable traveling-wave solutions, implying that
a small change of an impulse solution (either positive or negative) will re-
lax back to zero and restore the original wave. The lower curve indicates
unstable traveling waves, implying two different effects. An increase in am-
plitude of the solution will grow (because energy generation is greater than
dissipation) until the total solution reaches the stable solution of the upper
curve. If its amplitude is decreased, on the other hand, the impulse will
decay (because energy generation is less than dissipation) until it falls to
zero. These numerical results provide an explanation for the all-or-nothing
property of a nerve impulse noted by Adrian in 1914 [2].

Although the concept of all-or-nothing propagation holds for η > ηc, its
logical basis evaporates for η < ηc. In this regime, however, one can find
decremental propagation of a nerve impulse, as is sketched in Figure 4.7 [9,
25]. For such a decremental impulse, the rate at which energy is generated is
only slightly less than the rate of dissipation, so the solution relaxes rather
slowly to zero. As has been emphasized by Lorente de Nó and Condouris
[27], this phenomenon was long overlooked by electrophysiologists who had
concentrated their attentions on the properties of standard nerves.

These qualitative conclusions stemming from the computations of Coo-
ley and Dodge are quite general, applying to several other experimental
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Leading-Edge Models

To develop an intuitive understanding of a challenging area, it is sometimes
useful to bracket the problem, on one hand looking fully at the intricacies
and on the other taking the simplest possible perspective. Having consid-
ered a rather complete description of a squid axon in Chapter 4, we now
turn our attention to simpler models of a nerve fiber that focus attention
on the leading edge of an impulse.

Although lacking the scope and precision of the Hodgkin–Huxley formu-
lation, these models are easier to grasp and thus useful for appreciating
some fundamental aspects of nerve impulse propagation, including stabil-
ity. Furthermore, we will obtain analytic expressions for impulse velocity
and threshold conditions for impulse ignition and show how these features
depend on physical parameters of the nerve.

5.1 Leading-Edge Approximation for the H–H
Impulse

As we learned in the previous chapter, propagation in a Hodgkin–Huxley
squid axon is governed by the nonlinear diffusion equation (or “cable equa-
tion”) given in Equation (4.10), where jion is the ionic current flowing out
of the fiber per unit of distance in the x-direction. This ionic current, in
turn, has three components: sodium, potassium, and leakage.

Because the time for turn-on of the sodium current is about an order
of magnitude shorter than the times for sodium turn-off and potassium
turn-on, an attractive approximation for representing the leading edge of
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Figure 5.3. Two forms of the function f(v) for which Equation (5.5) has analytic
traveling-wave solutions. (a) A cubic function defined in Equation (5.9). (b) A
piecewise linear function defined in Equation (5.12).

as can be checked by direct substitution. (In these equations, there is no
tilde on v because the velocity is no longer in normalized units.)

2. Piecewise linear model: Shortly after the observation by Cole and Cur-
tis that the impedance of a squid membrane decreases by a factor of about
40 during the passage of a nerve impulse [2], Offner, Weinberg, and Young
proposed to model a nerve membrane by the “piecewise linear” conductance
shown in Figure 5.3(b) and defined by [11]
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Recovery Models

Propagation of a nerve impulse is often compared with the burning of a
candle, of which the leading-edge models considered in the previous chapter
provide examples. This is a flawed metaphor, however, because a candle
burns only once, spending (like H.C. Andersen’s little match girl) its entire
store of chemical energy to keep the flame bright and hot, with no possibility
of transmitting a second flame. As we have seen both from Cole’s classic
oscillogram of Figure 1.1 and the more detailed data of Figure 4.8, a nerve
impulse exhibits recovery over an interval of a few milliseconds, allowing
subsequent impulses to be transmitted by the nerve. Without this feature,
our nervous systems would be useless for processing information, and the
animal kingdom could not have developed.

In this chapter, we explore some simple models for the recovery phe-
nomenon that are useful not only for broadening our physical and
mathematical understanding of nerve impulse propagation but also for
making better estimates of nerve behavior.

6.1 The Markin–Chizmadzhev (M–C) Model

One of the simplest means for representing recovery of a propagating nerve
impulse was introduced by Kompaneyets and Gurovich in the mid-1960s
[23] and developed in detail by Markin and Chizmadzhev in 1967 [24].
This M–C model assumes the diffusion equation (or “cable equation”) with
which we began the previous chapter; thus the transmembrane voltage V
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Figure 6.1. (a) Ionic current in the M–C model as a function of the traveling-wave
variable (ξ). (b) Structure of the associated nerve impulse.

• Because V4(ξ) = 0 and V1(ξ) = C1 exp(−vrcξ), there are a total of
seven constants to determine: C1, A2, B2, C2, A3, B3, and C3. (The
impulse speed v appears as a parameter in Equation (6.5), so these
“constants” are actually functions of the traveling-wave speed.) The
boundary conditions between regions #1 and #2, #2 and #3, and #3
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is governed by the PDE1

1
rc

∂2V

∂x2 − ∂V

∂t
=

jmc(x, t)
c

. (6.1)

In this model, however, the ionic membrane current is not represented as a
voltage-dependent variable, as in Equation (5.3), but by one of the following
prescribed functions of time.

(1) If V does not reach the threshold value of Vθ, then

jmc(x, t) = 0 .

(2) If, on the other hand, V does reach the threshold value of Vθ at some
instant (which is defined as t = 0), then at x = 0

jmc(0, t) = 0 for t < 0 ,

= −j1 for 0 < t < τ1 , (6.2)
= +j2 for τ1 < t < τ1 + τ2 , and
= 0 for t > τ1 + τ2 .

Whereas Equation (5.2) is a nonlinear diffusion equation, Equation (6.1)
is a piecewise linear inhomogeneous diffusion equation, which is easier to
solve. Thus, this is evidently a helpful assumption to make, but how do we
choose the parameters (j1, j2, τ1, τ2) that define jmc(0, t)?

Recalling that the positive direction for ionic current is outward, the
early current −j1 represents the inward flow of sodium ions, whereas the
later component +j2 describes outward flow of potassium ions. Thus, τ1
and τ2 can be obtained from the waveform of the squid impulse in Figure
1.1, and it is possible to estimate j1 from the leading-edge charge Q0, which
we obtained in Equation (5.20).

Noting that j1 has the units of current per unit of distance along the
axon (amperes per centimeter), it follows that the spatial width over which
inward current flows is vτ1, where v is the impulse speed. Assuming further
that the flow of j1 across the membrane supplies the leading-edge charge—
defined in Equation (5.19)—implies j1vτ1 = Q0/τ1, or

j1 =
Q0

vτ2
1

=
Q2

0r

Vmaxτ2
1

A/cm . (6.3)

Finally, the condition

j1τ1 = j2τ2

1An even simpler version of the M–C concept is the “integrate and fire” model of
a neuron, in which the entire cell is approximated as a single switch in parallel with a
capacitor [1, 21, 22]. The capacitor integrates incoming charge until a threshold voltage
is reached, whereupon the switch closes briefly, discharging the capacitor and restarting
the process. A more realistic version is Gerstner’s “spike response model” [12, 13], which
is convenient for approximate numerical studies of large neural networks.
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Myelinated Nerves

Following the Hodgkin–Huxley formulation of nerve impulse dynamics for
the giant axon of the squid [31], most mathematical studies have focused on
smooth nerve fibers, as in the previous three chapters. Although this picture
is appropriate for the squid axon, many vertebrate nerves—including the
frog motor nerve studied by Galvani and axons of mammalian brains—are
bundles of discrete, periodic structures, comprising active nodes (also called
“nodes of Ranvier”) separated by relatively long fiber segments that are
insulated by a fatty material called myelin. In such myelinated nerves, the
wave of activity jumps from one node to the next, and should be modeled
by nonlinear difference-differential equations rather than by PDEs.

Impulse propagation on myelinated nerves (called saltatory conduction
by the electrophysiologists) is qualitatively similar to a row of falling domi-
nos or to the signal fires of coastal warning systems during the Middle Ages.
In an evolutionary context, myelinated nerve structures are useful because
they allow an increase in the speed of a nerve impulse while decreasing
the diameter of the nerve fiber. Thus, the motor nerves of vertebrates may
comprise several hundred individual saltatory fibers, each serving as an in-
dependent signaling channel [76]. The rabbit sciatic nerve shown in Figure
1.2, for example, can transmit information about three orders of magnitude
faster than a squid axon of the same diameter while expending much less
energy in transmitting an individual impulse than does a smooth fiber.

Over the past century, studies of impulse propagation on myelinated
nerves have been carried on in three different professional areas, among
which there has been less than ideal communication. Electrophysiology, of
course, is the foremost of these groups [7, 11, 33, 35, 61, 62, 68, 69], and since
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Figure 7.1. (a) A single myelinated nerve fiber (not to scale). (b) The
corresponding electric circuit diagram.

for which a corresponding electric circuit diagram is shown in Figure
7.1(b).1

In these equations, the index n indicates successive active nodes, each
characterized by a transverse voltage across the membrane (Vn). A second
dynamic variable is the current (In) flowing longitudinally through the
fiber from node n to node n + 1. Thus Equation (7.1) is merely Ohm’s
law, which relates the voltage difference between two adjacent nodes of
the current flowing between them times the sum of the inside and outside
resistances, Ri and Ro.

Equation (7.2) says that the current flowing into the nth node from the
(n − 1)th node (In−1) minus the current flowing out of it to the (n + 1)th
node (In) is equal to the following two components of transverse (inside to
outside) current leaving the node: capacitive current, C dVn/dt, and ionic
current, Iion,n, comprising mainly a sodium component [31].

The time delay for the onset of sodium ion permeability is rather short
(in the frog nerve it is about 0.1 ms), whereas the time delay for the on-

1More correctly, the passive fiber joining two active nodes should be represented by
a linear diffusion equation (see Section 9.1.1), as was approximately done by Moore et
al. [48]. In Equations (7.1) and (7.2), however, the passive internode fiber is modeled by
a single series resistance (Ri) and a single shunt capacitor (equal to the capacitance of
the myelin sheath), which is simply added to the node capacitance to obtain the total
capacitance C. Although this approximation neglects shunt conductance of the myelin
sheath, Moore et al. have shown that it has a negligible effect on conduction velocity.
Such a “Π-network approximation” for the internode fiber greatly eases computational
problems while reducing the number of parameters to be considered, thereby facilitating
interpretations of numerical results.
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Figure 7.3. Empirical conduction velocities (ve) vs. outside fiber diameters (d) for
myelinated axons of two different vertebrate species: the frog at a temperature
of 24oC (from data in [71]), and the cat at a temperature of 37.5oC (from data
in [33]).

outer fiber diameter of 14 µm, the calculated conduction velocity of 29 m/s
is in accord with the data of Figure 7.3.

Assured that the simple model of Section 7.1 is not unreasonable, we are
led to two observations of biological significance. First, failure of an impulse
on the standard frog axon is expected to occur at an internode spacing of
9.5 mm (corresponding to D∗ = 0.21), whereas the normal spacing is 2 mm.
The evolutionary design of this axon thus provides a comfortable margin of
safety against failure. Second, Figure 7.2 shows that at D = 1 the impulse
velocity of a normal frog nerve is close to the maximum possible value,
again suggesting that an optimal design has evolved.

Although the preceding results for varying D (or internode spacing s =
2 mm/D) have been obtained under the assumption that other properties
of a nerve fiber remain fixed, this is a mathematical fiction. In real nerves,
some sort of design optimization has occurred over the course of biological
evolution that simultaneously adjusts all parameters in appropriate ways.
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Figure 8.1. (a) Experiment of Katz and Schmitt to measure impulse interactions
on parallel fibers. (b) Change in threshold on fiber #2 (at point A) caused by
the presence of an impulse on fiber #1. (Redrawn from [17].)

pioneering work of Arvanitaki [1] inspired several observations of ephaptic
interactions [4, 10, 12, 14, 17, 18, 19, 25, 26, 28, 29]. More recent references
include both theoretical and experimental studies [2, 7, 8, 11, 27] and the
important review by Jefferys [15].

An early investigation by Katz and Schmitt provides particularly clear
evidence for nonsynaptic interactions [17, 18, 19]. From a variety of exper-
iments on a pair of naturally adjacent, unmyelinated fibers from the limb
nerve of a crab, these authors presented the following results.

• Using the experiment sketched in Figure 8.1(a), a reference impulse
was launched on fiber #1 from the left, traveling toward the right,
and at various later times the relative threshold on fiber #2 was
measured at point A.
Their observations are sketched in Figure 8.1(b), from which it is
seen the threshold on fiber #2 changes in a manner that is related to
the second derivative of the impulse voltage on fiber #1. (To empha-
size this relationship, the impulse voltage in Figure 8.1(a) is dashed
where its second derivative is negative, and the corresponding range
of reduced threshold in Figure 8.1(b) is also dashed.)

• If impulses are launched at about the same time on two parallel fibers
with independent impulse speeds that do not differ by more than
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Figure 8.2. Markin’s equivalent circuit for two ephaptically coupled nerve fibers
[22, 23].

the late 1970s using internal and external voltage recordings to obtain data
confirming the second of Equations (8.2). Although ephaptic interactions
are unlikely to permit direct transmission of an impulse from one nerve
fiber to another, they concluded, impulse coupling is feasible under normal
physiological conditions.

Key to the M–C description of nerve impulse propagation is the
assumption that

jion = jmc(ξ) ,

where jmc(ξ) follows the piecewise constant function shown in Figure 6.1
whenever V reaches the threshold voltage. Thus, any influence that re-
duces (increases) the time for an impulse to reach threshold will increase
(decrease) its speed.

To apply this concept, let us assume that an impulse on fiber #2 is
leading an impulse on fiber #1 by a distance δ. In other words, the impulse
on fiber #1 goes through threshold at ξ1 = 0, where

ξ1 = x − v1t ,

and the impulse on fiber #2 goes through threshold at ξ2 = 0, where

ξ2 = x − v2t − δ .

Now note two additional facts that are evident from the general shape of
a nerve impulse: (i) ahead of the point where an impulse goes through
threshold, its second space derivative is positive; and (ii) behind this point
the second space derivative is negative.

Consider the first of Equations (8.1), and assume that ξ1 ≈ 0. Because
V2 has already gone through its threshold, ∂2V2/∂x2 is negative. Thus,
the influence of V2 on impulse #1 is to increase ∂V1/∂t, thereby raising
V1 above what it would be without the interaction. This has the effect of
speeding up impulse #1 (increasing v1), which causes δ to decrease.
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Figure 8.6. (a) Two myelinated nerves on which impulses may be coupled by a
linking of their external return currents (not to scale). (b) A circuit diagram of
the coupled myelinated nerves.

determined by the I
(1)
n and I

(2)
n .) Equating the voltages about the meshes

to zero leads directly to the equations

V (1)
n − V

(1)
n+1 = (Ri + Ro)I(1)

n + Ro

[
AI(2)

n + (1 − A)I(2)
n−1

]
,

V (2)
n − V

(2)
n+1 = (Ri + Ro)I(2)

n + Ro

[
AI(1)

n + (1 − A)I(1)
n+1

]
,

where the voltages across the active nodes are related to the mesh
currents by

I
(j)
n−1 − I(j)

n = C
dV

(j)
n

dt
+ I

(j)
ion,n .

As in the previous chapter, it is analytically convenient to model the ionic
current in the cubic approximation

I
(j)
ion,n =

(
G

V2(V2 − V1)

)
V (j)

n (V (j)
n − V1)(V (j)

n − V2) ,

which was introduced in Equation (5.9).
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(a) (b)

(c) (d)

Figure 9.1. Typical dendritic trees in the hippocampus of the rat. (a) CA1 pyra-
midal cell [90]. (b) CA3 pyramidal cell [127]. (c) Interneuron [76]. (d) Granule
cell [128]. (From the Southampton–Duke Public Morphological Archive [27].)

fiber, which is more than an order of magnitude smaller than the active
conductance (g) that was considered in Chapter 5.

It is convenient to normalize this equation by measuring time in units of
c/grest and distance along the fiber in units of 1/

√
rgrest. Then Equation

(9.1) reduces to the normalized form

∂2V

∂x̃2 − ∂V

∂t̃
= V , (9.2)

where

x̃ ≡ x
√

rgrest and t̃ ≡ t
grest

c
.
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Figure 9.5. Ramón y Cajal’s classic image of a Purkinje cell from the human
cerebellum [96].

blocking condition is satisfied. To this end, let us consider the bifurcation
shown in Figure 9.4(b) with the notation that d1 and d2 are daughter diam-
eters and d3 is the diameter of the parent branch. Extracted and enlarged
from Figure 9.5, two possibilities are indicated in Figure 9.6.6

OR Bifurcations
For the simple branch shown in Figure 9.6(a), it is seen that d1 ≈ d2 ≈ d3.
Supposing that an impulse arrives at the branch from (say) daughter #1,

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 2 .

All of the models treated in the preceding section imply that this GR is
too small for blocking of an impulse to occur. Thus incoming impulses on
either of the two daughters are able to ignite the parent. Using the jargon
of computer engineering, this can be described as an OR junction because

6The examples given in this section are for illustration only because the Golgi stain
technique used by Ramón y Cajal to obtain Figure 9.5 may not record all of the dendritic
structures.
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(b)

(a)

Figure 9.6. Details of the Purkinje cell branchings indicated in Figure 9.5. (a) An
OR bifurcation. (b) A possible AND bifurcation.

an input on one “or” the other daughter is sufficient to ignite the parent
fiber.

In evaluating the computational utility of this OR bifurcation, one should
note that an incoming impulse on one daughter will launch an outward-
going impulse on the other daughter, disabling that daughter’s segment of
the dendritic tree for a certain interval of time [107, 132].

AND Bifurcations
Computer engineers use the term “AND junction” to describe an element
for which inputs on both the first input “and” the second input acting
together are required to produce an output signal, implying that one input
acting alone is insufficient to produce an output.

If it is assumed that the dendritic trees are composed of Hodgkin–Huxley
fibers that support fully developed impulses, the condition for failure of a
single incoming impulse is

d
3/2
2 + d

3/2
3

d
3/2
1

> 12.7 .

From an examination of the various geometric configurations in the den-
dritic trees of the Purkinje cell in Figure 9.5, it is difficult to find branchings
that satisfy this condition. One of the more promising candidates is shown
in Figure 9.6(b), from which it is seen that the parent branch diameter (d3)
is about 2.5 times those of the incoming daughter branches (d1 and d2).
Thus

d
3/2
2 + d

3/2
3

d
3/2
1

≈ 5 ,
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Figure 9.3. (a) A branching dendritic structure. (b) Rall’s “equivalent cylinder”
for the structure in (a).

task; thus, it is of interest to consider an unexpectedly simple case intro-
duced by Wilfred Rall in 1959 [92, 93, 94, 95]. To see how this goes, refer
to Figure 9.3(a), which represents an arbitrary dendritic branching region.

Suppose that a steady current I1 is injected into the large fiber at location
#1 on the left-hand side of the diagram from which the resulting steady
transmembrane voltage V2 is to be computed at location #2 on one of
the smaller branches. Although time derivatives have been neglected, this
remains a difficult calculation because a discontinuity (or reflection) in
the solution occurs at each branching (or bifurcation) in Figure 9.3(a).
Dealing with reflections is not a new problem; radio, microwave, acoustic,
and optical engineers have long been interested in doing so in order to
increase the efficiencies of electromagnetic, sound, or light transmissions.
How do they accomplish this?

To minimize reflections, the standard procedure is to make the charac-
teristic admittance (Y0) of the transmission system equal on both sides of
a boundary, where

Y0 ≡
√

shunt admittance/length
series impedance/length

.
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or absent), the three basic operations of Boolean arithmetic are:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎣ NOT 1 = 0

NOT 0 = 1

⎤
⎥⎥⎦ .

In the context of this arithmetic, a Boolean function specifies the output
variable for each combination of input variables. Thus a particular Boolean
function of three inputs A, B, and C might be denoted as F (A, B, C) and
defined as in the following table.

A B C F (A, B, C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A Boolean expression for this particular function is

F (A, B, C) = (A AND B AND C) OR(A AND NOTB AND C)
= A AND C (10.1)

indicating in ordinary English that an output impulse will appear if either
of two input conditions occurs: there are impulses at A, B, and C, or there
are impulses at A and at C but not at B. In this formulation, “at” refers
to a location in space-time because the AND operation requires temporal
coincidence.

Because a Boolean function of N inputs has 2N input combinations for
which the corresponding output is either 0 or 1, there are evidently

22N
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Figure 10.1. The geometrical interpretation of the pattern-recognition task
indicated by Equations (10.1) and (10.3).

the barometer is rising and A = 0 that it is falling, B = 1 implies daytime
and B = 0 night, and C = 1 indicates that it is clear and C = 0 indicates
cloudiness. With F (A, B, C) defined as in Equation (10.1), it is reasonable
to expect that F = 1 implies that no rain is to be expected within the next
few hours.

To understand how the training algorithm works, it helps to view pattern-
recognition problems in a geometrical context. Thus, the eight values of
these three input variables can be taken as vertices of a cube, as indicated
in Figure 10.1, with the black dots indicating where F = 1 and the open
dots where F = 0. The shaded area indicates a linear discriminant plane
in pattern space on one side of which F = 1 and on the other F = 0.

Suppose that we wish to realize the logical function of Equation (10.1)
with the M–P model neuron

F̃ = H

(
3∑

k=1

αkVk(t) − θ

)
, (10.3)

where V1 ≡ A, V2 ≡ B, and V3 ≡ C. (Recall that H(x) is the Heaviside
step function, which equals 0 when x is negative and 1 otherwise.)

Two questions arise: (1) How do we choose α1, α2, α3, and θ? (2) If
these weighting parameters are incorrectly chosen, how can they be altered
so that the functions computed from Equations (10.1) and (10.3) are the
same?

To answer these questions, it is convenient to define a four-dimensional
weight vector as

W ≡ (α1, α2, α3,−θ)
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and a four-dimensional augmented pattern vector as

P ≡ (V1, V2, V3, 1) .

Then the inner product of the weight vector and the augmented pattern
vector,1

W · P =
3∑

k=1

αkVk(t) − θ ,

is just the argument of the Heaviside step function in Equation (10.3). Thus
to realize the Boolean expression of Equation (10.1) with the M–P neuron
of Equation (10.3), it suffices to choose the three αjs and θ so that the
condition

W · P = 0

corresponds to a discriminant plane lying between the vertices where F = 1
(the dark circles) and those where F = 0 (the open circles), as shown in
Figure 10.1. This answers question (1).

To answer question (2), suppose that we have mistakenly chosen the
components of the weight vector (W1) such that

W1 · P < 0

for (say)

P = (1, 1, 1, 1) ,

but all of the other vertices in Figure 10.1 lie on the correct side of the
discriminant plane. Then Equation (10.3) tells us that F̃ = 0 for V1 =
V2 = V3 = 1. In other words, if the barometer is rising, it is daytime, and
the sky is not cloudy, we should expect rain. Clearly, this is not a correct
prediction and the weight vector must be changed, but how?

If the weight vector were altered by adding an increment in a direction
orthogonal (at right angles) to P, the inner product W · P would not
change; thus, it is necessary to alter the weight vector in the direction of
P. To accomplish this, assume

W2 = W1 + cP , (10.4)

where c is a positive real constant that must be determined. Taking the
inner product of both sides of Equation (10.4) with P and requiring that
W2 · P > 0 shows that for

c > −W1 · P
P · P (10.5)

the inner product W2 · P > 0.

1The inner (or “dot”) product of two vectors is the sum of the products of their
components.
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Table 10.1. The number of Boolean networks (N ) for various numbers of switches
(N).

N N = 2N2N

1 22 = 4

2 44 = 256

3 88 .= 1.7 × 107

4 1616 .= 1.8 × 1019

5 3232 .= 1.5 × 1048

6 6464 .= 3.9 × 10115

10.2 Nets with Circles

Because the human brain is threaded through with myriad closed loops
of causal implication, any serious study of its dynamics must deal with
the many new entities that emerge. This section presents two constructive
theories of such networks. The first indicates the degree of intricacy to be
expected, and the second suggests ways in which methods of statistical
physics may lead to understanding.

10.2.1 General Boolean Networks
Let us begin by imagining the most general class of networks that can be
constructed from N model neurons (or switches), each of which is allowed
to compute an arbitrary Boolean function of its N inputs. Because there
are

22N

Boolean functions of N inputs and each of the N neurons is chosen to be
one of these, there are

N =
(
22N
)N

= 2N2N

different systems in this class of general Boolean networks. For modest
numbers of neurons, the number of possible systems soon becomes very
large, as is seen from Table 10.1. To deal with such large numbers, combi-
natoric mathematicians have whimsically defined the googol ≡ 10100 as a
finite number above which arithmetic becomes problematic [11]. To see why
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Neuronal Assemblies

Although the suggestion that neurons in the human brain may act in func-
tional groups reaches back at least to the beginning of the twentieth century
(when Charles Sherrington published his The Integrative Action of the Ner-
vous System [85]), it was in Donald Hebb’s classic Organization of Behavior
that the cell-assembly concept was first carefully formulated. Largely ne-
glected for several decades [13], Hebb’s theory of neural assemblies has more
recently begun to attract broad interest from the neuroscience commu-
nity. Why, one wonders, was such a reasonable suggestion so long ignored?
Several answers come to mind.

First, Hebb was far ahead of his time. As a psychologist, moreover, he
was telling electrophysiologists and neurologists what they should be doing
when these people had much on their collective plate. Throughout most of
the twentieth century, electrophysiologists were facing numerous difficulties
in recording from single neurons. Adequate impulse amplifiers needed to be
designed and suitable microelectrodes fabricated before voltages could be
measured from even a single cell. If mere hit-or-miss recordings were to be
avoided, it was necessary to position accurately the tips of these electrodes,
knowing what cells are located where. As the levels of the observed signals
became smaller, means for shielding measurements from ambient electro-
magnetic noise were ever more in demand. With single-neuron recording
being the primary experimental focus, therefore, it is not surprising that
theoreticians refrained from embracing more complicated formulations that
required simultaneous recordings from many neurons for which empirical
support was not soon expected.
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Second, as we have seen in Chapter 9, it is difficult enough to describe
properly the dynamics of individual neurons; thus, a theory that assumed
interacting assemblies of neurons would be venturing even further out onto
the thin ice of speculation.

A third reason for the tendency to simplify the theoretical picture—in
North America, at least—was the unfortunate domination of psychology
by the beliefs of behaviorism, which focused attention on the condition-
ing of stimulus–response reflexes, thereby ignoring much that comprises
mental reality. From the behaviorist perspective, the concept of internal
cerebral states was rightly shouldered into the background because the sim-
pler ideas of “connection theory” seemed adequate to explain acceptable
psychological data.

With all of these strikes against it, how did Hebb’s theory ever manage
to see the light of day?

11.1 Birth of the Cell-Assembly Theory

During the 1940s, Hebb became impressed with several sorts of evidence
that cast doubt on behaviorist assumptions and suggested that more subtle
theoretical perspectives were needed to explain psychological facts [34].
Among such facts is the surprising robustness of the brain’s dynamics, a
well-known example of which was provided by railroad workman Phineas
Gage, who survived having a piece of iron rod go through his brain [56].
With characteristic directness, Hebb put the matter thus: How is it that a
person can register an IQ of 160 after the removal of a prefrontal lobe [32]?

His first publication on the cell assembly stemmed from observations of
chimpanzees raised in a laboratory where, from birth, every stimulus was
under experimental control. Such animals, Hebb noted, exhibited sponta-
neous fear upon seeing a clay model of a chimpanzee’s head [33]. The chimps
in question had never witnessed decapitation, yet some of them “screamed,
defecated, fled from their outer cages to the inner rooms where they were
not within sight of the clay model; those that remained within sight stood
at the back of the cage, their gaze fixed on the model held in my hand”
[35, 36, 38].

Such responses are clearly not reflexes; nor can they be explained as
conditioned responses to stimuli, for there was no prior example in the ani-
mals’ repertory of responses. Moreover, they earned no behavioral rewards
by acting in such a manner. But the reactions of the chimps do make sense
as disruptions of highly developed and meaningful internal configurations
of neural activity according to which the chimps somehow recognized the
clay head as a mutilated representation of beings like themselves.

Another contribution to the birth of his theory was Hebb’s rereading of
Marius von Senden’s Space and Sight [84], which was originally published
in Germany in 1932. In this work, von Senden gathered records on 65



11.8. Recapitulation 287

To this end, Louie and Wilson used implanted multielectrodes to record
from hippocampal CA1 pyramidal cells of rats (see Figure 9.1), which are
known to be “place cells” that tend to fire when the animal is in a particular
location [96]. The rats were trained to run around a circular track in search
of food, and recordings were made during the actual awake activity (RUN)
and also during shorter periods of “rapid eye movement sleep” (REM) [97].

Only those cells judged to be “active” (with firing rates greater than 0.2
Hz) were included in the analysis, leading to impulse train recordings from
between 8 and 13 electrodes for a particular experiment. With bin sizes of
1 s and RUN recording times up to 4 minutes, the RUN-REM correlation
was computed for each electrode as in Equation (11.11) and then averaged
over the electrodes.

Such computations of RUN-REM correlation showed no similarity be-
tween the two measurements, but this fails to account for the possibility
that the time scale of the REM signal could differ from that of awake ac-
tivity (RUN). Stretching out (or slowing down) the REM data by a factor
of about 2, on the other hand, gave sharply defined correlation peaks that
could not be ascribed to happenstance. The authors claim that these results
demonstrate that “long temporal sequences of patterned multineuronal ac-
tivity suggestive of episodic memory traces are reactivated during REM
sleep.”

11.8 Recapitulation

This chapter opened with a survey of Donald Hebb’s seminal formulation
of the cell-assembly hypothesis for the robust storage and retrieval of in-
formation in the human brain and emphasized key aspects of the theory.
Early evidence in support of Hebb’s theory was reviewed, including the
hierarchical nature of learning, perceptions of ambiguous figures, stabilized
image experiments, sensory deprivation experiments, and anatomical data
from the structure of the neocortex.

A simple mathematical model for interacting cell assemblies was then de-
veloped that describes ambiguous perceptions and suggests the importance
of inhibitory interactions among cortical neurons for assembly formation
and switching.

This model implies that cell assemblies emerge from intricate closed
causal loops (subnetworks) of positive feedback threading sparsely through
the neural system. Assemblies exhibit all-or-nothing response and threshold
properties (just like the Hodgkin–Huxley impulse or an individual neuron);
thus, an assembly is also an attractor. Interestingly, speed of switching from
one assembly to another is found to increase with the level of interassembly
inhibition. Under simple assumptions, a generous lower bound on the num-
ber of complex assemblies that can be stored in a human brain is estimated
as about one thousand million—the number of seconds in 30 years.


