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compared. We conclude that using using impedance methods linearizes thermody-5

namic energy relations, making linear algebra methods an applicable solution method.6
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I. INTRODUCTION7

The purpose of this correspondence is to investigate the possibility and utility of using8

the 2-port transmission matrix method to analyze thermodynamic problems, commonly9

used in modeling electrical and mechanical systems, such as LRC electrical circuits and10

spring-mass-damper systems (?).11

Specifically, this report will investigate the use of the Laplace frequency domain to model12

thermodynamic systems, and to draw connections with components of electrical, mechanical13

and thermodynamic analysis, using the two-port transmission line methods.14

Traditionally, thermodynamics is analyzed in the time domain using energy relationships15

(?). Energy relationships are nonlinear in the conjugate variables, the product of which16

define the power (energy-rate). For example, voltage times current (coulomb/sec) or tem-17

perature times entropy-rate are each a power, having units of watts (?, Appendix I). Unlike18

thermodynamics, which is formulated in terms of energy, electrical and mechanical circuits19

use impedance, defined as the ratio of conjugate variables (e.g., Z(s) = voltage/current)20

when modeling electrical circuits, or Z(s) = force/velocity for mechanical systems.21

The definition of an impedance Z(s) utilizes the Laplace frequency s. The Laplace22

transform replaces calculus with algebra in the Laplace frequency variable (s = σ+ω). This23

is primarily because electrical and mechanical circuits are second order (or higher) systems,24

that benefit greatly from this type of analysis. Presently thermodynamics is modeled using25

only RC circuits (first order system).26
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A. Problem Statement27

To show how the two-port transmission line analysis works with Thermodynamics, a28

simple and classic thermodynamic problem is proposed and solved, using the classic method29

(?), followed by a two-port analysis.30

FIG. 1. The two-port matrix representation of an RC Circuit

The example electrical (i.e., initial) problem is shown in Fig. 1. The thermodynamic31

version will include the heat generated in the resistor R1, due to electrical current, causing32

it to produce heat energy.33

Assume this RC circuit, with resistance (R1), placed in an incompressible fluid (e.g.,34

water) having mass (mw) and specific heat capacity under constant pressure (cp), which35

is otherwise isolated from the environment. Let the source voltage and current be [V1, I1].36

After the RC circuit has been turned on and has reached equilibrium, we study the change37

in temperature T (t) of the fluid as a function of time t. Stated another way, what is the38

time response of temperature of the fluid, as the capacitor is charging? Finally, what is the39

impact of the power lost to heating the water around the resistor, on the charging of the40

capacitor? The final voltage on C1 will be different due to the power lost to the water.41
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B. Classic Solution42

To determine the energy dissipated by the resistor into the fluid, the current passing43

through the resistor must be determined. To find this current the RC circuit may be analyzed44

as a two port transmission line. Figure 1 can then be analyzed using a 2x2 representation45

matrix relation46 
V1

I1

 =


1 R1

0 1




1 0

sC1 1



V2

−I2

 ,
where the currents are defined into the ports and the voltages across the ports (?). This47

may be found by collapsing the matrix product,48 
V1

I1

 =


1 + sRC R1

sC1 1



V2

−I2

 .

which then provids the relations between the input and outputs

V1 = 1 + sR1C1V2 −RI2

I1 = sC1V2 − I2.

Setting I2 = 0 and combining the two equations, we find

V2 =
V1

1 + sR1C1

I1 = sC1V2,
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or

I1 =
CsV1

1 + sR1C1

= C1V1
s

1 + sR1C1

=
V1
R1

s

s+ 1/R1C1

. (1)

From the initial condition (t = 0)49

V1(t) = V0u(t)↔ V0/s. (2)

Substituting V1(0) in into Eq. 1 gives50

I1 =
V0
R1

1

s+ 1/R1C1

.

This equation is in the Laplace frequency domain.51

In order to convert this equation back to the time domain, the inverse Laplace transform

must be taken, giving

I1(s) =
V0
R1

1

s+ 1/R1C1

↔ i1(t) =
V0
R1

e−t/R1C1 (3)

= I0e
−t/τ , (4)

where τ = R1C1 and I0 = V0
R1

.52
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FIG. 2. Equivalent RC circuit of Fig. 1, including the thermal losses in the resistor immersed in a water
bath.

C. Thermodynamic relations53

The power dissipated by the resistor at time t is54

P (t) = V1(t)I1(t) = I0(t)
2R1 = I20e

−2t/τR1.

The total energy dissipated in the resistor is the time integral of P (t)55

Q(t) =

∫ t

0

P (t)dt = I20R1

∫ t

0

e−2t/RCdt = I20R1
τ
2

(
1− e−2t/τ

)
.

Assuming all the energy dissipated by the resistor is absorbed by the fluid, the relationship56

between the energy absorbed by the fluid and the change in temperature (?)57

Q = mfcp∆T.
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TABLE I. Table of parameters for the circuit of Fig. 2.

Parameters symbol Value Units

Voltage Vo 10 [V]

Resistance R1 10 [Ω]

Capacitance C1 1 [F]

Mass of water mf 1 [g]

Specific Heat Capacity cf 4186 [ J
kg·K ]

Rearranging and substituting58

∆T (t) =
Q(t)

mfcp
=
I20R1

τ
2
(1− e−2t/τ )

mfcp
(5)

The values for the constants are given in Table 2.59

Thus we find60

τ = RC = 10 · 1 = 10 [sec]

I0 =
V0
R1

=
10

10
= 1 [Amp]

∆T (t) =
I20R1

τ
2
(1− e−2t/τ )

mfcf
=

12 · 10 · 10
2
· (1− e−2t/10)

0.001 · 4186
[°C], (6)

as shown in Fig. 3, where we visualize ∆T (t).61
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FIG. 3. Time response of the temperature ∆T (t) of the water.

D. Discussion62

While the classic analysis provides the current in the resistor, allowing us to calculate63

the power and total energy dissipated in the resistor as a function of time, it is not actually64

correct, since the energy absorbed by the water will change the energy balance relations.65

Thus the classic I1(t) is not the true current. To obtain the correct answer, we must include66

the energy dissipated in the water. This requires a thermodynamic calculation, which we67

shall provide in §II.68

II. TWO-PORT ANALYSIS METHOD69

The system including the heat lost can also be modeled as a two-port transmission line,70

with a resistor, an ideal transformer and two capacitors, as shown in Fig. 4.7172
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FIG. 4. Two-port model including the iso-baric heat lost to resistor R1 in the water bath. The turns ratio
of the transformer (a) relates the voltage and current to the temperature and entropy–rate. For example

T = V/a and Ṡ = aI. Thus the units on a are either [V/°C] or [entropy-rate/A].

Evaluating the transmission matrix of Fig.4 gives73

T (s) =


1 R1

0 1




1 1
sC1

0 1



a 0

0 1/a




1 0

sC2 1

 ,

where74 
V (s)

I(s)

 =


A(s) B(s)

C(s) D(s)



T (s)

−Ṡ

 = T (s)


T (s)

−Ṡ(s)

 .

Thus75 
V

I

 (s) =
1

a


s+a2C1+C2

C1

sR1C1+1
sC1

sC2 1



T

−Ṡ

 (s).

Since the system is isolated from the environment is adiabatic, the entropy flux out of the76

water (i.e., heat flow Ṡ) is zero. This allows us to find the relationship between the input77

voltage and the temperature:78

V (s) =

(
C1C2R1s+ a2C1 + C2

aC1

)
T (s).
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Assuming that V (s) is a unit step function (see Eq. 2),79

T (s) =
Vo
s

aC1

C1C2R1s+ a2C1 + C2

=
Vo
s

a

C2R1s+ a2 + C2/C1

.

Expressing this in pole-residue form (?)80

T (s) =
Voa

s

1

C2R1s+ a2 + C2/C1

=
Voa

C2R1

1

s

1

s+ a2+C2/C1

C2R1

,

the inverse Laplace is81

T (s)↔ T (t) =
Voa

C2R1

∫ t

0

e
−t(a2+C2/C1)

C2R1 dt.

In this case we can define τ2 = C2R1/(a
2 + C2/C1)). Evaluating the integral gives82

T (t) =
Voa

C2R1

τ2
(
e−t/τ2

)
+ To.

Since the temperature rise ∆T is of interest, the boundary condition is T (t = 0) ≡ To = 0.83

This can be seen in the following equation.84

∆T (t) =
Voa

C2R1

τ2e
−t/τ2 +

Voa

C2R1

τ2,

or85

∆T (t) =
Voa

C2R1

τ2
(
1− e−t/τ2

)
. (7)
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A. Discussion86

Note that this is now of the same form as Eq. 5 (τ2 is quite different), and is identical if87

we set C2 = 0.88

Thus it is a matter of determining the value of a, C1, and C2. Assuming that C1 stays the89

same for the two solutions, a and C2 can be determined by renormalizing the two solutions90

to have the same functional form. Given91

T (t) =
Voa

C2R1

τ2

(
1− e

−t
τ2

)
=
I20R1

τ1
2

mfcf
(1− e−2t/τ1), (8)

where92

τ1 = τ = RC1 (9)

then if we reapply the definition of τ2 = C2R1/(a
2 + C2/C1))93

Voa

C2R1

τ2 =
Voa

C2R1

(
C2R1

a2 + C2/C1

) =
Voa

a2 + C2/C1

(10)

and if we equate the linear constants on both sides94

Voa

a2 + C2/C1

=
I20R1

τ
2

mfcf
(11)

and if we equate the exponent95

−1

τ2
=
−2

τ1
⇒ −(a2 + C2/C1)

C2R1

=
−2

R1C1

. (12)

we have a linear set of two equations and two unknowns.96
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a2R1C1 +R1C2 = 2R1C2 ⇒ C2 = a2C1

Substituting Eq. 12 back into Eq. 11 gives97

Voa

a2 + (a2C1)/C1

=
I20R1

R1C1

2

mfcf
.

Simplifying98

Voa

2a2
=

V 2
o C1

2mfcf

a =
mfcf
VoC1

Substituting back into Eq. 12 and solving for C299

C2 =
m2
fc

2
f

C1

(13)

Plotting Eq. 7 and comparing to Eq. 6, we see that the solution has the same functional100

form, but is numerically distinct, due to the added heat loss into the water, thus accounting101

for this important missing term in the classic solution. They are identical when C2 = 0,102

thus decoupling the entropy-rate (heat loss) and the electrical current and voltage.103
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FIG. 5. Time response of the water for both methods.

III. CONCLUSION104

From the above demonstration of both methods, the advantages and disadvantages of105

both the classical method to thermodynamics become transparent. For trivial thermody-106

namics problems, such as the one demonstrated above, it is often easier to use the classic107

method of power and energy conversions. However this ignores the heat lost to the resistor108

during the charging of the capacitor.109

The classical method lends itself to a more instinctual understanding of the problem, as110

most of the problem is solved in the time domain. However, the two-port representation111

naturally includes the heat lost to the water, and is an algorithmic approach to solving such112

problems. As an interesting example, consider the case where C1 is replaced by an inductor.113

In this case the circuit’s resonant frequency is dramatically reduced (becomes finite) by114

adding the heat capacity of the water.115

The transmission matrix method lends itself to much more complex versions of the ther-116

modynamic problem, where, for example, the voltage applied is not be a simple unit step117
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function. This method would also be more useful in creating simulated environment al-118

gorithms that are more accurate and efficient compared to methods that are based around119

time integration such as modeling more complex thermodynamic phenomenons such as triple120

point and super cooling. By understanding this analysis and being able to apply this method121

to thermodynamics, it may open up new insights into the discipline of thermodynamics.122
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