1 Problems NS1

Topic of this homework: Solution method for the diffusion equation; History; Differential equation system classification

Deliverable: Answers to problems
Problem \# 1: A two-port network application for the Laplace transform

Figure 1: This three-element electrical circuit is a system that acts to low-pass filter the signal voltage $V_{1}(\omega)$, to produce signal $V_{2}(\omega)$. It is convenient to define the dimensionless ratio $s / s_{c}=R C s$ in terms of a time constant $\tau=R C$ and cutoff frequency $s_{c}=1 / \tau$.

- 1.1: Find the 2×2 ABCD matrix representation of Fig. 1. Express the results in terms of the dimentionless ratio s / s_{c} where $s_{c}=1 / \tau$ is the cutoff frequency and $\tau=R C$ is the time constant.
ANS:
- 1.2: Find the eigenvalues of the 2×2 matrix. As summarized in Allen (2021) (Appendix B.3.1), the eigenvalues $\lambda_{ \pm}$of a 2×2 matrix
$\mathcal{T}=\left[\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D}\end{array}\right]$ are $\lambda_{ \pm}=\frac{1}{2}\left[\begin{array}{l}(\mathcal{A}+\mathcal{D})-\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B} C} \\ (\mathcal{A}+\mathcal{D})+\sqrt{(\mathcal{A}-\mathcal{D})^{2}+4 \mathcal{B} C}\end{array}\right]$.
ANS:
- 1.3: Assuming that $I_{2}=0$, find the transfer function $H(s) \equiv V_{2} / V_{1}$.

ANS:

- 1.4: Find the pole and residue of $H(s)$? ANS:
- 1.5: Find $h(t)$, the inverse Laplace transform of $H(s)$. ANS:
- 1.6: Assuming that $V_{2}=0$, find $Y_{12}(s) \equiv I_{2} / V_{1}$.

ANS:

- 1.7: Find the input impedance to the right-hand side of the system, $Z_{22}(s) \equiv V_{2} / I_{2}$ for two cases:

1. $I_{1}=0$

ANS:
2. $V_{1}=0$

ANS:

- 1.8: Find the determinant of the $A B C D$ matrix.

ANS:

History

Problem \# 2: Write a sentence or two about each person.

- 2.1: Provide a brief definition of the following properties:

1. Ramon y Cajal. ANS:
2. Charles Scott Sherrington. ANS:
3. Rafael Lorente de No. ANS:
4. Minsky and Papert (1969). ANS:
5. McCulloch and Pitts. ANS:
6. Albert Einstein. ANS:
7. Hodgkin and Huxley. ANS:
8. Hermann Helmholtz. ANS:

System Classification

Problem \# 3: Answer the following system classification questions about physical systems, in terms of the system postulates.

- 3.1: Provide a brief definition of the following properties:

L/NL : linear(L)/nonlinear(NL): ANS:

TI/TV : time-invariant(TI)/time varying(TV): ANS:

P/A : passive (P) /active (A) : ANS:
C / NC : $\operatorname{causal(C)/non-causal(NC):~ANS:~}$

Re/Clx : real(Re)/complex(Clx): ANS:

- 3.2: Along the rows of the table, classify the following systems: In terms of a table having 5 columns, labeled with the abbreviations: L/NL, TI/TV, P/A, C/NC, Re/Clx:

					Category		
\#	Case:	Definition	L/NL	TI/TV	P/A	C/NC	Re/Clx
1	Conduction	$\boldsymbol{i}(t)=g_{m} \boldsymbol{E}(t)$					
2	Diffusion	$i(t)=D \frac{d[N a]}{d x}$					
3	Switch	$v(t) \equiv \begin{cases}0 & t \leq 0 \\ v_{0} & t>0\end{cases}$					
5	Channel	$i(t)=g_{m}(v(t))$					
6	Membrane	$I_{\text {out }}=g_{m}\left(V_{\text {in }}\right)$					
7	Nerve cell	Hogkin-Huxley Eqs.					
8	Nerve cell	Physical nerve cells					
9	Neural spike	$v(t, x)=\delta\left(t-x / c_{o}\right)$					
10	Trans. Line	ABCD matrix					

