1 Problems NS1

Topic of this homework: Solution method for the diffusion equation; History; Differential equation system classification

Deliverable: Answers to problems

Problem # 1: A two-port network application for the Laplace transform

Figure 1: This three-element electrical circuit is a system that acts to low-pass filter the signal voltage $V_1(\omega)$, to produce signal $V_2(\omega)$. It is convenient to define the dimensionless ratio $s/s_c = RCs$ in terms of a time constant $\tau = RC$ and cutoff frequency $s_c = 1/\tau$.

- 1.1: Find the 2 × 2 ABCD matrix representation of Fig. 1. Express the results in terms of the dimensionless ratio s/s_c where $s_c = 1/\tau$ is the cutoff frequency and $\tau = RC$ is the time constant.

ANS:

- 1.2: Find the eigenvalues of the 2×2 matrix. As summarized in Allen (2021) (Appendix B.3.1), the eigenvalues λ_{\pm} of a 2×2 matrix

$$\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix} \text{ are } \lambda_{\pm} = \frac{1}{2} \begin{bmatrix} (\mathcal{A} + \mathcal{D}) - \sqrt{(\mathcal{A} - \mathcal{D})^2 + 4\mathcal{B}\mathcal{C}} \\ (\mathcal{A} + \mathcal{D}) + \sqrt{(\mathcal{A} - \mathcal{D})^2 + 4\mathcal{B}\mathcal{C}} \end{bmatrix}$$
ANS:

-1.3: Assuming that $I_2 = 0$, find the transfer function $H(s) \equiv V_2/V_1$.

ANS:

- 1.4: Find the pole and residue of H(s)? ANS:

- 1.5: Find h(t), the inverse Laplace transform of H(s). ANS:

– 1.6: Assuming that $V_2 = 0$, find $Y_{12}(s) \equiv I_2/V_1$.

ANS:

– 1.7: Find the input impedance to the right-hand side of the system, $Z_{22}(s) \equiv V_2/I_2$ for two cases:

1.
$$I_1 = 0$$

ANS:

2. $V_1 = 0$ ANS:

– 1.8: Find the determinant of the ABCD matrix.

ANS:

History

Problem # 2: Write a sentence or two about each person.

– 2.1: Provide a brief definition of the following properties:

1. Ramon y Cajal. ANS:

2. Charles Scott Sherrington. ANS:

3. Rafael Lorente de No. ANS:

4. Minsky and Papert (1969). ANS:

5. McCulloch and Pitts. ANS:

6. Albert Einstein. ANS:

7. Hodgkin and Huxley. ANS:

8. Hermann Helmholtz. ANS:

System Classification

Problem # 3: Answer the following system classification questions about physical systems, in terms of the system postulates.

- *3.1: Provide a brief definition of the following properties:*

L/NL : linear(L)/nonlinear(NL): ANS:

TI/TV : time-invariant(TI)/time varying(TV): ANS:

P/A : passive(P)/active(A): ANS:

C/NC : causal(C)/non-causal(NC): ANS:

Re/Clx : real(Re)/complex(Clx): ANS:

					Category		
#	Case:	Definition	L/NL	TI/TV	P/A	C/NC	Re/Clx
1	Conduction	$\boldsymbol{i}(t) = g_m \boldsymbol{E}(t)$					
2	Diffusion	$i(t) = D\frac{d[Na]}{dx}$					
3	Switch	$v(t) \equiv \begin{cases} 0 & t \le 0\\ V_0 & t > 0. \end{cases}$					
5	Channel	$i(t) = g_m(v(t))$					
6	Membrane	$I_{out} = g_m(V_{in})$					
7	Nerve cell	Hogkin-Huxley Eqs.					
8	Nerve cell	Physical nerve cells					
9	Neural spike	$v(t,x) = \delta(t - x/c_o)$					
10	Trans. Line	ABCD matrix					

- 3.2: Along the rows of the table, classify the following systems: In terms of a table having 5 columns, labeled with the abbreviations: L/NL, TI/TV, P/A, C/NC, Re/Clx: