
1 Problems NS6

Topic of this homework:

Linearization of a classic thermodynamic problem
Deliverable: A computer code (either Matlab/octave/Python) that generates the three graphs that

confirm the analysis of the heating of water from the power lost by charging a capacitor.

Problem # 1 TO DO: For the conditions given, write a matlab code that finds the temperature
T (t) of the bath the resistor sits in.

A simple thermodynamics problem is proposed and solved using to different methods and their ad-
vantages and disadvantages are compared. This analysis demonstrates how to perform the two-port
thermodynamic analysis and, compares it to traditional methods of thermodynamic analysis.

– 1.1: Your Matlab/Octave program should replicate Figs. 1, 3 and 5 from the analysis of
thermodynamic modeling method, as described below.

1 Introduction

The purpose of this note is to investigate the possibility and usefulness of using techniques and methods
found in modeling second order systems such as LRC circuits and spring-mass-damper systems for use
in thermodynamic analysis. Specifically, this report will look at using the frequency domain to model
thermodynamic systems and draw connections with components of electrical and mechanical systems
to simplify thermodynamic analysis using a two-port transmission line analysis.

Traditionally, thermodynamics is analyzed in the time domain for its familiarity with our experi-
ences. However, electrical analysis of LRC circuits have made large strides in modeling its system
dynamics utilizing the frequency domain. This is primarily because LRC circuits are second order sys-
tems that benefit greatly from this sort of analysis. Though, the first order system of thermodynamics
can be modeled as an RC circuit where the second order term is equal to zero.

1.1 Problem Statement

To show that the two-port transmission line analysis works with Thermodynamics, a simple and tradi-
tional thermodynamic problem is proposed and solved using ‘traditional’ methods as well as using a
two-port analysis. The thermodynamics problem is as follows:

Assume an RC circuit with resistance (R), capacitance (C), Initial Voltage (V0) and Initial Current
(I0) is placed in an incompressible fluid (such as water) with mass (mw) and specific heat capacity (cw)
that is isolated from the environment. After the RC circuit has been turned on for a significant amount
of time and the system has reached a steady state, what is the change in temperature of the fluid? Or
stated another way, what is the time response of temperature of the fluid as the capacitor is charging up?

1.2 Traditional Solution

To determine the energy dissipated by the resistor into the fluid, the current passing through the resistor
as a function of time must be known. In order to find the current, the RC circuit can be analyzed as a
two port transmission line as seen below.

The two port can then be analyzed using a 2x2 representation as seen in the matrix equation below
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Figure 1: Thermodynamics Problem

Figure 2: Transmission Line Representation of RC Circuit

[
V1
I1

]
=
[
1 R1
0 1

] [
1 0
sC1 1

] [
V2
−I2

]
(NS-6.1)

From here, the current passing through the resistor (R1) can then be solved through the following
derivation [

V1
I1

]
=
[
1 + sRC R1
sC1 1

] [
V2
−I2

]
(NS-6.2)

Expanding out matrices

V1 = 1 + sR1C1V2 −RI2 (NS-6.3)

I1 = sC1V2 − I2 (NS-6.4)

By the original formulation of the problem, it can be seen that there is I2 = 0. Combining equation
3 and 4, the following equations can be derived

V2 = V1
1 + sR1C1

(NS-6.5)

I1 = sC1V2 (NS-6.6)
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I1 = sC1V1
1 + sR1C1

= sC1V1
1

1 + sR1C1
= s

V1
R1

1
s− 1/R1C1

(NS-6.7)

Also from the original problem, it is known that V1 is turned on at t = 0 with voltage V0. This is
defined in the following equation.

V1(t) = V0u(t)↔ V0/s (NS-6.8)

By substituting in V1 in into equation 7 we get the following

I1 = V0
R1

1
s− 1/R1C1

(NS-6.9)

Note that this equation is in the frequency domain. In order to convert this equation back to the time
domain, the inverse Laplace transform must be taken. This is seen in the following equation.

I1(t) = V0
R1

1
s− 1/R1C1

↔ V0
R1
e−t/RC = I0e

−t/τ

where τ = RC and I0 = V0
R1

(NS-6.10)

1.3 Thermodynamic relations

The power dissipated by the resistor at any given time can be calculated using the following equation

P (t) = I0(t)2R1 = I2
0e

−2t/τR1 (NS-6.11)

The energy dissipated by the resistor is the time integral of the power dissipation.

Q(t) =
∫ t

0
P (t)dt =

∫ t

0
I2

0e
−2t/RCR1dt = I2

0R1
τ

2 (1− e−2t/τ ) (NS-6.12)

Assuming all the energy dissipated by the resistor is absorbed by the fluid, the relationship between
the energy absorbed by the fluid and the change in temperature is the following.

Q = mfcf∆T (NS-6.13)

Rearranging and substituting

∆T (t) = Q(t)
mfcf

=
I2

0R1
τ

2 (1− e−2t/τ )

mfcf
(NS-6.14)

Making the following assumptions:

Parameters: Values:
Voltage (V0 ) 10V
Resistance (R1) 10Ω
Capacitance (C1) 1F
Mass of Fluid (mf ) .001kg
Specific Heat Capcity of Fluid(cf ) 4186

τ = RC = 10 · 1 = 10sec (NS-6.15)

I0 = V0
R1

= 10
10 = 1Amp (NS-6.16)
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∆T (t) =
I2

0R1
τ

2 (1− e−2t/τ )

mfcf
=

12 · 10
2 · (1− e

−2t/10)

0.001 · 4186 (NS-6.17)

The time response of the temperature can also be plotted as shown in Figure 3.

Figure 3: Time Response of Fluid

2 Two Port Analysis Method

The system above can be seen as a two-port transmission line with a resistor, 2 capacitors and an ideal
transformer in the following configuration.

Figure 4: Two-Port Model

The transmission matrix would be defined as follows:[
V
I

]
=
[
A B
C D

] [
T
Ṡ

]
= τ

[
T
Ṡ

]
(NS-6.18)

Where:

τ =
[
A B
C D

]
=
[
1 R1
0 1

]1 1
sC1

0 1

[a 0
0 1/a

] [
1 0
sC2 1

]
(NS-6.19)

This can then be simplified to:

[
V
I

]
=


s+ a2C1 + C2

aC1

sRC1 + 1
asC1

sC2
a

1
a


[
T
Ṡ

]
(NS-6.20)

Since the system is isolated from the environment, the entropy flow (Ṡ ) is equal to zero. This allows
us to show the relationship between the input voltage (V ) and the temperature rise (T ) in the frequency
domain.
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V = C1C2R1s+ a2C1 + C2
aC1

· T (NS-6.21)

Since we also know that V is a unit step function as defined in equation 8, the following equation
can be derived.

T (s) = V0
s

aC1
C1C2R1s+ a2C1 + C2

= V0
s

a

C2R1s+ a2 + C2/C1
(NS-6.22)

This can then be rewritten in order to more easily take the inverse Laplace.

T (s) = 1
s
V0a

1
C2R1s+ a2 + C2/C1

= 1
s

V0a

C2R

1

s+ a2 + C2/C1
C2R

(NS-6.23)

Now taking the inverse Laplace.

T (s)↔ T (t) = V0a

C2R

∫ t

0
e

−t(a2+C2/C1)
C2R dt (NS-6.24)

Simplifying

T (t) = V0a

C2R

( −C2R

a2 + C2/C1

)
e

−t(a2+C2/C1)
C2R + Const. (NS-6.25)

Since the temperature rise ∆T is of interest, the boundary condition T (t = 0) = ∆T (0) = 0 can be
use to solve for Const.. This can be seen in the following equation.

T (t) = V0a

C2R
(− C2R

a2 + C2/C1
)e
−t(a2 + C2/C1)

C2R + V0a

C2R
( C2R

a2 + C2/C1
) (NS-6.26)

Rearranging and simplifying

T (t) = V0a

a2 + C2/C1
(1− e

−t(a2+C2/C1)
C2R ) (NS-6.27)

Note that this is now of the same form as equation 14. From here it is a matter of determining the
value of a, C1, and C2. Assuming that C1 is the same for both solutions (i.e. C1 = C1), a and C2 can
be determined in the following equations.

Given:

T (t) = V0a

a2 + C2/C1
(1− e

−t(a2+C2/C1)
C2R ) =

I2
0R1

τ

2 (1− e−2t/τ )

mfcf
(NS-6.28)

Then:

V0a

a2 + C2/C1
=
I2

0R1
τ

2
mfcf

(NS-6.29)

And:
−(a2 + C2/C1)

C2R
= −2

τ
= −2
RC1

(NS-6.30)

Equation 30 can then be rearranged to be the following.

a2RC1 +RC2 = 2RC2 −→ C2 = a2C1 (NS-6.31)

Substituting equation 31 back into equation 29, we get the following.
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V0a

a2 + (a2C1)/C1
=
I2

0R1
RC1

2
mfcf

(NS-6.32)

Simplifying
V0a

2a2 = V 2
0 C1

2mfcf
(NS-6.33)

a = mfcf
V0C1

(NS-6.34)

Substituting back into equation 31 and solving for C2

C2 =
m2
fc

2
f

C1
(NS-6.35)

Plotting equation 27 and comparing to equation 17, it can be seen that the same solution has been
reached

Figure 5: Time Response of Fluid with Both Methods

2.1 Conclusion

From the above demonstration of both methods, it can be seen that there are advantages to both the tradi-
tional method to thermodynamics as well as the two-port analysis of thermodynamics. For more trivial
thermodynamics problems such as the one demonstrated above, it is often easier to use the traditional
method of power and energy conversions. This method lends itself to a more instinctual understanding
of the problem as most of the problem is solved in the time domain. However, the two-port representa-
tion is a more robust and algorithmic approach to solving the problem. It lends itself to more complex
versions of the proposed problem where the voltage applied may not be a simple unit step function. This
method would also be more useful in creating simulated environment algorithms that are more accu-
rate and efficient compared to methods that are based around time integration such as modeling more
complex thermodynamic phenomenons such as triple point and super cooling. By understanding this
analysis and being able to apply this method to thermodynamics, it may open up new insights into the
discipline of thermodynamics.
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