ECE 537

HW #5

Fall Oct 17, 2018

Univ. of Illinois

Due 1 week

Prof. Allen

Topics of this homework: History, Linear prediction of speech; Cepstral Analysis; STFT Questions and corrections to: jontalle @ illinois.edu.

To Do:

- 1. Write a program to read in the file **WhenAllElse.wav** (use Matlab's wavread.m function), and do LPC analysis (matlab's lpc.m program) on it. You will find wav files at: http://hear.ai.uiuc.edu/ECE537/Assignments/files/
 - (a) Loop through the speech in frames of 5 [ms], taking a total of a 20 [ms] segment. That is, form A(n) based on the four 5 [ms] previous frames [n, n - 1, n - 2, n - 3], thus process 20 [ms] of speech for frame index n. For each 20 [ms] frame, at each of the 5 [ms] *frame boundaries*, find the LPC "coefs vector" $A(n) \equiv [a_k(n)]$ where n is the frame index. Make the order of the analysis K = 12. Use Matlab's lpc() command. Note that the A vector has the form $[1, a_1, a_2, \cdots a_K]$.

Plot all the roots of A as single points, in [kHz], as a function of time, in [ms] (i.e., the frame index n, with t = nD, where D is the number of samples corresponding to 5 [ms]). You will need to use Matlab's **root()** command to find these roots, and then remove the negative (i.e., redundant lower half z plane) roots. Note the sample period D does not need to be exactly 5 ms, but should be rounded to the nearest sample of the sampling period. That is, D is within $\pm 1/2F_s$ of 0.005 [s].

(b) Filter the speech through the LPC filter. To do this you will need to swap the A(k) vector of coefficients every 5 [ms]. Do this with the command filter(A,1,sk), where sk is a D sample speech vector. Be sure to save the state of the filter for each block. Plot the output of the time-varying filter operation. This should look like the error signal described in the Atal paper that I asked you to read Atal and Hanauer (1971).

Graded based on the quality of the your report.

References

Atal, B. and Hanauer, S. (apr 1971), "Speech Analysis and Synthesis by Linear Prediction of the Speech Wave," J. Acoust. Soc. Am. 50(2(2)), 637–655.