
Chapter 3

Acoustics of speech and hearing

The production of speech by the vocal tract and the reception of sound by the cochlea, have a common
mathematical framework in that they have both been represented as inhomogeneous transmission lines.
While these representations may be improved upon, they capture the essence of the underlying physical
mechanisims of production and reception processes. In this chapter we shall outline the underlying
theory required to represent both these system. Then in the following chapter (4) we shall concentratate
on production, and then in Chapter 7, develop models of the inner ear.

3.1 Equivalent Circuit for the Lossy Cylindrical Pipe

Consider the length dx of lossy cylindrical pipe of area A shown in Fig. 3.1a. Assume plane wave
transmission so that the sound pressure and volume velocity are spatially dependent only upon x.
Because of its mass, the air in the pipe exhibits an inertance which opposes acceleration. Because of
its compressibility the volume of air exhibits a compliance. Assuming that the tube is smooth and
hard-walled, energy losses can occur at the wall through viscous friction and heat conduction. Viscous
losses are proportional to the square of the particle velocity, and heat conduction losses are proportional
to the square of the sound pressure.

The characteristics of sound propagation in such a tube are easily described by drawing upon ele-
mentary electrical theory and some well known results for one-dimensional waves on transmission lines.
Consider sound pressure analogous to the voltage and volume velocity analogous to the current in an
electrical line. Sound pressure and volume velocity for plane wave propagation in the uniform tube
satisfy the same wave equation as do voltage and current on a uniform transmission line. A dx length
of lossy electrical line is illustrated in Fig. 3.1b. To develop the analogy let us write the relations for the

Figure 3.1: Incremental length of lossy cylindrical pipe. (a) acoustic representation; (b) electrical equiv-
alent for a one-dimensional wave
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32 CHAPTER 3. ACOUSTICS OF SPEECH AND HEARING

electrical line. The per-unitlength inductance, capacitance, series resistance and shunt conductance are
L(x), C(x), R(x), and G(x) respectively. Assuming sinusoidal time dependence for voltage and current,
(i(x, t) = I(x,ω)ejωt and e(x, t) = E(x,ω)ejωt), the differential current loss and voltage drop across the
dx length of line are

dE = −Z(x, s)Idx and dI = −Y(x, s)Edx, (3.1)

where Y(x, s) = G(x) + sC(x) and Z(x, s) = R(x) + sL(x), with complex Laplace frequency given by
s = σ + jω.

Radian frequency ω is appropriate when taking the Fourier transform of say a voltage or a current,
pressure, displacement, etc., however the Laplace frequency is the appropriate variable when taking the
Laplace transform of causal functions,1 such as an impedance Z(s) or an admittance Y(s), which due to
their inherent causality must be analytic functions of complex frequency s, containing poles and zeros, or
other singularities in the complex plane (e.g., branch cuts). More on this topic will be found in Sec. ??.
When the Laplace frequency s is used typically the right half s plane (σ > 0). It will be used with the

A short review s
Laplace in Sec. ??Laplace transform (indicated as ↔) when the frequency dependence indicates any causal function, such

as the impulse response of a capacitor 1
sC ↔ 1

CΔ(t) =
R∞

ω=−∞
1
Cse

−stds, where Δ(t) is the Heaviside
unit step function, zero for t < 0, 1 for t > 0 and undefined at t = 0.

In matrix form these equations may be written

d

dx

�
E(x,ω)
I(x,ω)

�
= −

�
0 Z(x, s)

Y(x, s) 0

� �
E(x,ω)
I(x,ω)

�
. (3.2)

This is the 2×2 matrix form of the Webester Horn equation [Webster, 1919], which allows for the
variation of the series per-unit-length impedance Z(x, s) and shunt per-unit-length admittance Y(x, s),
as functions both the Horn area A(x), and when losses are considered, the Laplace frequency s.

3.1.1 The homogeneous transmission line

Shown in Fig. 3.1b is the case of an elementary homogeneous piece of transmission line, where Z(s) and
Y(s) are independent of position x, the equations for the voltage E and current I reduce to the wave
equation

d2E

dx2
− ZY E = 0 and

d2I

dx2
− ZY I = 0, (3.3)

having solutions �
E(x,ω)
I(x,ω)

�
=

�
E+

ω E−
ω

I+ω I−ω

� �
e−γx

e+γx

�
(3.4)

where γ(s) ≡ +
√
ZY = α(s) + jβ(s) is the so-called propagation constant (the sign determines the

wave direction), and the frequency-dependent integration constants E+
ω , E−

ω , I+ω and I−ω are frequency
dependent integration factors, determined by the 2-port terminal boundary conditions. Again, solutions
Eq. 3.4 do not apply to the Webster Horn equation (Eq. 3.2), where a very different solution approach
must be used due to the inhomogeneous constituent relations Z(x, s) and Y(x, s).

Transmission (⊤-matrix) ABCD representations Specifically, as shown in Fig. 3.1 for a finite
piece of homogeneous line, having length l, with sending-end (left) voltage and current E1 and I1, the
receiving-end (right) voltage and current E2 and I2 are given by2

�
E1(x,ω)
I1(x,ω)

�
=

�
A B
C D

� �
E2(x+ l,ω)
I2(x + l,ω)

�
, (3.5)

1A causal function is zero for t < 0−.
2The transmission element C should not be confused with the acoustic compliance ”C”.
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Figure 3.2: Equivalent 2-port networks for a length l of uniform transmission line. (a) T-section; (b)
Π-section. These represent two alternative ways of specifying the impedances. For example the pipe
representation of Fig. 3.1b is a T-section with za = sL/2, zc = R/2 and zb = 1/(G + sC). in (a) zc
and (b) yc need to be added.

where

A(s) ≡ E1

E1

����
I2=0

, B(s) ≡ E1

I2

����
E1=0

, C(s) ≡ I1
E2

����
I2=0

D(s) ≡ I1
I2

����
E2=0

.

The inverse Laplace transforms of the ⊤-matrix parameters a(t) ↔ A(s), b(t) ↔ B(s), c(t) ↔ C(s) and
d(t) ↔ D(s) must be analytic functions of Laplace frequency s in the right-half plane because they must
represent causal functions (e.g., a(t < 0−) = 0). This follows from the fact the the voltages and currents
of the circuit must all obey causal relationships. Furthermore, the determinite of the ⊤-Matrix must be
unity, that is Δ⊤ ≡ AB − CD = 1. This follows from the requirement that the passive physical system
being modeled is reciprocal.

Given our example in Fig. 3.1a of a stub of transmission line of length l,

�
E1(x,ω)
I1(x,ω)

�
=

�
cosh(γl) Z0 sinh(γl)

Y0 cosh(γl) sinh(γl)

� �
E2

I2

�
, (3.6)

where
Z0 = 1/Y0 ≡

p
Z/Y (3.7)

is the characteristic impedance (Y0 is the characteristic admittance) of the line and

γ ≡ +
√
ZY (3.8)

is the wave’s propagation function. This relationship follows from Eq. 3.4, the solution of the wave
equation.

One recalls from conventional circuit theory the lossless case corresponds to γ =
√
ZY = jβ = s

√
LC,

and Z0 =
p
L/C. The hyperbolic functions then reduce to circular functions which are purely reactive.

Notice, too, for small loss conditions, (that is, R ≪ ωL and G ≪ ωC) the attenuation and phase
constants are approximately3

α ≈ Y0R

2
+

Z0G

2

β ≈ ω

c
, (3.9)

3In the case of losses, the signs of α and β for the forward and reverse traveling waves must be determined such that
the solution is both causal and stable. This involves the careful choice of the branch cut resulting from the square root in
Eq. 3.8.
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[Z] [⊤] T-section (Fig. 3.2a)

[Z]
z11 z12
z21 z22

A/C Δ⊤/C
1/C D/C

za + zc zb
zb za + zc

[⊤]
z11/z21 ΔZ/z21
1/z21 z22/z21

A B
C D

(za + zc)/zb z2a/zb + 2za
1/zb (za + zc)/zb

Table 3.1: Table of transformations between Z-matrix (Eq. 3.10) and ⊤-matrix (Eq. 3.5) representations.
Note that the sign of I2 in the ⊤-matrix is switched for the Z-matrix (i.e., I ′2 = −I2).
On the right-most column the forms are defined in terms of the T-secion parameters of Fig. 3.2a. Δ⊤

and ΔZ represent the determinates of [T ] and [Z].

with wave velocity (i.e., speed of sound) c ≡ 1/
√
LC.

The ⊤-matrix is useful for calculations since it is designed to be cascaded, to build a network.
However it is frequenly more convient to define a system in terms of the impedance matrix Z(s). We
need to know how to transfrom between the ⊤ and Z matrix forms.

Impedance matrix representation The general 2-port impedance matrix Z(s) representation is
defined as �

E1(x,ω)
E2(x,ω)

�
= Z(s)

�
I1
I ′2

�
≡

�
z11(s) z12(s)
z21(s) z22(s)

� �
I1
I ′2

�
(3.10)

with I ′2 ≡ −I2.
The T -section format for the l length of line is shown in Fig. 3.2a, along with the Π-section format

in Fig. 3.2b. These forms (T and Π sections) are the most schematic way of specifying a transmission
line in terms of its physical parameters. From the T-section parameters (e.g., za, zb) the ⊤-matrix and
Z-matrix parameters may be easily derived.

This relationship between the T-section parameters (Fig. 3.2a), the ⊤-matrix parameters A(s), B(s),
C(s) and D(s) and the Z-matrix elements zij , etc., are summarized in Table 3.1. By inspection of
Eq. 3.10 and Fig. 3.2a,

z11 ≡ E1

I1

����
I′

2=0

= za + zb z12 ≡ E1

I ′2

����
I1=0

= zb

z21 ≡ E2

I1

����
I′

2=0

= zb z22 ≡ E2

I ′2

����
I1=0

= za + zc.

A system is reciprocal when z
12

= z
21
, or in terms of the ⊤-matrix representation, when Δ⊤ ≡

AC − BD. If a network is identical when run in reverse (if the system is invariant to having the ports
flipped), the networks is called symmetrical, leading to z11 = z22 , or equivalently A = D.

It is important to note that there are cases where a physical system does not have an impedance
representation, for example, when C = 0. The ⊤-matrix form, on the otherhand, always exists. Thus
the prefered form must be for the ⊤-matrix form.

3.2 Acoustic transmission lines

Having reviewed the relations for the uniform, lossy electrical line, we may next interpret plane wave
propagation in a uniform, lossy pipe (Fig. 3.1a) in analogous terms. Since the sound pressure p(t) ↔ P (ω)
is considered analogous to voltage and the acoustic volume velocity, u(t) ↔ U(ω) analogous to current,
the lossy, one dimensional, sinusoidal sound propagation is described by Eq. 3.3. The propagation
constant is complex (that is, the velocity of propagation is in effect complex) and therefore the wave
attenuates as it travels. In a smooth hard-walled tube the viscous and heat conduction losses can be
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represented, in effect, by an I2R loss and an E2G loss, respectively. The inertance of the air mass is
analogous to the electrical inductance, and the compliance of the air volume is analogous to the electrical
capacity. We can draw these parallels quantitatively.4

3.2.1 The Acoustic Mass “L”

The mass of air contained in the dx length of pipe in Fig. 3.1a is ρ0Adx, where ρ0 is the air density. The
excess pressure p(x, t) accelerating this mass is (i.e., Newton’s law):

dp = ρ0dx
dv

dt
= ρ0

dx

A
· du(x, t)

dt
,

where v(x, t) is particle velocity and u(x, t) is the volume velocity, define as the area times the normal
component of the particle velocity, namely

u(x, t) ≡ Av. (3.11)

If we take the Fourier Transform5 of these relations [e.g., p(x, t) ↔ P (x,ω) and u(x, t) ↔ U(x,ω) ]
we obtain frequency domain relationships

d

dx
P (x,ω) = sLaU(x,ω), (3.12)

where
La = ρ0/A (3.13)

is the per-unit-length acoustic inertance .
It is our convention to use radian frequency ω for non-causal functions, having a Fourier transfrom,

and complex radian frequency s = σ + jω for causal functions of frequency having a Laplace transform
(e.g., impedance sLa defined via Eq. 3.12). We shall keep track of causality with this notational difference
in frequency dependence (i.e., ω vs. s).

3.2.2 The Acoustic “C”

The analogous acoustic capacitance, or compliance, arises from the compressibility of the volume V of
air contained in the dx length of tube shown in Fig. 3.1a. The elemental air volume V = Adx experiences
compressions and expansions following the adiabatic gas law

pVη = constant,

where p is the total pressure (the static + excess), V is the volume of the gas, and η is the adiabatic
constant defined as the ratio of specific heat at constant pressure cp to that at constant volume cv.

6

After taking the log and differentiating with respect to time

1

p

dp

dt
= − η

V
dV
dt

.

The diminution of the original air volume, owing to compression caused by an increase in pressure, must
equal the volume current into the compliance; that is,

u = −dV
dt

,

4The first-time reader might wish to omit the following detailed sections and jump to the summary Eq. 3.46 in Sec-
tion 3.2.5.

5The Fourier Transform relations are defined as P (ω) ≡
�

∞

−∞
p(t)e−jωtdt ↔ p(t) ≡

�

∞

−∞
P (ω)ejωtdω/2π.

6For diatomic air at normal conditions, η = cp/cv = 1.4.
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and
1

p

dp

dt
=

η

V u.

For sinusoidal time dependence P = P0+P (x,ω)ejωt, where P0 is the quiescent (ambient) static pressure,
large7 compared with the excess pressure P (x,ω).8 The volume flow into the compliance of volume Adx
is therefore

d

dx
U(x,ω) = s

A

P0η
P (x,ω). (3.14)

The per-unit-length acoustic compliance is defined via Ohm’s Law as the ratio of the volume velocity
over the excess pressure

sCa ≡ U(x,ω)

P (x,ω)
,

with

Ca =
A

P0η
=

A

ρ0c2
. (3.15)

This last relation follows from the derivation of the acoustic wave equation Eq. 3.3 and the propaga-
tion constant Eq. 3.8, the speed of sound, which is given by [Morse, 1948]

c =

s
P0η

ρ0
. (3.16)

Thus P0η = ρ0c
2.

3.2.3 The Acoustic “R”
Add exact Helmho
a pipe, following KThe acoustic R represents the power dissipated in viscous friction at the tube wall, a loss proportional

to |U |2 [Ingard, 1953]. The history of this analysis goes back to Stokes, Helmholtz and Kirchhoff, and
Rayleigh [Keefe, 1984]. The easiest way to put in evidence this equivalent surface resistance is to consider
the situation shown in Fig. ??. Imagine that the tube wall is a plane surface, large in extent, and moving
sinusoidally in the x-direction with harmonic velocity U(x, y,ω). The air particles proximate to the wall
experience a force owing to the viscosity µ of the medium. The power expended per-unit-area in dragging
the air with the plate is the loss to be determined.

Consider a layer of air dy thick and of unit area normal to the y axis, The net force on the layer is

µ

"�
∂u

∂y

�

y+dy

−
�
∂u

∂y

�

y

#
= ρ0dy

∂u

∂t
,

where u(x, y,ωt) is the harmonic particle velocity in the x-direction. The diffusion equation specifying
the air particle velocity as a function of the distance above the wall is then [Hildebrand, 1948]

∂2u

∂y2
=

ρ0
µ

∂u

∂t
. (3.17)

Taking a Fourier Transform we obtain the harmonic time dependence

d2U

dy2
= s

ρ0
µ
U = k2vU, (3.18)

7Under standard conditions P0 = 105 [Pa].
8The excess pressure is the small (e.g. less than 10 Pascals) acoustic time-varying component riding on the ambient

static pressure.
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Figure 3.3: Relations illustrating viscous loss at the wall of a smooth tube

where kv =
p
sρ0/µ = (1 + j)

p
ωρ0/2µ,

9 The harmonic velocity distribution is

U(x, y,ω) = U(x, y = 0,ω)e−kvy = U(x, y = 0,ω) · e−
√

ωρ0/2µ y · e−j
√

ωρ0/2µ y (3.20)

The distance required for the particle velocity to diminish to 1/e of its value at the driven wall is often
called the boundary-layer thickness and is

δv =
p
2µ/ωρ0. (3.21)

In air at a frequency of 100Hz, for example, δv ≈ 0.2 [mm].10
tural anaytic

The viscous drag, per-unit area, on the plane wall is

F = −µ
∂U

∂y

����
y=0

= µkvU(y = 0),

or
F = U

√
sµρ0. (3.22)

Notice that this force has a real part and a positive reactive part. The latter acts to increase the
apparent acoustic L. The average power dissipated per-unit surface area in this drag is

P̄ =
1

2
|F ||Um| cos θ =

1

2
|Um|2Rs, (3.23)

where Rs =
p
ωρ0µ/2 is the per-unit-area surface resistance and θ = π/2 is the phase angle between

F and Um (e.g., 45◦). For a length l of the acoustic tube, the inner surface area is Sl, where S is the
circumference. Therefore, the average power dissipated per-unit length of the tube is P̄ S = 1

2u
2
mSR or

in terms of the acoustic volume velocity

P̄S =
1

2
U2
mRa,

where

Ra =
S

A2

p
ωρ0µ/2, (3.24)

and A is the cross-sectional area of the tube. Ra is then the per-unitlength acoustic resistance for the
analogy shown in Fig. 3.1.

9Note that this involves the “usual 1/2 derivative” formula, resulting from
√
s [Lighthill, 1978, page 21, Eq. 77], which

may be implimented by a time-convolution with the operator (and its Laplace transform)

Δ(t)√
πt

⋆
d

dt
↔ s√

s
=

√
s. (3.19)

10Some prefer the alternate definition of a more general analytic boundary-layer thickness δv =
�

µ/sρ0, without the
factor of 2.
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Figure 3.4: Relations illustrating heat conduction at the wall of a tube

As previously mentioned, the reactive part of the viscous drag contributes to the acoustic inductance
per-unit-length. In fact, for the same area and surface relations applied above, the acoustic inductance

obtained in the foregoing section should be increased by the frequency dependent factor A2

S

p
µρ0/2ω,

or

La ≈ ρ0
A

�
1 +

S

A

r
µ

2ρ0ω

�
. (3.25)

Thus, the viscous boundary layer increases the apparent acoustic mass and slightly diminishes the
cross-sectional area. For vocal tract analysis, the viscous boundary layer is typically so thin that the
second term in Eq. 3.25 is negligible. For example, for a circular cross-section of 9 cm2, the second
term at a frequency of 500Hz is about (0.006) ρ0/A (i.e., factor of 0.6%), and even smaller at higher
frequencies.

The 2-port mass

Each acoustic element may also be written as a 2-port transmission matrix. For the acoustic mass
element “L” this is equivilent to chosing the elemental dx to be a finite length, say l meters long. In this
case we may describe the mass as the following 2-port transmission matrix notation

�
P1(x,ω)
U1(x,ω)

�
=

�
1 Ra + sMa

0 1

� �
P2(x,ω)
U2(x,ω)

�
, (3.26)

The port variables on the left [P1, U1] represent the input with volume velocity U1 defined into the port,
while the variables on the right [P2, U2] represent the output, with volume velocity U2 out of the port.
The acoustic mass is given by

Mal ≡ La =
lρ0
A

�
1 +

S

A

r
µ

2ρ0ω

�
. (3.27)

where l is the length of the tube, ρ0 is the density of air and A is the tube area. As will be discussed in
greather depth below, the length must be modified to account for spreading of the waves as it leaves the
tube, or if one tube is connected to a second having a different area. This end correction is a function
of the ratio of the two tube areas.

3.2.4 The Acoustic “G”
Add exact Helmho
a pipe, following KThe analogous shunt conductance provides a power loss proportional to the square of the local sound

pressure. Such a loss arises from heat conduction at the walls of the tube. The per-unit-length conduc-
tance can be deduced in a manner similar to that for the viscous loss. As before, it is easier to treat a
simpler situation and extend the result to the vocal tube.
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Consider a highly conductive plane wall of large extent, such as shown in Fig. 3.4. The air above
the boundary is essentially at constant pressure and has a coefficient of heat conduction λ and a specific
heat cp. Suppose the wall is given an oscillating temperature T |x,y=0 = Tm(y = 0)ejωt. The vertical
temperature distribution produced in the air is described by the diffusion equation[Hildebrand, 1948].

∂2T

∂y2
=

cpρ0
λ

∂T

∂t
,

which in the frequency domain is
e domain!?

∂2Tm

∂y2
= jω

cpρ0
λ

Tm. (3.28)

The solution is therefore T = Tm(y = 0,ω)e−khy+jωt, where

kh =

r
scpρ0
λ

(3.29)

which is the same form as the velocity distribution due to viscosity. In a similar fashion, the boundary
layer depth for temperature is δh =

p
2λ/ωcpρ0 (or complex δh =

p
λ/scpρ0), thus kh = (1 + j)/δh.

Now consider more nearly the situation for the sound wave. Imagine an acoustic pressure wave
moving parallel to the conducting boundary, that is, in the x-direction. We wish to determine the
temperature distribution above the wall produced by the sound wave. The conducting wall is assumed
to be maintained at some quiescent temperature and permitted no variation, that is, λwall = ∞. If the
sound wavelength is long compared to the boundary extent under consideration, the harmonic pressure
variation above the wall may be considered as P = P0+p, where P0 is the quiescent atmospheric pressure
and p = pmejωt is the pressure variation. (That is, the spatial variation of p with x is assumed small.)
The gas laws prescribe

PV η = constant and PV = RT (for unit mass).

Taking differentials gives
dV
V = −1

η

dP

P
and

dP

P
+

dV

V
=

dT

T
(3.30)

Combining the equations yields
dP

P

�
1− 1

η

�
=

dT

T
, (3.31)

where
dP = p = pmejωt

dT = τ = τmejωt,

so from (Eq. 3.31)

τm =
T0

P0

�
η − 1

η

�
pm (3.32)

At the wall, y = 0 and τ(0) = 0 (because λwall = ∞). Far from the wall (i.e., for y large), |τ(y)| = τm
as given in (Eq. 3.32). Using the result of (Eq. 3.29), the temperature distribution can be constructed
as

τ(y, t) =
�
1− e−khy

�
τmejωt,

or

τ(y, t) =
P0

T0

�
η − 1

η

��
1− e−khy

�
pmejωt. (3.33)

This equation is the phasor at frequency ω, thus the ratio τ/pmejωt is an admittance, and therefore an
analytic function of s in the right-half plane.
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Now consider the power dissipation at the wall corresponding to this situation. A long wavelength
sound has been assumed so that the acoustic pressure variations above the boundary can be considered
p = pmejωt, and the spatial dependence of pressure neglected. Because of the temperature distribution
above the boundary, however, the particle velocity will be nonuniform, and will have a component in
the y-direction. The average power flow per-unit surface area into the boundary is ¯puy0

t, where uy0 is
Needs fixing

the velocity component in the y direction on the boundary. To examine this quantity, uy is needed.
Conservation of mass in the y-direction requires

ρ0
∂uy

∂y
= −∂ρ0

∂t
. (3.34)

Also, for a constant mass of gas dρ0/ρ0 = −dV/V which with the second equation in (Eq. 3.30) requires

dP

P
− dρ0

ρ0
=

dT

T
. (3.35)

Therefore,
∂uy

∂y
=

�
1

T0

∂τ

∂t
− 1

P0

∂p

∂t

�
, (3.36)

and

uy =

Z
∂uy

∂y
· dy

yy =
jωp

P0

�
η − 1

η

�
y +

e−kyy

ky

�
− y

�
. (3.37)

And,

uy0 = p
ω

c

η − 1

ρ0c

j

1 + j
δh. (3.38)

The equivalent energy flow into the wall is therefore

Wh = ¯puy0

t =
ω

c

η − 1

ρ0c
δh

1√
2

1

T

Z T

0

P 2
m cos

�
ωt+

π

4

�
cosωt · dt

Wh =
1

4

ω

c

η − 1

ρ0c
δhp

2
m =

1

2
Gαp

2
m, (3.39)

where Gα is an equivalent conductance per-unit wall area and is equal

Gα =
1

2

ω

c

η − 1

ρ0c

s
2λ

ωcpρ0
. (3.40)

The equivalent conductance per-unit-length of tube owing to heat conduction is therefore

Gα = S
η − 1

ρ0c2

s
λω

2cpρ0
, (3.41)

where S is the tube circumference. To reiterate, both the heat conduction loss G; and the viscous loss Rα

are applicable to a smooth, rigid tube. The vocal tract is neither, so that in practice these losses might
be expected to be somewhat higher. In addition, the mechanical impedance of the yielding wall includes
a mass reactance and a conductance which contribute to the shunt element of the equivalent circuit.
The effect of the wall reactance upon the tuning of the vocal resonances is generally small, particularly
for open articulations. The contribution of wall conductance to tract damping is more important. Both
of these effects are estimated in a later section.
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The 2-port compliance

The acoustic compliance element “Ga + sCa” is equivilent to chosing the elemental dx to be a finite l
meters long. In this case we may describe the mass as the following 2-port transmission matrix notation

�
P1(x,ω)
U1(x,ω)

�
=

�
1 0

Ga + sCa 1

� �
P2(x,ω)
U2(x,ω)

�
, (3.42)

The port variables on the left [P1, U1] represent the input with volume velocity U1 defined into the port,
while the variables on the right [P2, U2] represent the output, with volume velocity U2 out of the port.
The acoustic compliance is given by

C ≡ lCa =
Al

ηP0
(3.43)

where A is the tube area.

3.2.5 Summary of the Analogous Acoustic Elements

In matrix form the acoustic equations may be written in a manner similar to the electrical case, but in
terms of the pressure P playing the role of a force, and the volume velocity U playing the role of the
flow

d

dx

�
P (x,ω)
U(x,ω)

�
= −

�
0 Z(x, s)

Y(x, s) 0

� �
P (x,ω)
U(x,ω)

�
. (3.44)

with

Z ≡ Ra + sLz and Y ≡ Ga + sCa. (3.45)

The per-unit-length analogous constants for the uniform pipe are

La = ρ0

A , Ca = A
ρ0c2

,

Ra = S
A2

p
ωρ0µ

2 , Ga = S η−1
ρ0c2

q
λω

2cpρ0
,

(3.46)

where A is tube area, S is tube circumference, ρ0 is air density, c is sound velocity, µ is viscosity
coefficient, A is coefficient of heat conduction, η is the adiabatic constant, and cp is the specific heat of
air at constant pressure.11

Having set down these quantities, it is possible to approximate the nonuniform vocal tract with as
many right circular tube sections as desired by cascading the transmission matrix of each tube. The
transmission characteristics can be determined either from calculations on equivalent network sections
such as shown in Fig. 3.3, or from electrical circuit simulations of the clements.

We will presently apply the results of this section to some simplified analyses of the vocal tract.
Before doing so, however, it is desirable to establish several fundamental relations for sound radiation
from the mouth and for certain characteristics of the sources of vocal excitation.

11Summarizing the constants:

P0 = 105 Pa

ρ0 = 114 kgm/m3 (moist air at body temperature 37deg C)

c =
�

γP0/ρ0 = 343 m/sec (moist air at body temperature, 37deg C)

η = cp/cv = 1.4

cp = 0.24 cal/gm-degree(Odeg C, 1 atmos)transform to MKS units

µ = 1.86× 10−4 dyne-sec/cm2(20C, 0.76 m.Hg)transform to MKS units

λ = 0.055× 10−3 cal/gm-sec-deg(0deg C)transform to MKS units
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3.3 Acoustic Horns

In this section we move from uniform tubes of constant crossection to the topic of horns, which have
an area that is changing in the direction of wave propagatation. This is a very important topic to
communication acoustics. First when the area changes, the impedance also must change. Thus horns
are used to transform the acoustic impedance from one end to the other end of the horn. Second horns
are a special case on inhomogeneous media, a very important topic to speech production and hearing. To
deal with these issues we must start from the basic equations of acoustics in 3 dimensions. The equation
of a horn is then typically an approximation which reduces the 2 or 3 dimentional wave propagation to
a function of the axial variable. The methods used to do this are reviewed next.

In three dimensions the basic acoustic equations are based on two laws, Newton’s second law of
conservation of momentum

∇P = −sρ0U [eq : gradP] (3.47)

and Hooke’s Law for the adiabatic compressibility of air

∇ ·U = − s

ηP0
P, [eq : divU] (3.48)

where P (ω) is the pressure, U(ω) is the vector particle velocity, with s the Laplace frequency s = σ+jω,
ρ0 the density of air, η ≡ cp/cv, P0 is the static pressure of air. We refer to the ratio of pressure to
particle velocity as the specific acoustic impedance in [Rayls], and the pressure over a volume velocity is
the acoustic impedance in [acoustic ohms ].
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0 ≤ A0 ≤ 4π: “Subtended cap-area”

Figure 3.5: Experimental setup showing a large pipe on the left terminating the wall containing a small hole
with a balloon, shown in green. At time t = 0 the ballon is pricked and a pressure pulse is created. The baffel on
the left is meant to represent an ∞ long tube having a very large radius compared to the horn input diameter
2a, such that the acoustic admittance looking to the left (A/ρ0c with A → ∞), is very large compared to that
looking into the horn, Y+(a, s) (Eq. 3.60). At time t = b/c the outbound pressure pulse δ(t− b/c)/r has reached
radius b. [fig:Exp-horn]

3.3.1 Spherical acoustics

The conical horn is a special case with an exact solution due to its cylindrical symmetry. In spherical
coordinates the pressure is given by Eq. 3.47

∇rP ≡ dP

dr
= −sρ0Ur (3.49)

and the velocity is determined by Eq. 3.48

∇r ·U ≡ 1

r2
d

dr
r2Ur = − s

ηP0
P, (3.50)
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where the subscript r indicates the radial component of the pressure gradient and velocity divergence.
If we define the per-unit length series acoustic impedance

Z(r, s) = s
ρ0

A(r)
(3.51)

and the per-unit length shunt acoustic admittance

Y(r, s) = s
A(r)

ηP0
, (3.52)

with the horn’s subtended cap area as A(r) = A0r
2 (A0 is the fraction of subtended cap area relative

to 4π, as shown in Fig. 3.5), then the transformed spherical equations may be written in Webster form
(i.e. see Eq. 3.2) in terms of the pressure P volume velocity V = A(r)Ur as

d

dr

�
P (r,ω)
V (r,ω)

�
= −

�
0 Z(r, s)

Y(r, s) 0

� �
P (r,ω)
V (r,ω)

�
. [eq : Webster2] (3.53)

This is a scaled form of the conical horn (it is a horn because the per-unit-length impedance Z and
admittance Y are a function of r), with an angle that subtends 4π [sr] (steradians). Expressing the
solution in terms of the volume velocity after scaling A(r), we obtain the traditional conical horn equation
Eq. 4.67 [Salmon, 1946a,b, Morse, 1948, p. 271].

Thus the spherical wave solution may be expressed as a Webster (conical) horn equation. If one
reduces this to a second-order equation in pressure, the classic Webster horn equation results [Webster,
1919, Salmon, 1946a,b, Morse, 1948, Kinsler and Frey, 1962, Leach, 1996, Pierce, 1981].

The functions Z and Y define the acoustic characteristic impedance (resistance) that depends on the
radius

Z0(r) ≡
r

Z
Y =

√
ρ0ηP0

A(r)
=

ρ0c

A(r)
=

1

Y0(r)
[eq : Z0] (3.54)

and a wave propagation function, closely related to the sound speed by

γ ≡
√
ZY = s/c (3.55)

that for all horns, is independent of the axial coordinate r [Morse, 1948].
Equation 3.53 may be reexpressed as a single equation in pressure as

d2

dr2
rP = γ2rP. (3.56)

Following d’Alembert (1747), the solution to this equation in spherical coordinates, corresponding to
a spherical symmetry, is given by the sum of an outbound P+(r,ω) and an inbound P−(r,ω) wave
[Salmon, 1946a,b, Morse, 1948, Pierce, 1981, Leach, 1996]

P (r,ω) = P+
ω

e−sr/c

r
+ P−

ω

e+sr/c

r
[eq : dAlembert] (3.57)

where P+
ω (a) ↔ p+(t) and P−

ω (a) ↔ p−(t) are the Fourier “source strengths” and a is the radius
corresponding to the source location (the radius the waves are launched from). When P+

ω (a) = 1 and
P−
ω (a) = 0, the resulting outbound pressure wave is a Dirac delta function

p(r, t) =
δ(t− r/c)

r
↔ P (r,ω) =

e−sr/c

r
. [eq : p+] (3.58)
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L = ρ0a/A0a
2

P

R = ρ0c/A0a
2

V

Figure 3.6: Equivalent circuit of the radiation acoustic impedance of a conical horn for Eq. 3.60. Parameter
A0 is a number between 0 and 4π determined by the horn’s subtended cap area, as defined by Fig. 3.5, while a
is the horn’s throat radius. The resistance R and the reactance sL are equal at frequency given by ka = 1, or
ωc = c/a. This makes the connection between resonant scattering and the reactive component of the mass. This
mass is also called the spreading inertance. [fig:Zrad]

3.3.2 Particle velocity and the radiation impedance

Substituting the expression for the pressure (Eq. 3.57) into Eq. 3.47 results in an expression for the
radial component of the particle velocity

Ur = − 1

Z
∂

∂r

�
P+
ω

e−sr/c

r
+ P−

ω

e+sr/c

r

�
= Y +P+ − Y −P−, [eq : Ur] (3.59)

corresponding to out and inbound velocity waves U±
r = Y ±P±. From the above definition the acoustic

radiation admittances at r = a for outbound (Y +) and inbound (Y −) waves are

Y ±(a, s) ≡ A0a
2

√
ρ0ηP0

± A0a
2

sρ0a
. [eq : Ypm] (3.60)

Here the first, real term which is the characteristic admittance Y0(a), corresponds to radiated (absorbed)
energy, while the second, reactive complex term, to the stored kinetic energy (wave momentum). As
depicted in Fig. 3.6, the sum of two admittances represent the parallel combination of impedances, in
this case the characteristic resistance Z0 ≡ ρ0c/A0a

2 and the acoustic mass ±ρ0a/A0a
2 [Bauer, 1944,

Salmon, 1946a,b, Morse, 1948]. The minus sign on the inbound wave U−
r has been chosen to correspond

to the direction of mass flow so that the real part of the radiation admittance remains positive for waves
of both directions. It is obvious that a converging wave and a diverging wave cannot have the same
impedance. This shows up as the converging wave having a negative mass, as indicated by the sign of
Y − in /EqYpm, corresponding to the inbound wave.

Setting the expression for the admittance to zero gives the frequencies of the poles s±(r) = ±c/a,
which are related to the size of the acoustic wavelength relative to the size of the sphere. This is the
same as ka = 1 where k = 2π/λ is the wave number and λ is the wavelength. One may conclude that
the reactance is related to sphereical resonant scattering.

This reactive term is well known in loud speaker design, as it explains why loudspeakers cannot
radiate energy at low frequencies. This shunt reactance in the radiation impedance limits the power
radiated for frequencies greater than the cutoff frequency s±. This is the same for an electrical antenna
smaller than the wavelength (e.g., ka < 1).

In the time domain, an inverse Laplace transform of the two admittances is

y±(a, t) = Y0δ(t)±
A0a

ρ0
Δ(t) ↔ Y ±(a, s), [eq : ypm] (3.61)

where δ(t) is the Dirac impulse function and Δ(t) is its first integral, the unit step function. Since the
velocity is the product of the admittance and the pressure, the time domain admittance y+(a, s) repre-
sents the radial particle velocity corresponding to an outbound wave pressure wave impulse, launched
from a spherical radiator having radius a (e.g., Eq. 3.58).
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In the case of a uniform tube, there is no mass reactance and the forward traveling pressure wave is
simply p+δ(t− x/c), with a corresponding velocity wave v+ = Z0p

+δ(t− x/c).
The velocity wave, found by convolution of the pressure impulse Eq. 3.58 with the admittance y+(t),

consists of a delta function plus a outbound constant velocity, that decreases with the radius r. The
spherical wave on the other hand has a mass reactance (i.e. sρ0r) in the wave radiation impedance. The
outbound step function, being the inverse transform of the imaginary part of the admittance, represents
the reactive storage of energy. This reactive part is the part not radiated, but corresponds to the velocity
component that is delayed, relative to the pressure component, representing stored energy in the acoustic
field.

The relations between pressure and velocity [P,Ur] and the out and inbound pressure [P+,P−], given
at a, by Eq. 3.57 and Eq. 3.59, may be summarized in matrix form as, evaluated at the input (r = a)

�
P (a,ω)
Ur(a,ω)

�
=

�
1 1

Y +(a, s) −Y −(a, s)

� �
P+(a,ω)
P−(a,ω)

�
[eq : ImpedanceWaves] (3.62)

with P+ being the outbound and P− being the inbound d’Alembert (1746) waves for a spherical radiator
of radius a, where P±(a,ω) = P±

ω (a)e∓sa/c/a and the radiation admittances Y ±(a, s) are given by
Eq. 3.60.

3.3.3 Wave variables

A second order linear differential equation may be transformed into another set of basis functions. The
natural basis set is the d’Alembert waves of Eq. 3.57, but other transformations are possible. In the
following we shall transform Eq. 4.67 using wave variables [Fettweis, 1986].

Wave variables are linearly related to the pressure and velocity (Eq. 3.62) via the relations P =
P+ + P− and Ur = U+ − U−. In order that this linear transformation be unique, we further require
that the wave variable ratios to be constrained such that they are equal to the characteristic impedance,
which in general may depend on the positional coordinate, and if losses are considered, on the Laplace
frequency s

P±

U±
r

= Z0(r, s) ≡
s

Z(r, s)

Y(r, s) . [eq : z0] (3.63)

Defining the ratio of wave variables in this way leads to a unique linear transformation between impedance
variables (i.e., the usual pressure and velocity variables [P,Ur], the ratio of which define the impedance)
and wave variables [P+, P−]. Eq. 3.63 makes them similar to localized plane waves. Wave variables (i.e.,
the localized plane waves) are special in that they characterize causal wave-fronts.

The uniqueness of the relations is proved by writing them in matrix form
�

P (r,ω)
Ur(r,ω)

�
=

�
1 1
Y0 −Y0

� �
P+(r,ω)
P−(r,ω)

�
, [eq : Wavepm1] (3.64)

and noting that the determinant (i.e., -2y0(r) = −2
p
Y/Z) is non-zero. In homogeneous media, wave

variables identically reduce to plane waves.
From the inverse of Eq. 3.65 we may determine the wave variables given P± as

�
P+(r,ω)
P−(r,ω)

�
=

1

2

�
1 +Z0

1 −Z0

� �
P (r,ω)
Ur(r,ω)

�
, [eq : Wavepm1] (3.65)

We view this transformation as a differential form of Weyl’s famous integral expansion of the spherical
wave in terms of plane waves. If we cascade Eq. 3.62 with Eq. 3.65 we may directly write the wave

s plane-wave
57. Talk to variables in terms of the d’Alembert solutions P±

�
P+(r,ω)
P−(r,ω)

�
=

1

2

�
1 +Z0

1 −Z0

� �
1 1

Y +(a, s) −Y −(a, s)

� �
P+(a,ω)
P−(a,ω)

�
, [eq : Wavepm2] (3.66)
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This transformation represents a linear mapping from d’Alembert waves to that obey Eq. 3.63, similar
to plane waves. The price for this much simpler impedance relationship (e.g., it is real when the medium
is lossless), is that both types of wave variables are required to expand each of the d’Alembert waves.

As a specific example, when there is only an outbound wave (e.g., an infinite line driven by an impulse
source), P+

ω = 1, P−
ω = 0 and P+ = e−sr/c/r ↔ δ(t− r/c)/r

P±(r,ω) =
1± Z0Y

+

2
e−sr/c [eq : Wavepm3] (3.67)

thus

P+(r,ω) =
�
1 +

c

2sa

� e−sr/c

r
[eq : Wavepm4] (3.68)

and

P−(r,ω) = − c

2sa

e−sr/c

r
[eq : Wavepm5] (3.69)

resulting in a reflectance of

R(s) = − c

s2a+ c
(3.70)

which is -1 for frequencies below resonance, and goes to zero as 1 over frequency, above.


