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Chapter 1

Voice Communication

“Nature, as we often say, makes nothing in vain, and man is the only animal whom
she has endowed with the gift of speech. And whereas mere voice is but an indication of
pleasure or pain, and is therefore found in other animals, the power of speech is intended
to set forth the expedient and inexpedient, and therefore likewise the just and the unjust.
And it is a characteristic of man that he alone has any sense of good and evil, of just
and unjust, and the like, and the association of living beings who have this sense makes
a family and a state.”
ARISTOTLE, Politics

Our primary method of communication is speech. Humans are unique in our ability to transmit
information with his voice. Of the myriad varieties of life sharing our world, only humans have
developed the vocal means for coding and conveying information beyond a rudimentary stage. It is
more to our credit that we have developed the facility from apparatus designed to subserve other,
more vital purposes.

Because humans evolved in an atmosphere, it is not unnatural that we should learn to com-
municate by causing air molecules to collide. In sustaining longitudinal vibrations, the atmosphere
provides a medium. At the acoustic level, speech signals consist of rapid and significantly erratic
fluctuations in air pressure. These sound pressures are generated and radiated by the vocal appa-
ratus. At a different level of coding, the same speech information is contained in the neural signals
which actuate the vocal muscles and manipulate the vocal tract. Speech sounds radiated into the air
are detected by the ear and apprehended by the brain. The mechanical motions of the middle and
inner ear, and the electrical pulses traversing the auditory nerve, may be thought of as still different
codings of the speech information.

Acoustic transmission and reception of speech works fine, but only over very limited distances.
The reasons are several. At the frequencies used by the vocal tract and ear, radiated acoustic energy
spreads spatially and diminishes rapidly in intensity. Even if the source could produce great amounts
of acoustic power, the medium can support only limited variations in pressure without distorting the
signal. The sensitivity of the receiver—the ear—is limited by the acoustic noise of the environment
and by the physiological noises of the body. The acoustic wave is not, therefore, a good means for
distant transmission.

Through the ages men have striven to communicate at distances. They are, in fact, still striving.
The ancient Greeks are known to have used intricate systems of signal fires which they placed on
judiciously selected mountains for relaying messages between cities. One enterprising Greek, Aeneas
Tacitus by name, is credited with a substantial improvement upon the discrete bonfire message. He
placed water-filled earthen jars at the signal points. A rod, notched along its length and supported
on a cork float, protruded from each jar. At the first signal light, water was started draining from the
jar. At the second it was stopped. The notch on the rod at that level represented a previously agreed
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upon message. (In terms of present day information theory, the system must have had an annoyingly
low channel capacity, and an irritatingly high equivocation and vulnerability to jamming!)

History records other efforts to overcome the disadvantages of acoustic transmission. In the sixth
century B.C., Cyrus the Great of Persia is supposed to have established lines of signal towers on
high hilltops, radiating in several directions from his capital. On these vantage points he stationed
leather-lunged men who shouted messages along, one to the other. Similar “voice towers” reportedly
were used by Julius Caesar in Gaul. (Anyone who has played the party game of vocally transmitting
a story from one person to another around a circle of guests cannot help but reflect upon the
corruption which a message must have suffered in several miles of such transmission.)

Despite the desires and motivations to accomplish communication at distances, it was not until
humans learned to generate, control and convey electrical current that telephony could be brought
within the realm of possibility. As history goes, this has been exceedingly recent. Little more than a
hundred years have passed since the first practical telephone was put into operation; there are now,
by some accounts, more telephones than people on planet Earth.

Many early inventors and scientists labored on electrical telephones and laid foundations which fa-
cilitated the development of commercial telephony. Their biographies make interesting and humbling
reading for today’s communication engineer comfortably ensconced in a well equipped laboratory.

Among the pioneers, Bell was somewhat unique for his background in physiology and phonetics.
His comprehension of the mechanisms of speech and hearing was undoubtedly valuable, if not crucial,
in his electrical experimentation. Similar understanding is equally important wilh today’s telephone
researcher. It was perhaps his training that influenced Bell—according to his assistant Watson—
to summarize the telephony problem by saying “If I could make a current of electricity vary in
intensity precisely as the air varies in density during the production of a speech sound, I should be
able to transmit speech telegraphically.” This is what he set out to do and is what he accomplished.
Bell’s basic notion—namely, preservation of acoustic waveform—clearly proved to be an effective
means for speech transmission. Waveform coding was the most widely used form of telephony until
approximately the year 2000, when the number of digital cellular telephones began to outnumber
the number of analog handsets. As we shall see, even digital telephony preserves the waveform, in
the sense that only perceptually insignificant distortions are allowed.

Although the waveform principle is exceedingly satisfactory and has endured for almost a century,
it is not the most efficient means for voice transmission. Communication engineers have recognized
for many years that a substantial mismatch exists between the information capacity of human
perception and the capacity of the “waveform” channel. Specifically, the channel is capable of
transmitting information at rates much higher than those the human can assimilate.

Recent developments in communication theory have established techniques for quantifying the
information in a signal and the rate at which information can be signalled over a given channel.
These analytical tools have accentuated the desirability of matching the transmission channel to
the information source. From their application, conventional telephony has become a much-used
example of disparate source rate and channel capacity. This disparity—expressed in numbers—has
provided much of the impetus toward investigating more efficient means for speech coding and for
reducing the bandwidth and channel capacity used to transmit speech.

1.1 Speech as a Communication Channel

We speak to establish social bonds, and to create ideas larger than ourselves. The natural envi-
ronment for speaking is noisy and complicated, with a continuously changing visual and auditory
channel, as depicted, for example, in Fig. ??. In this famous painting, a group of friends relaxes
on a Sunday afternoon at the restaurant Maison Fournaise. The image provides examples of many
different kinds of conversations: flirtations, expositions, relaxed subdued conversations, and even a
conversation between a woman (Aline Charigot, who would later marry Renoir) and her dog.
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Figure 1.1: Conversation over lunch: Renoir’s Luncheon of the Boating Party, 1881. (Phillips
Collection, Washington D.C.)
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Figure 1.2: Schematic diagram of a general communication system. X =source message, Y =received
message, S =transmitted signal, R =received signal, N =noise. (After Shannon and Weaver, 1949)

Before speaking, every talker conceives a message: a sequence of words, possibly annotated with
subtle hints of nuance and opinion (?, ?). The message is symbolic, and therefore digital: most of the
content of a spoken message may be equivalently conveyed in an e-mail. In most cases, however, we
find it pleasant to encode the message in an analog medium, by configuring the speech articulators
(the lips, jaw, tongue, soft palate, larynx, and lungs) in order to generate an acoustic waveform. A
listener measures the acoustic signal, and converts it into a neural code. The neural code passes
through a series of neural circuits until, eventually, the listener has decoded the intended linguistic
message–or something approximating the intended message.

The subject of this book is the encoding and decoding of the messages conveyed by speech: the
digital-to-analog and analog-to-digital transformations used by humans and machines to produce and
understand ordinary conversation. Before considering the analog channel in more detail, however,
it’s worthwhile to evaluate the end-to-end performance of the channel.

The mathematical theory of information (?, ?) provides a useful mechanism for analyzing the end-
to-end performance of any communications channel, independent of the details of its implementation.
Fig. ?? shows the schematic of an abstract communication channel. There are six boxes in this
figure. The boxes marked “information source” and “noise source” each draw a message or a noise
signal, at random, from some probability distribution. The goal of the box marked “transmitter”
is to encode the message, and that of the “receiver” is to decode the message, so that the received
message will be as similar as possible to the transmitted message. As we shall see, the average
information rate of the speech source is remarkably low. There are apparently two reasons for the
low information rate of speech. First, there is evidence that human listeners are unable to process
information at a rate much higher than that of the speech message; in this respect, humans are much
less effective than machines. Second, low information rate allows speech transmission over extremely
noisy acoustic channels. Human listeners (but not machines, yet) are able to correctly understand
meaningful linguistic messages transmitted at signal to noise ratios (SNR) as low as -20dB; in this
respect, humans are much more effective than machines. The low information rate of speech, and its
remarkable noise robustness, are best understood as an adaptation to noisy natural environments
like the outdoor lunch party in Fig. ??.
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1.2 Entropy of the Speech Source

The elementary relations of information theory define the information associated with the selec-
tion of a discrete message from a specified ensemble. If the messages of the set are xi, are inde-
pendent, and have probability of occurrence P (xi), the information associated with a selection is
I = log2 (1/P (xi)) bits1. The average information associated with selections from the set is the
ensemble average

H(X) =
∑

i

P (xi) log2

(
1

P (xi)

)
= −

∑
i

P (xi) log2 P (xi)

bits, or the source entropy.
Consider, in these terms, a phonemic transcription of speech; that is, the written equivalent of

the meaningfully distinctive sounds of speech. Take English for example. Table ?? shows a list of
42 English phonemes including vowels, diphthongs and consonants, and their relative frequencies of
occurrence in prose (?, ?). If the phonemes are selected for utterance with equal probability [i.e.,
P (xi) = 1/42] the average information per phoneme would be approximately H(X) = 5.4 bits. If
the phonemes are selected independently, but with probabilities equal to the relative frequencies
shown in Table ??, then H(X) falls to 4.9 bits. The sequential constraints imposed upon the
selection of speech sounds by a given language reduce this average information still further2. In
conversational speech about 10 phonemes are uttered per second. The written equivalent of the
information generated is therefore less than 50 bits/sec.

1.3 Conditional Entropy of Received Speech

Because of noise, the speech signal arriving at the receiver may be different from the signal generated
by the transmitter. If the decoding algorithm is not sufficiently robust, noise in the acoustic signal
may lead to errors in the received message. Perceptual errors can be characterized by the conditional
probability that the receiver decodes symbol yj , given that the transmitter encoded symbol xi. This
probability may be writtten as PABγ(yj |xi), in order to emphasize that it is also a function of
several channel characteristics, including the encoding system used by the transmitter and receiver
(A), the bandwidth of the channel (B), and the SNR (γ = S/N , where S is the power of the signal
coming out of the transmitter, and N is the power of the noise signal). For example, an error-free
communication system is characterized by the conditional probability distribution

PABγ(yj |xi) = δij ≡
{

1 yj = xi

0 otherwise (1.1)

If PABγ(yj |xi) 6= δij , then one may say that the communication system is itself introducing
“information” into the received signal. This is an undesirable behavior, because the “information”
generated by the communication channel is independent of the information generated at the source;
this extra “information” is usually called “error.” The average rate at which the communication

1The base-2 logarithm is used to compute information in bits. A base-10 logarithm computes information in
“digits;” a natural logarithm computes information in “nats.” All three units are commonly used in practice.

2Related data exist for the letters of printed English. Conditional constraints imposed by the language are likewise
evident here. If the 26 English letters are considered equiprobable, the average information per letter is 4.7 bits. If
the relative frequencies of the letters are used as estimates of P (xi), the average information per letter is 4.1 bits. If
digram frequencies are considered, the information per letter, when the previous letter is known, is 3.6 bits. Taking
account of trigram frequencies lowers this figure to 3.3 bits. By a limit-taking procedure, the long range statistical
effects can be estimated. For sequences up to 100 letters in literary English the average information per letter is
estimated to be on the order of one bit. This figure suggests a redundancy of about 75 per cent. If statistical effects
extending over longer units such as paragraphs or chapters are considered, the redundancy may be still higher (?, ?).
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Table 1.1: Relative frequencies of English speech sounds in standard prose. (After Dewey, 1923)

Vowels and diphthongs Consonants
Pho- relative −P (xi) log2 P (xi) Pho- relative −P (xi) log2 P (xi)
neme frequency neme frequency

of occur- of occur-
ence (%) ence (%)

TIPAI 8.53 0.3029 TIPAn 7.24 0.2742
TIPAA 4.63 0.2052 TIPAt 7.13 0.2716
TIPAæ 3.95 0.1841 TIPAr 6.88 0.2657
TIPAE 3.44 0.1672 TIPAs 4.55 0.2028
TIPA5 2.81 0.1448 TIPAd 4.31 0.1955
TIPA2 2.33 0.1264 TIPAl 3.74 0.1773
TIPAi 2.12 0.1179 TIPAT 3.43 0.1669
TIPAe, TIPAeI 1.84 0.1061 TIPAz 2.97 0.1507
TIPAu 1.60 0.0955 TIPAm 2.78 0.1437
TIPAAI 1.59 0.0950 TIPAk 2.71 0.1411
TIPAoU 1.30 0.0815 TIPAv 2.28 0.1244
TIPAO 1.26 0.795 TIPAw 2.08 0.1162
TIPAU 0.69 0.0495 TIPAp 2.04 0.1146
TIPAAU 0.59 0.0437 TIPAf 1.84 0.1061
TIPAA 0.49 0.0376 TIPAh 1.81 0.1048
TIPAo 0.33 0.0272 TIPAb 1.81 0.1048
TIPAju 0.31 0.0258 TIPAN 0.96 0.0644
TIPAOI 0.09 0.0091 TIPAS 0.82 0.0568

TIPAg 0.74 0.0524
TIPAj 0.60 0.0443
TIPAtS 0.52 0.0395
TIPAdZ 0.44 0.0344
TIPAT 0.37 0.0299
TIPAZ 0.05 0.0055

Totals 38 62

H(X) = −
∑

i P (xi) log2 P (xi) = 4.9 bits. If all phonemes were equiprobable, then H(X) =
log2 42 = 5.4 bits
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channel introduces errors into a transmitted signal is called the equivocation or conditional entropy
of Y given X, and is defined to be

HABγ(Y |X) = −
∑

i

∑
j

PABγ(xi, yj) log2 PABγ(yj |xi) (1.2)

= −
∑

i

P (xi)
∑

j

PABγ(yj |xi) log2 PABγ(yj |xi)

The amount of information successfully transmitted over the channel is equal to the information rate
of the source, H(X), minus the rate at which errors are introduced by the channel, HABγ(Y |X). This
rate is called the mutual information between the transmitted message and the received message:

IABγ(X,Y ) = H(X)−HABγ(Y |X) (1.3)

=
∑

i

∑
j

P (xi)PABγ(yj |xi)
(
PABγ(yj |xi)

P (xi)

)
Human speech production is a coding algorithm, and may be evaluated just like any other coding

algorithm: by computing the mutual information IABγ that it achieves over any particular acoustic
channel. Fletcher (?) found that, for SNRs of at least 30dB, phonemes in nonsense syllables are
perceived correctly about 98.5% of the time, corresponding to an equivocation of roughly

H(Y |X) ≈ 0.985 log2(1/0.985) + 0.015 log2(1/0.015) = 0.11 bits/symbol3. (1.4)

In order to force listeners to make perceptual errors, Fletcher was forced to distort the acoustic
channel by introducing additive noise and/or linear filtering (lowpass, highpass, or bandpass filters
applied to the acoustic channel).

Eq. (??) is only an approximation of the speech channel equivocation: in order to calculate the
equivocation exactly, it is necessary to know the probability PABγ(yj |xi) for every (i, j) combination.
Miller and Nicely (?) measured conditional probability tables under fifteen different channel condi-
tions for a subset of the English language: specifically, for the subset xi ∈ {p,b,t,d,k,g,f,v,,,s,z,,,m,n},
and yj drawn from the same set. Each consonant was produced in a consonant vowel (CV) syllable,
and the vowel was always /a/. In order to cause perceptual errors, Miller and Nicely limited the
bandwidth of the acoustic channel (9 conditions), or the SNR (5 conditions). After several thousand
trials, the perceptual effect of each channel was summarized in the form of a confusion matrix, like
the one shown in Fig. ??. In a confusion matrix, entry C(i, j) lists the number of times that phoneme
xi was perceived as phoneme yj . The conditional probability P (yj |xi) may be estimated as

P (yj |xi) ≈
C(i, j)∑
j C(i, j)

(1.5)

Using the approximation in ??, the equivocation of the speech communication system, at -6 dB
SNR, is 2.176 bits. Since each syllable is chosen uniformly from 24 = 16 possible syllables, the source
entropy is H(X) = log2 16 = 4 bits. The amount of information successfully transmitted from talker
to listener, therefore, is 4 − 2.176 = 1.834 bits. Fig. ??(a) shows the information transmitted from
talker to listener, over the wideband acoustic channel, as a function of SNR. Mutual information
is greater than one bit per consonant at -12dB, and the information rate only drops to zero below
-18dB SNR. Fig. ??(b) shows the information transmitted over the lowpass-filtered and highpass
filtered channels, as a function of the cutoff frequency.

3This approximation results from the assumption that only two events matter: the phoneme is either correctly or
incorrectly recognized. The actual equivocation of a 42-phoneme communication system with a 1.5% error rate could
be anywhere between 0.02 and 0.19 bits/symbol, depending on the error rates of each individual phoneme, and the
distribution of errors across the various possible substitutions.
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Figure 1.3: Typical confusion matrix (6300Hz bandwidth, -6dB SNR). Entry (i, j) in the matrix
lists the number of times that a talker said consonant xi, and a listener heard consonant yj . Each
consonant was uttered as the first phoneme in a CV syllable; the vowel was always /a/. (After Miller
and Nicely, 1955)

Figure 1.4: (a) Mutual information between spoken and perceived consonant labels, as a function
of SNR, over an acoustic channel with 6300Hz bandwidth (200-6500Hz). (b) Mutual information
between spoken and perceived consonant labels, at 12dB SNR, over lowpass and highpass acoustic
channels with the specified cutoff frequencies. The lowpass channel contains information between
200Hz and the cutoff; bit rate is shown with a solid line. The highpass channel contains information
between the cutoff and 6500Hz; bit rate is shown with a dashed line. (After Miller and Nicely, 1955)
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1.4 Capacity of the Acoustic Channel

Mutual information is a summary of the efficiency with which algorithm A transmits information
over a channel with bandwidth B and noise statistics N . Shannon has demonstrated (?) that no
algorithm can transmit more information than

I(X,Y ) ≤ C

(
B,

S

N

)
, (1.6)

where B is the bandwidth of the channel, S/N is the signal to noise ratio, and C(B,S/N) is called
the channel capacity. Shannon has shown that the channel capacity of a channel with additive
Gaussian noise is given by

C(B,S/N) =
∫ B

0

log2

(
1 +

S(f)
N(f)

)
df

bits
second

(1.7)

where S(f) and N(f) are the power spectra of the speech and noise, respectively. Speech is transmit-
ted over an acoustic channel with bandwidths varying between about 3000Hz (telephone transmis-
sion) to 20kHz (the audible frequency range, usable during face-to-face communication). Under very
noisy listening conditions (e.g., at an SNR of -12dB or S/N = 0.0625), the capacity of a telephone-
band acoustic channel is 188 bits/second–far greater than the information transmitted from a human
talker to a human listener. In a quiet room (at an SNR of about 30dB, or S/N ≈ 1000), the chan-
nel capacity of a 20kHz channel is 20,000 bits/second–400 times greater than the information rate
achieved by a human conversationalist.

Why is speech limited to a rate of 50 bits/second? Phrased another way: why don’t people talk
more quickly under quiet listening conditions, or more clearly, in order to communicate at a bit
rate higher than 50 bps? Is the extra information already present, in the form of subtle nuances of
intonation? Is the time waveform simply an inefficient code, incapable of carrying more than 50bps?
Is the human incapable of processing information at rates much higher than 50 bits/sec? Does the
receiver discard much of the transmitted information? Chapter ?? will consider these questions in
much greater detail; for now, let us consider some experimental studies that have tried to answer
this question.

A number of experimental efforts have been made to assess the informational capacity of human
listeners. The experiments necessarily concern specific, idealized perceptual tasks. In most cases it
is difficult to generalize or to extrapolate the results to more complex and applied communication
tasks. Even so, the results do provide quantitative indications which might reasonably be taken as
order-of-magnitude estimates for human communication in general.

In one response task, for example, subjects were required to echo verbally, as fast as possible,
stimuli presented visually (?, ?). The stimuli consisted of random sequences of binary digits, decimal
digits, letters and words. The maximal rates achieved in this processing of information were on the
order of 30 bits/sec. When the response mode was changed to manual pointing, the rate fell to
about 15 bits/sec.

The same study considered the possibility for increasing the rate by using more than a single
response mode, namely, by permitting manual and vocal responses. For this two-channel processing,
the total rate was found to be approximately the sum of the rates for the individual response
modes, namely about 45 bits/sec. In the experience of the authors this was a record figure for the
unambiguous transmission of information through a human channel.

Another experiment required subjects to read lists of common monosyllables aloud (?, ?). Highest
rates attained in these tests were 42 to 43 bits/sec. It was found that prose could be read faster
than randomized lists of words. The limitation on the rate of reading was therefore concluded to be
mental rather than muscular. When the task was changed to reading and tracking simultaneously,
the rates decreased.
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A different experiment measured the amount of information subjects could assimilate from au-
dible tones coded in several stimulus dimensions (?, ?). The coding was in terms of tone frequency,
loudness, interruption rate, spatial direction of source, total duration of presentation and ratio of
on-off time. In this task subjects were found capable of processing 5.3 bits per stimulus presentation.
Because presentation times varied, with some as great as 17 sec, it is not possible to deduce rates
from these data.

A later experiment attempted to determine the rate at which binaural auditory information could
be processed (?, ?). Listeners were required to make binary discriminations in several dimensions:
specifically, vowel sound; sex of speaker; ear in which heard; and, rising or falling inflection. In this
task, the best subject could receive correctly just under 6 bits/sec. Group performance was a little
less than this figure.

As indicated earlier, these measures are determined according to particular tasks and criteria
of performance. They consequently have significance only within the scopes of the experiments.
Whether the figures are representative of the rates at which humans can perceive and apprehend
speech can only be conjectured. Probably they are. None of the experiments show the human to be
capable of processing information at rates greater than the order of 50 bits/sec.

Assuming this figure does in fact represent a rough upper limit to man’s ability to ingest in-
formation, he might allot his capacity in various ways. For example, if a speaker were rapidly
uttering random equiprobable phonemes, a listener might require all of his processing ability to
receive correctly the written equivalent of the distinctive speech sounds. Little capacity might re-
main for perceiving other features of the speech such as stress, inflection, nasality, timing and other
attributes of the particular voice. On the other hand, if the speech were idle social conversation,
with far-reaching statistical constraints and high redundancy, the listener could direct more of his
capacity to analyzing personal characteristics and articulatory peculiarities.

1.5 Organization of this Book

The goal of this book is to teach the science and technology of speech analysis, synthesis, and
perception. The book is loosely divided into a “science” half and a “technology” half. The science
and technology are unified by an information-theoretic view of speech communication, based on the
theory and terminology developed by Shannon.

The first half of the book (chapters 1-5) addresses the science of speech communication. The
science of speech, in our view, is the study of the speech behaviors of human beings, and includes
a mathematically sophisticated treatment of ideas from both physics and psychology. Like all other
communication channels, the speech communication channel is best studied by methodically eluci-
dating the characteristics of the message, the transmitter, the receiver, and the channel. Chapter 2
describes the characteristics of the message: the alphabet of phonemes and suprasegmental speech
gestures, and the probabilistic rules that govern their combination. Chapter 3 describes the speech
transmitter, with a particular emphasis on the physical acoustic principles of speech production.
Chapter 4 describes the speech receiver, including the results of both physiological and psycho-
logical experiments studying the transductive processes of the ear. Finally, chapter 5 describes
characteristics of the channel and the receiver that relate to the perception and understanding of
speech.

The second half of the book (chapters 6-9) describes technological methods that have been used
to analyze, replace or augment each component of the speech communication system. Chapter 6
describes fundamental signal analysis methods that are common to the algorithms of all succeeding
chapters. After a reader has finished understanding chapter 6, the rest of the book need not be
read in order; each of chapters 7-9 may be studied independently as a self-contained introduction
to the technology it describes. Chapter 7 describes algorithms that replace the speech transmitter
by converting a text message into a natural-sounding acoustic speech signal. Chapter 8 describes
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algorithms that replace the speech receiver, in the sense that they automatically convert an acoustic
speech signal into a written sequence of phonemes or words. Finally, chapter 9 describes algorithms
that replace the acoustic channel with a low-bit-rate digital channel, for purposes of secure, cellular,
or internet telephony. All three of these areas are the subjects of active ongoing research; the goal of
this book is to present fundamental concepts and derivations underlying the most effective solutions
available today.
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