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Chapter 3

Acoustical Properties of the Vocal
System

The collection of olfactory, respiratory and digestive apparatus which humans use for speaking is
a relatively complex sound-producing system. Its operation has been described qualitatively in the
preceding chapter. In this chapter we would like to consider in more detail the acoustical principles
underlying speech production. The treatment is not intended to be exhaustive. Rather it is intended
to circumscribe the problems of vocal tract analysis and to set forth certain fundamental relations
for speech production. In addition, it aims to outline techniques and method for acoustic analysis
of the vocal mechanism and to indicate their practical applications. Specialized treatments of a
number of these points can be found elsewhere1

3.1 The Vocal Tract as an Acoustic System

The operations described qualitatively in the previous chapter can be crudely represented as in
Fig. 3.1. The lungs and associated respiratory muscles are the vocal power supply. For voiced
sounds, the expelled air causes the vocal folds to vibrate as a relaxation oscillator, and the air
stream is modulated into discrete puffs or pulses. Unvoiced sounds are generated either by passing
the air stream through a constriction in the tract, or by making a complete closure, building up
pressure behind the closure and abruptly releasing it. In the first case, turbulent flow and incoherent
sound are produced. In the second, a brief transient excitation occurs. The physical configuration
of the vocal tract is highly variable and is dictated by the positions of the articulators; that is, the
jaw, tongue, lips and velum. The latter controls the degree of coupling to the nasal tract.

In general, several major regions figure prominently in speech production. They are: (a) the
relatively long cavity formed at the lower back of the throat in the pharynx region; (b) the narrow
passage at the place where the tongue is humped; (c) the variable constriction of the velum and
the nasal cavity; (d) the relatively large, forward oral cavity; (e) the radiating ports formed by the
mouth and nostrils.

Voiced sounds are always excited at the same point in the tract, namely at the vocal folds. Radia-
tion of voiced sounds can take place either from the mouth or nose, or from both. Unvoiced excitation
is applied to the acoustic system at the point where turbulent flow or pressure release occurs. This
point may range from an anterior position (such as the labio-dental excitation for TIPA/f/) to a pos-

1For this purpose G. Fant (?, ?), Acoustic Theory of Speech Production, is highly recommended. Besides presenting
the acoustical bases for vocal analysis, this volume contains a wealth of data on vocal configurations and their
calculated frequency responses. An earlier but still relevant treatise is Chiba and Kajiyama (?, ?), The Vowel; Its
Nature and Structure. A more recent authoritative text is by Stevens (?, ?), Acoustic Phonetics.
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Figure 3.1: Schematic diagram of functional components of the vocal tract

terior position (such as the velar excitation for TIPA/k/). Unvoiced sounds are normally radiated
from the mouth. All sounds generated by the vocal apparatus are characterized by properties of the
source of excitation and the acoustic transmission system. To examine these properties, let us first
establish some elementary relations for the transmission system, then consider the sound sources,
and finally treat the combined operation of sources and system.

The length of the vocal tract (about 17cm for adult males, about 15cm in adult females) is fully
comparable to the wavelength of sound in air at audible frequencies. It is therefore not possible
to obtain a precise analysis of the tract operation from a lumped-constant approximation of the
major acoustic components. Wave motion in the system must be considered for frequencies above
about 200Hz. The vocal and nasal tracts constitute lossy tubes of non-uniform cross-sectional area.
Wave motion in such tubes is difficult to describe, even for lossless propagation. In fact, exact
solutions to the wave equation are available only for two nonuniform geometries, namely for conical
and hyperbolic area variations (?, ?). And then only the conical geometry leads to a one-parameter
wave.

So long as the greatest cross dimension of the tract is appreciably less than a wavelength (this
is usually true for frequencies below about 5000Hz), and so long as the tube does not flare too
rapidly (producing internal wave reflections), the acoustic system can be approximated by a one-
dimensional wave equation. Such an equation assumes cophasic wave fronts across the cross-section
and is sometimes called the Webster equation (?, ?). Its form is

1
A(x)

∂

∂x

[
A(x)

∂p

∂x

]
=

1
c2

∂2p

∂t2
(3.1)

where A(x) is the cross-sectional area normal to the longitudinal dimension, p is the sound pressure
(a function of t and x) and c is the sound velocity. In general this equation can only be integrated
numerically, and it does not include loss. At least three investigations, however, have made use of
this formulation for studying vowel production (?, ?, ?).

A more tractable approach to the analysis problem (both computationally and conceptually) is to
impose a further degree of approximation upon the nonuniform tube. The pipe may be represented
in terms of incremental contiguous sections of right circular geometry. The approximation may,
for example, be in terms of cylinders, cones, exponential or hyperbolic horns. Although quantizing
the area function introduces error, its effect can be made small if the lengths of the approximating

2



Figure 3.2: Incremental length of lossy cylindrical pipe. (a) acoustic representation; (b) electrical
equivalent for a one-dimensional wave

sections are kept short compared to a wavelength at the highest frequency of interest. The uniform
cylindrical section is particularly easy to treat and will be the one used for the present discussion.

3.2 Equivalent Circuit for the Lossy Cylindrical Pipe

Consider the length dx of lossy cylindrical pipe of area A shown in Fig. 3.2a. Assume plane wave
transmission so that the sound pressure and volume velocity are spatially dependent only upon x.
Because of its mass, the air in the pipe exhibits an inertance which opposes acceleration. Because
of its compressibility the volume of air exhibits a compliance. Assuming that the tube is smooth
and hard-walled, energy losses can occur at the wall through viscous friction and heat conduction.
Viscous losses are proportional to the square of the particle velocity, and heat conduction losses are
proportional to the square of the sound pressure.

The characteristics of sound propagation in such a tube are easily described by drawing upon
elementary electrical theory and some wellknown results for one-dimensional waves on transmission
lines. Consider sound pressure analogous to the voltage and volume velocity analogous to the current
in an electrical line. Sound pressure and volume velocity for plane wave propagation in the uniform
tube satisfy the same wave equation as do voltage and current on a uniform transmission line. A
dx length of lossy electrical line is illustrated in Fig. 3.2b. To develop the analogy let us write
the relations for the electrical line. The per-unitlength inductance, capacitance, series resistance
and shunt conductance are L, C, R, and G respectively. Assuming sinusoidal time dependence for
voltage and current, (Iejωt and Eejωt), the differential current loss and voltage drop across the dx
length of line are

dI = −Eydx and dE = −Izdx, (3.2)

where y = (G + jwC) and z = (R + jwL). The voltage and current therefore satisfy

d2E

dx2
− zyE = 0 and

d2I

dx2
− zyI = 0, (3.3)

the solutions for which are
E = A1e

γx + B1e
−γx,

I = A2e
γx + B2e

−γx, (3.4)

where γ =
√

zy = (α+jβ) is the propagation constant, and the A’s and B’s are integration constants
determined by terminal conditions.

For a piece of line l in length, with sending-end voltage and current E1 and I1, the receiving-end
voltage and current E2 and I2 are given by

E2 = E1 cosh γl − I1Z0 sinh γl

3



Figure 3.3: Equivalent four-pole networks for a length l of uniform transmission line. (a) T-section;
(b) π-section

I2 = I1 cosh γl − E1Y0 sinh γl, (3.5)

where Z0 =
√

z/y and Y0 =
√

y/z are the characteristic impedance and admittance of the line.
Eq. 3.5 can be rearranged to make evident the impedance parameters for the equivalent four-pole
network

E1 = Z0I1 coth γl − Z0I2cschγl

E2 = Z0I1cschγl − Z0I2 coth γl. (3.6)

The equivalent T-network for the l length of line is therefore as shown in Fig. 3.3a. Similarly, a
different arrangement makes salient the admittance parameters for the four-pole network.

I1 = Y0E1 coth γl − Y0E2cschγl

I2 = Y0E1cschγl − Y0E2 coth γl. (3.7)

The equivalent π-network is shown in Fig. 3.3b. One recalls also from conventional circuit theory the
lossless case corresponds to γ =

√
zy = jβ = jω

√
LC, and Z0 =

√
L/C. The hyperbolic functions

then reduce to circular functions which are purely reactive. Notice, too, for small loss conditions,
(that is, R � ωL and G � ωC) the attenuation and phase constants are approximately

α ≈ R

2

√
C/L +

G

2

√
L/C

β ≈ ω
√

LC (3.8)

Having recalled the relations for the uniform, lossy electrical line, we want to interpret plane
wave propagation in a uniform, lossy pipe in analogous terms. If sound pressure, p, is considered
analogous to voltage and acoustic volume velocity, U , analogous to current, the lossy, onedimensional,
sinusoidal sound propagation is described by the same equations as given in (3.3). The propagation
constant is complex (that is, the velocity of propagation is in effect complex) and therefore the wave
attenuates as it travels. In a smooth hard-walled tube the viscous and heat conduction losses can be
represented, in effect, by an I2R loss and an E2G loss, respectively. The inertance of the air mass
is analogous to the electrical inductance, and the compliance of the air volume is analogous to the
electrical capacity. We can draw these parallels quantitatively2.

2The reader who is not interested in these details may omit the following four sections and find the results
summarized in Eq. (3.33) of Section 3.2.5.
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Figure 3.4: Relations illustrating viscous loss at the wall of a smooth tube

3.2.1 The Acoustic “L”

The mass of air contained in the dx length of pipe in Fig. 3.2a is ρAdx, where ρ is the air density.
The differential pressure drop in accelerating this mass is by Newton’s law:

dp = ρdx
du

dt
= ρ

dx

A
· dU(x, t)

dt
,

where u is particle velocity and U is volume velocity.
For U(x, t) = U(x)ejωt

dp = jωρ
dx

A
U

and
dp

dx
= jωLaU, (3.9)

where La = ρ/A is the acoustic inertance per unit length.

3.2.2 The Acoustic “R”

The acoustic R represents a power loss proportional to U2 and is the power dissipated in viscous
friction at the tube wall (?, ?). The easiest way to put in evidence this equivalent surface resistance
is to consider the situation shown in Fig. 3.4. Imagine that the tube wall is a plane surface, large
in extent, and moving sinusoidally in the x-direction with velocity u(t) = umejωt. The air particles
proximate to the wall experience a force owing to the viscosity, µ, of the medium. The power
expended per unit area in dragging the air with the plate is the loss to be determined.

Consider a layer of air dy thick and of unit area normal to the y axis, The net force on the layer
is

µ

[(
∂u

∂y

)
y+dy

−
(

∂u

∂y

)
y

]
= ρdy

∂u

∂t
,

where u is the particle velocity in the x-direction. The diffusion equation specifying the air particle
velocity as a function of the distance above the wall is then

∂2u

∂y2
=

ρ

µ

∂u

∂t
, (3.10)

For harmonic time dependence this gives

d2u

dy2
= j

ωρ

µ
u = k2

vu, (3.11)

where kv = (1 + j)
√

ωρ/2µ, and the velocity distribution is

u = ume−kvy = ume−
√

ωρ/2µye−j
√

ωρ/2µy (3.12)
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The distance required for the particle velocity to diminish to 1/e of its value at the driven wall is
often called the boundary-layer thickness and is δv =

√
2µ/ωρ. In air at a frequency of 100Hz, for

example, δv ≈ 0.2mm.
The viscous drag, per unit area, on the plane wall is

F = −µ

(
∂u

∂y

)
y=0

= µkvum,

or
F = um(1 + j)

√
ωµρ/2. (3.13)

Notice that this force has a real part and a positive reactive part. The latter acts to increase the
apparent acoustic L. The average power dissipated per unit surface area in this drag is

P̄ =
1
2
|F |um cos θ =

1
2
u2

mRs, (3.14)

where Rs =
√

ωρµ/2 is the per-unit-area surface resistance and θ is the phase angle between F
and u, namely, 45. For a length l of the acoustic tube, the inner surface area is Sl, where S is the
circumference. Therefore, the average power dissipated per unit length of the tube is P̄S = 1

2u2
mSR

or in terms of the acoustic volume velocity

P̄S =
1
2
U2

mRa,

where
Ra =

S

A2

√
ωρµ/2, (3.15)

and A is the cross-sectional area of the tube. Ra is then the per-unitlength acoustic resistance for
the analogy shown in Fig. 3.2.

As previously mentioned, the reactive part of the viscous drag contributes to the acoustic induc-
tance per unit length. In fact, for the same area and surface relations applied above, the acoustic
inductance obtained in the foregoing section should be increased by the factor A2

S

√
µρ/2ω, or

La ≈
ρ

A

(
1 +

S

A

√
µ

2ρω

)
. (3.16)

Thus, the viscous boundary layer increases the apparent acoustic inductance by effectively di-
minishing the cross-sectional area. For vocal tract analysis, however, the viscous boundary layer is
usually so thin that the second term in (3.16) is negligible. For example, for a circular cross-section
of 9 cm2, the second term at a frequency of 500Hz is about (0.006) ρ/A.

3.2.3 The Acoustic “C”

The analogous acoustic capacitance, or compliance, arises from the compressibility of the volume of
air contained in the dx length of tube shown in Fig. 3.2a. Most of the elemental air volume Adx
experiences compressions and expansions which follow the adiabatic gas law

PV η = constant,

where P and V are the total pressure and volume of the gas, and η is the adiabatic constant3.
Differentiating with respect to time gives

1
P

dP

dt
= − η

V

dV

dt
.

3η is the ratio of specific heat at constant pressure to that at constant volume. For air at normal conditions,
η = cp/cv = 1.4.
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The diminution of the original air volume, owing to compression caused hy an increase in pressure,
must equal the volume current into the compliance; that is,

U = −dV

dt
,

and
1
P

dP

dt
=

ηU

V
.

For sinusoidal time dependence P = P0 + pejωt, where P0 is the quiescent pressure and is large
compared with p. The volume flow into the compliance of the Adx volume is therefore approximately

U = jω
V p

P0η
= jω

Apdx

P0η
. (3.17)

From the derivation of the acoustic wave equation (?, ?), it is possible to show that the speed of
sound is given by P0η = ρc2. The volume velocity into the per-unit-length compliance can therefore
be written as

U = jω · Ca · p,

where
Ca =

A

P0η
=

A

ρc2
(3.18)

is the per-unit-length acoustic compliance.

3.2.4 The Acoustic “G”

The analogous shunt conductance provides a power loss proportional to the square of the local
sound pressure. Such a loss arises from heat conduction at the walls of the tube. The per-unit-
length conductance can be deduced in a manner similar to that for the viscous loss. As before, it is
easier to treat a simpler situation and extend the result to the vocal tube.

Consider a highly conductive plane wall of large extent, such as shown in Fig. 3.5. The air above
the boundary is essentially at constant pressure and has a coefficient of heat conduction λ and a
specific heat cp. Suppose the wall is given an oscillating temperature T |y=0 = Tmejωt. The vertical
temperature distribution produced in the air is described by the diffusion equation (?, ?).

∂2T

∂y2
=

cpρ

λ

∂T

∂t
,

or
∂2T

∂y2
= jω

cpρ

λ
T. (3.19)

The solution is T = Tme−khy, where

kh = (1 + j)
√

ωcpρ

2λ
(3.20)

which is the same form as the velocity distribution due to viscosity. In a similar fashion, the boundary
layer depth for temperature is δh =

√
2λ/ωcpρ, and kh = (1 + j)/δh.

Now consider more nearly the situation for the sound wave. Imagine an acoustic pressure wave
moving parallel to the conducting boundary, that is, in the x-direction. We wish to determine
the temperature distribution above the wall produced by the sound wave. The conducting wall
is assumed to be maintained at some quiescent temperature and permitted no variation, that is,
λwall = ∞. If the sound wavelength is long compared to the boundary extent under consideration,

7



Figure 3.5: Relations illustrating heat conduction at the wall of a tube

the harmonic pressure variation above the wall may be considered as P = P0 + p, where P0 is
the quiescent atmospheric pressure and p = pmejωt is the pressure variation. (That is, the spatial
variation of p with x is assumed small.) The gas laws prescribe

PV η = constant and PV = RT (for unit mass).

Taking differentials gives
dV

V
= −1

η

dP

P
and

dP

P
+

dV

V
=

dT

T
(3.21)

Combining the equations yields
dP

P

(
1− 1

η

)
=

dT

T
, (3.22)

where
dP = p = pmejωt

dT = τ = τmejωt,

so from (3.22)

τm =
T0

P0

(
η − 1

η

)
pm (3.23)

At the wall, y = 0 and τ(0) = 0 (because λwall = ∞). Far from the wall (i.e., for y large),
|τ(y)| = τm as given in (3.23). Using the result of (3.20), the temperature distribution can be
constructed as

τ(y, t) =
[
1− e−khy

]
τmejωt,

or

τ(y, t) =
P0

T0

(
η − 1

η

) [
1− e−khy

]
pmejωt. (3.24)

Now consider the power dissipation at the wall corresponding to this situation. A long wave-
length sound has been assumed so that the acoustic pressure variations above the boundary can be
considered p = pmejωt, and the spatial dependence of pressure neglected. Because of the temper-
ature distribution above the boundary, however, the particle velocity will be nonuniform, and will
have a component in the y-direction. The average power flow per unit surface area into the boundary
is ¯puy0

t, where uyO is the velocity component in the y direction lit the boundary. To examine this
quantity, uy is needed.

Conservation of mass in the y-direction requires

ρ
∂uy

∂y
= −∂ρ

∂t
. (3.25)

Also, for a constant mass of gas dρ/ρ = −dV/V which with the second equation in (3.21) requires

dP

P
− dρ

ρ
=

dT

T
. (3.26)
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Therefore,
∂uy

∂y
=

(
1
T0

∂τ

∂t
− 1

P0

∂p

∂t

)
, (3.27)

and
uy =

∫
∂uy

∂y
· dy

yy =
jωp

P0

{
η − 1

η

(
y +

e−kyy

ky

)
− y

}
. (3.28)

And,

uy0 = p
ω

c

η − 1
ρc

j

1 + j
δh. (3.29)

The equivalent energy flow into the wall is therefore

Wh = ¯puy0
t =

ω

c

η − 1
ρc

δh
1√
2

1
T

∫ T

0

P 2
m cos

(
ωt +

π

4

)
cos ωt · dt

Wh =
1
4

ω

c

η − 1
ρc

δhp2
m =

1
2
Gαp2

m, (3.30)

where Gα is an equivalent conductance per unit wall area and is equal

Gα =
1
2

ω

c

η − 1
ρc

√
2λ

ωcpρ
. (3.31)

The equivalent conductance per unit length of tube owing to heat conduction is therefore

Gα = S
η − 1
ρc2

√
λω

2cpρ
, (3.32)

where S is the tube circumference. To reiterate, both the heat conduction loss G; and the viscous
loss Rα are applicable to a smooth, rigid tube. The vocal tract is neither, so that in practice these
losses might be expected to be somewhat higher. In addition, the mechanical impedance of the
yielding wall includes a mass reactance and a conductance which contribute to the shunt element of
the equivalent circuit. The effect of the wall reactance upon the tuning of the vocal resonances is
generally small, particularly for open articulations. The contribution of wall conductance to tract
damping is more important. Both of these effects are estimated in a later section.

3.2.5 Summary of the Analogous Acoustic Elements

The per-unit-length analogous constants of the uniform pipe can be summarized.

La = ρ
A , Ca = A

ρc2 ,

Ra = S
A2

√
ωρµ
2 , Ga = S η−1

ρc2

√
λω

2cpρ ,
(3.33)

where A is tube area, S is tube circumference, ρ is air density, c is sound velocity, u is viscosity
coefficient, A is coefficient of heat conduction, η is the adiabatic constant, and cp is the specific heat
of air at constant pressure4.

4

ρ = 1.14× 10−3 gm/cm3 (moist air at body temperature, 37deg C).

c = 3.5× 104 cm/sec (moist air at body temperature, 37deg C).
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Having set down these quantities, it is possible to approximate the nonuniform vocal tract with
as many right circular tube sections as desired. The transmission characteristics can be determined
either from calculations on equivalent network sections such as shown in Fig. 3.3, or from electrical
circuit simulations of the clements. When the approximation involves more than three or four
network loops, manual computation becomes prohibitive. Computer techniques can then be used to
good advantage.

A further level of approximation can be made for the equivalent networks in Fig. 3.3. For a
given length of tube, the hyperbolic elements may be approximated by the first terms of their series
expansions, namely,

tanh x = x− x3

3
+

2x5

15
· · ·

and

sinhx = x +
x3

3!
+

x5

5!
· · ·

so that
za = Z0 tanh

γl

2
≈ 1

2
(Ra + jωLa)l

and
1
zb

=
1
Z0

sinh γl ≈ (Ga + jωCa)l. (3.34)

The error incurred in making this approximation is a function of the elemental length l and the
frequency, and is (

1− x

tanh x

)
and

(
1− x

sinhx

)
,

respectively. In constructing electrical analogs of the vocal tract it has been customary to use this
approximation while keeping l sufficiently small. We shall return to this point later in the chapter.

We will presently apply the results of this section to some simplified analyses of the vocal tract.
Before doing so, however, it is desirable to establish several fundamental relations for sound radiation
from the mouth and for certain characteristics of the sources of vocal excitation.

3.3 The Radiation Load at the Mouth and Nostrils

At frequencies where the transverse dimensions of the tract are small compared with a wavelength,
the radiating area of the mouth or nose can be assumed to have a velocity distribution that is
approximately uniform and cophasic. It can therefore be considered a vibrating surface, all parts
of which move in phase. The radiating element is set in a baffle that is the head. To a rough
approximation, the baffle is spherical and about 9 cm in radius for an adult. Morse(?, ?) has derived
the radiation load on a vibrating piston set in a spherical baffle and shows it to be a function of
frequency and the relative sizes of the piston and sphere. The analytical expression for the load is
involved and cannot be expressed in closed form. A limiting condition, however, is the case where
the radius of the piston becomes small compared with that of the sphere. The radiation load then
approaches that of a piston in an infinite, plane baffle. The latter is well known and can be expressed
in closed form. In terms of the normalized acoustic impedance

z = ZA

(
A

ρc

)
=

p

U

(
A

ρc

)
µ = 1.86× 10−4 dyne-sec/cm2 (20C, 0.76 m.Hg).

λ = 0.055× 10−3 cal/gm-sec-deg (0deg C).

c = 0.24 cal/gm-degree (Odeg C, 1 atmos.).

η = 1.4.
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Figure 3.6: Normalized acoustic radiation resistance and reactance for (a) circular piston in all
infinite baffle; (b) circular piston in a spherical baffle whose radius is approximately three times that
of the piston; (c) pulsating sphere. The radius of the radiator, whether circular or spherical, is a

(that is, per-unit-free-space impedance), it is

zp =
[
1− J1(2ka)

ka

]
+

[
K1(2ka)
2(ka)2

]
, (3.35)

where k = ω/c, a is the piston radius, A the piston area, J1(x) the first order Bessel function, and
K1(x) a related Bessel function given by the series

K1(x) =
2
π

[
x3

3
− x5

32 · 5
+

x7

32 · 52 · 7
· · ·

]
.

For small values of ka, the first terms of the Bessel functions are the most significant, and the
normalized radiation impedance is approximately

zp ≈
(ka)2

2
+ j

8(ka)
3π

; ka � 1 (3.36)

This impedance is a resistance proportional to ω2 in series with an inductance of normalized value
8a/3πc. The parallel circuit equivalent is a resistance of 128/9π2 in parallel with an inductance of
8a/3πc.

By way of comparison, the normalized acoustic load on a vibrating sphere is also well known and
is

zs =
jka

1 + jka
, (3.37)

where a is the radius of the sphere. Note that this is the parallel combination of a unit resistance
and an a/c inductance. Again, for small ka,

zs ≈ (ka)2 + j(ka); ka � 1. (3.38)
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Using Morse’s results for the spherical baffle, a comparison of the real and imaginary parts of the
radiation impedances for the piston-insphere, piston-in-wall, and pulsating sphere is made in Fig. 3.6.
For the former, a piston-to-sphere radius ratio of a/as = 0.35 is illustrated. The piston-in-wall curves
correspond to a/as = 0. For ka < l, one notices that the reactive loads are very nearly the same for
all three radiators. The real part for the spherical source is about twice that for the pistons.

These relations can be interpreted in terms of mouth dimensions. Consider typical extreme
values of mouth area (smallest and largest) for vowel production. An adult articulating a rounded
vowel such as TIPA/u/ produces a mouth opening on the order of 0.9 cm2. For an open vowel such
as TIPA/A/ an area of 5.0 cm2 is representative. The radii of circular pistons with these areas are 0.5
cm and 1.3 cm, respectively. For frequencies less than about 5000Hz, these radii place ka less than
unity. If the head is approximated as a sphere of 9 cm radius, the ratios of piston-to-sphere radii for
the extreme areas are 0.06 and 0.1, respectively. For these dimensions and frequencies, therefore,
the radiation load on the mouth is not badly approximated by considering it to be the load on a
piston in an infinite wall. The approximation is even better for the nostrils whose radiating area is
smaller. For higher frequencies and large mouth areas, the load is more precisely estimated from
the piston-insphere relations. Notice, too, that approximating the normalized mouthradiation load
as that of a pulsating sphere leads to a radiation resistance that is about twice too high.

3.4 Spreading of Sound about the Head

In making acoustic analyses of the vocal tract one usually determines the volume current delivered
to the radiation load at the mouth or nostrils. At these points the sound energy is radiated and
spreads spatially. The sound is then received by the ear or by a microphone at some fixed point in
space. It consequently is desirable to know the nature of the transmission from the mouth to the
given point.

The preceding approximations for the radiation impedances do not necessarily imply how the
sound spreads about the head. It is possible for changes in the baffling of a source to make large
changes in the spatial distribution of sound and yet produce relatively small changes in the radiation
load. For example, the piston-in-wall and piston-insphere were previously shown to be comparable
assumptions for the radiation load. Sound radiated by the former is of course confined to the half-
space, while that from the latter spreads spherically. The lobe structures are also spatially different.

One might expect that for frequencies where the wavelength is long compared with the head
diameter, the head will not greatly influence the field. The spatial spreading of sound should be
much like that produced by a simple spherical source of strength equal to the mouth volume velocity.
At high frequencies, however, the diffraction about the head might be expected to influence the field.

A spherical source, pulsating sinusoidally, produces a particle velocity and sound pressure at r
distance from its center equal respectively to

u(r) =
au0

r

jka

1 + jka

1 + jkr

jkr
e−jk(r−a),

and

p(t) =
ρcau0

r

jka

1 + jka
e−jk(r−a) (3.39)

where a is the radius, u0 is the velocity magnitude of the surface, and k = ω/c. (Note the third factor
in u(r) accounts for the “bass-boost” that is obtained by talking close to a velocity microphone, a
favorite artifice of nightclub singers.) If ka ≈ 1, the source is a so-called simple (point) source, and
the sound pressure is

p(r) =
jωρU0

4πr
e−jkr (3.40)
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Figure 3.7: Spatial distributions of sound pressure for a small piston in a sphere of 9cm radius.
Pressure is expressed in db relative to that produced by a simple spherical source of equal strength

where U0 = 4πa2u0 is the source strength or volume velocity. The simple source therefore produces
a sound pressure that has spherical symmetry and an amplitude that is proportional to l/r and to
ω.

Morse(?, ?) has derived the pressure distribution in the far field of a small vibrating piston set
in a spherical baffle. Assuming that the mouth and head are approximately this configuration, with
a 9 cm radius roughly appropriate for the sphere, the radiation pattern can be expressed relative to
that which would be produced by a simple source of equal strength located at the same position.
When this is done, the result is shown in Fig. 3.7. If the pressure field were identical to that of a
simple spherical source, all the curves would fall on the zero db line of the polar plot. The patterns of
Fig. 3.7 are symmetrical about the axis of the mouth (piston) which lies at zero degrees. One notices
that on the mouth axis the high frequencies are emphasized slightly more than the +6 dB/octave
variation produced by the simple source (by about another +2 dB/octave for frequencies greater
than 300 Hz). Also some lobing occurs, particularly at the rear of the head.

The question can be raised as to how realistic is the spherical approximation of the real head.
At least one series of measurements has been carried out to get a partial answer and to estimate
spreading of sound about an average life-sized head (?, ?). A sound transducer was fitted into the
head of the adult mannequin shown in Fig. 3.8. The transducer was calibrated to produce a known
acoustic volume velocity at the lips of the dummy, and the amplitude and phase of the external
pressure field were measured with a microphone. When the amplitudes are expressed relative to
the levels which would be produced by a simple source of equal strength located at the mouth, the
results for the horizontal and vertical planes through the mouth are shown in Fig. 3.9.

One notices that for frequencies up to 4000 Hz, the pressures within vertical and horizontal angles
of about 60 degrees, centered on the mouth axis, differ from the simple source levels by no more
than 3 db. Simultaneous phase measurements show that within this same solid angle, centered on
the mouth axis, the phase is within approximately 30 degrees of that for the simple source. Within
these limits, then, the function relating the volume velocity through the mouth to the sound pressure
in front of the mouth can be approximated as the simple source function of Eq.(3.40). Notice that
p(r)/U0 ∼ ω, and the relation has a spectral zero at zero frequency.
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Figure 3.8: Life-size mannequin for measuring the relation between the mouth volume velocity and
the sound pressure at an external point. The transducer is mounted in the mannequin’s head.

Figure 3.9: Distribution of sound pressure about the head, relative to the distribution for a simple
source; (a) horizontal distribution for the mannequin; (b) vertical distribution for the mannequin
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Figure 3.10: Schematic diagram of the human subglottal system

Figure 3.11: An equivalent circuit for the subglottal system

3.5 The Source for Voiced Sounds

3.5.1 Glottal Excitation

The nature of the vocal tract excitation for voiced sounds has been indicated qualitatively in Figs. ??
through ??. It is possible to be more quantitative about this mechanism and to estimate some of the
acoustical properties of the glottal sound source. (The glottis, as pointed out earlier, is the orifice
between the vocal folds.) Such estimates are based mainly upon a knowledge of the subglottal
pressure, the glottal dimensions, and the time function of glottal area.

TO DO: Provide equations and intuition for the Ishizaka-Flanagan two-mass model of vocal fold
vibration (?, ?), following up the description in chapter 2.

3.5.2 Sub-Glottal Impedance

The principal physiological components of concern are illustrated schematically in Fig. 3.10. The
diagram represents a front view of the subglottal system. The dimensions are roughly appropriate
for an adult male (?, ?). In terms of an electrical network, this system might be thought analogous
to the circuit shown in Fig. 3.11.

A charge of air is drawn into the lungs and stored in their acoustic capacity CL. The lungs
are spongy tissues and exhibit an acoustic loss represented by the conductance GL. The loss is a
function of the state of inflation. The muscles of the rib cage apply force to the lungs, raise the lung
pressure PL, and cause air to be expelled–via the bronchi and trachea–through the relatively small
vocal cord orifice. (Recall Fig. 3.1.) Because of their mass and elastic characteristics, the folds are
set vibrating by the local pressure variations in the glottis. The quasiperiodic opening and closing
of the folds varies the series impedance (Rg + jwLg) and modulates the air stream. The air passing
into the vocal tract is therefore in the form of discrete puffs or pulses. As air is expelled, the rib-cage
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muscles contract and tend to maintain a constant lung pressure for a constant vocal effort. The lung
capacity is therefore reduced so that the ratio of air charge to capacity remains roughly constant.

The bronchial and tracheal tubes–shown as equivalent T-sections in Fig. 3.11–are relatively large
so that the pressure drop across them is small5. The subglottal pressure P , and the lung pressure PL

are therefore nearly the same. The variable-area glottal orifice is the time-varying impedance across
which most of the subglottic pressure is expended. The subglottal potential is effectively converted
into kinetic energy in Ihe form of the glottal volume velocity pulses, Ug.

TO DO: Describe models of the sub-glottal impedance by (?, ?), (?, ?), and by (?, ?). Provide
spectral examples showing subglottal formants.

3.5.3 Glottal Impedance

For frequencies less than a couple of thousand Hertz, the main component of the glottal impedance is
the resistive term. For many purposes in vocal tract analysis, it is convenient to have a small-signal
(ac) equivalent circuit of the glottal resistance; that is, a Thevenin equivalent of the circuit to the
left of the X’s in Fig. 3.11. Toward deducing such an equivalent, let us consider the nature of the
time-varying glottal impedance and some typical characteristics of glottal area and volume flow.

To make an initial estimate of the glottal impedance, assume first that the ratio of the glottal
inertance to resistance is small compared to the period of area variation (that is, the Lg/Rg time
constant is small compared with the fundamental period, T ). We will show presently the conditions
under which this assumption is tenable. For such a case, the glottal volume flow may be considered
as a series of consecutively established steady states, and relations for steady flow through an orifice
can be used to estimate the glottal resistance.

Flow through the vocal cord orifice in Fig. 3.10 can be approximated as steady, incompressible
flow through the circular orifice shown in Fig. 3.12. The subglottal and supraglottal pressures are
P1, and P2, respectively. The particle velocity in the port is u, the orifice area is A and its depth
(thickness) is d. If the cross-sectional areas of the adjacent tubes are much larger than A, variations
in P1 and P2 caused by the flow are small, and the pressures can be assumed sensibly constant. Also,
if the dimensions of the orifice are small compared with the wavelength of an acoustic disturbance,
and if the mean flow is much smaller than the speed of sound, an acoustic disturbance is known
essentially instantaneously throughout the vicinity of the orifice, and incompressibility is a valid
assumption. Further, let it be assumed that the velocity distribution over the port is uniform and
that there is no viscous dissipation.

Under these conditions, the kinetic energy per-unit-volume possessed by the air in the orifice is
developed by the pressure difference (P1 − P2) and is

(P1 − P2) =
ρu2

2
. (3.41)

The particle velocity is therefore

u =
[
2(P1 − P2)

ρ

]1/2

(3.42)

We can define an orifice resistance, R∗
g,as the ratio of pressure drop to volume flow

R∗
g =

ρu

2A
=

ρU

2A2
. (3.43)

where U = uA is the volume velocity. In practice, P2 is essentially atmospheric pressure, so that
(P1 − P2) = Ps the excess subglottal pressure, and

R∗
g =

(2ρPs)1/2

2A
. (3.44)

5The branching bronchi are represented as a single tube having a cross-sectional area equal to the sum of the areas
of the branches.
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Figure 3.12: Simple orifice approximation to the human glottis

In situations more nearly analogous to glottal operation, the assumptions of uniform velocity
distribution across the orifice and negligible viscous losses are not good. The velocity profile is
generally not uniform, and the streamlines are not straight and parallel. There is a contraction of
the jet a short distance downstream where the distribution is uniform and the streamlines become
parallel (vena contracta). The effect is to reduce the effective area of the orifice and to increase
R∗

g. Also, the pressure-to-kinetic energy conversion is never accomplished without viscous loss, and
the particle velocity is actually somewhat less than that given in (3.42). In fact, if the area and
flow velocity are sufficiently small, the discharge is actually governed by viscous laws. This can
certainly obtain in the glottis where the area of opening can go to zero. Therefore, an expression
for orifice resistance–valid also for small velocities and areas–might, as a first approximation, be a
linear combination of kinetic and viscous terms

Rg = Rv + k

(
ρU

2A2

)
, (3.45)

where Rv is a viscous resistance and k is a real constant. For steady laminar flow, Rv is proportional
to the coefficient of viscosity and the length of the conducting passage, and is inversely proportional
to a function of area.

To find approximations of the form (3.45), Wegel (?, ?) and van den Berg et al.(?, ?) have
made steady-flow measurements on models of the human larynx. Both investigations give empirical
formulas which agree in order of magnitude. Van den Berg’s data are somewhat more extensive and
were made on plaster casts of a normal larynx. The glottis was idealized as a rectangular slit as
shown in Fig. 3.13. The length, l, of the slit was maintained constant at 18 mm, and its depth, d,
was maintained at 3 mm. Changes in area were made by changing the width, w. Measurements on
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Figure 3.13: Model of the human glottis. (After Berg)

Figure 3.14: Simplified circuit for the glottal source

the model show the resistance to be approximately

Rg =
Ps

U
=

12µd

lw3
+ 0.875

ρU

2(lw)2
, (3.46)

where µ is the coefficient of viscosity. According to van den Berg, (3.46) holds within ten per cent
for 0.1 ≤ w ≤ 2.0mm, for Ps ≤ 64 cm H20 at small w, and for U � 2000 cc/sec at large w. As
(3.46) implies, values of P , and A specify the volume flow, U .

The glottal area is A = lw so that the viscous (first) term of (3.46) is proportional to A−3. The
kinetic (second) term is proportional to uA−1 or, to the extent that u can be estimated from (3.42),
it is approximately proportional to P

1/2
s A−1. Whether the viscous or kinetic term predominates

depends upon both A and Ps. They become approximately equal when (ρPs)1/2A2 = 19.3µdl2. For
typical values of vocal Ps this equality occurs for glottal areas which generally are just a fraction
(usually less than 1

5 ) of the maximum area. In other words, over most of the open cycle of the vocal
folds the glottal resistance is determined by the second term in (3.46).

As pointed out previously, (3.46) is strictly valid only for steady flow conditions. A relevant
question is to what extent might (3.46) be applied in computing the glottal flow as a function of
time when A(t) and Ps are known. The question is equivalent to inquiring into the influence of the
inertance of the glottal air plug. Because the pressure drop across the bronchi and trachea is small,
and because Ps is maintained sensibly constant over the duration of several pitch periods by the low-
impedance lung reservoir6, the circuit of Fig. 3.11 can, for the present purpose, be simplified to that
shown in Fig. 3.14. Furthermore, it is possible to show that at most frequencies the driving point
impedance of the vocal tract, Zt, is small compared with the glottal impedance. If the idealization

6Van den Berg et al. estimate the variation to be less than five per cent of the mean subglottal pressure. Ps was
measured by catheters inserted in the trachea and esophagus.
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Zt = 0 is made, then Ug(t) satisfies

Ug(t)Rg(t) +
d

dt
[Lg(t)Ug(t)] = Ps (3.47)

where Eq. (3.46) can be taken as the approximation to Rg(t) and, neglecting end corrections, Lg(t) =
ρd/A(t).

Because Rg is a flow-dependent quantity, Eq. (3.47) is a nonlinear, first-order differential equa-
tion with nonconstant coefficients. For an arbitrary A(t), it is not easily integrated. However, a
simplification in the area function provides some insight into the glottal flow. Consider that A(t) is
a step function so that

A(t) = A0; t ≥ 0
= 0; t < O, and Ug(0) = 0.

Then dLg/dt is zero for t > 0, and the circuit acts as a flow-dependent resistance in series with
a constant inductance. A step of voltage (Ps) is applied at t = 0. The behavior of the circuit is
therefore described by

dUg

dt
=

1
Lg

(Ps −RgUg) . (3.48)

At t = 0, Ug(0) = 0 and
dUg

dt

∣∣∣∣
t=0

=
Ps

Lg
,

so that initially

Ug(t) ≈
Ps

Lg
t (for positive t near zero).

Similarly, at t = ∞, dUg/dt = 0 and Ug(∞) = Ps/Rg. The value of Ug(∞) is the steady-flow value
which is conditioned solely by Rg. In this case Ug is the solution of Ps − UgRg = 0, and is the
positive root of a seconddegree polynominal in Ug.

A time constant of a sort can be estimated from these asymptotic values of the flow build-up.
Assume that the build-up continues at the initial rate, Ps/Lg, until the steady-state value Ug(∞) is
achieved. The time, T , necessary to achieve the build-up is then

Ug(t) =
Ps

Lg
T = Ug(∞) =

Ps

Lg
,

or
T =

Lg

Rg
. (3.49)

Since Rg is a sum of viscous and kinetic terms Rv and Rk, respectively, the time constant
Lg/(Rv + Rk) is smaller than the smaller of Lg/Rv and Lg/Rk. If the step function of area were
small, Rv would dominate and the Lg/Rv time constant, which is proportional to A2, would be
more nearly appropriate. If the area step were large, the Lg/Rk constant would apply. In this case,
and to the extent that Rv might be neglected (i.e., to the extent that Rg might be approximated as

Rk = 0.875(2ρPs)1/2/2A), the Lg/Rk constant is proportional to P
− 1

2
s and is independent of A.

On the basis of these assumptions, a plot of the factors Lg/Rv and Lg/Rk is given in Fig. 3.15.
Two values of Ps are shown for Lg/Rk, namely 4 cm H20 and 16 cm H20. The first is approximately
the minimum (liminal) intensity at which it is possible to utter a vowel. The latter corresponds to a
fairly loud utterance or shout. The value of Lg/Rg is therefore less than the solid curves of Fig. 3.15.

The curves of Fig. 3.15 show the greatest value of the time constant (i.e., for liminal subglottic
pressure) to be of the order of a quarter millisecond. This time might be considered negligible
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Figure 3.15: Ratios of glottal inertance (Lg) to viscous and kinetic resistance (Rv, Rk) as a function
of glottal area (A)

compared with a fundamental vocal cord period an order of magnitude greater, that is, 2.5 msec.
The latter corresponds to a fundamental vocal frequency of 400 Hz which is above the average pitch
range for an adult male or female voice, but which might be reasonable for a child. To a first order
approximation, therefore, the waveform of glottal volume velocity can be estimated from Ps and
A(t) simply by applying (3.46).

Notice also from the preceding results that for Lg/Rg ≈ 0.25ms (i.e., Ps ≈ 4cm H20) the
inductive reactance becomes comparable to the resistance for frequencies between 600 and 700 Hz.
For Ps = 16cm H20, the critical frequency is about doubled, to around 1300 Hz. This suggests that
for frequencies generally greater than about 1000 to 2000 Hz, the glottal impedance may exhibit a
significant frequency-proportional term, and the spectrum of the glottal volume flow may reflect the
influence of this factor.

If the effects of inertance are neglected, a rough estimate of the glottal volume velocity can be
made from the resistance expression (3.46). Assuming constant subglottal pressure, the correspond-
ing volume velocity is seen to be proportional to A3 at small glottal areas and to A at larger areas.
Typical volume velocity waves deduced in this manner are shown in Fig. 3.16 (?, ?). The area waves
are measured from high speed motion pictures of the glottis (see Fig. ?? in Chapter ??), and the
subglottal pressure is estimated from the sound intensity and direct tracheal pressure measurements.
The first condition is for the vowel TIPA/æ/ uttered at the lowest intensity and pitch possible. The
second is for the same sound at a louder intensity and the same pitch. In the first case the glottis
never completely closes. This is characteristic of weak, voiced utterances. Note that the viscous
term in Rg operates to sharpen the leading and trailing edges of the velocity wave. This effect acts
to increase the amplitude of the high-frequency components in the glottal spectrum.

The spectrum of the glottal volume flow is generally irregular and is characterized by numerous
minima, or spectral zeros. For example, if the wave in Fig. 3.16b were idealized as a symmetrical
triangle, its spectrum would be of the form (sinx/x2) with double-order spectral zeros occurring for
ω = 4nπ/τ0, where n is an integer and T0 is the open time of the glottis. If the actual area wave of
Fig. 3.16b is treated as periodic with period 1/125 sec, and its Fourier spectrum computed (most
conveniently on a digital computer), the result is shown in Fig. 3.17 (?, ?)). The slight asymmetry
of the area wave causes the spectral zeros to lie at complex frequencies, so that the spectral minima
are neither equally spaced nor as pronounced as for the symmetrical triangle.
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Figure 3.16: Glottal area and computed volume velocity waves for single vocal periods. F0 is the fun-
damental frequency: Ps is the subglottal pressure. The subject is an adult male phonating TIPA/æ/.
(After Flanagan, 1958)

Figure 3.17: Calculated amplitude spectrum for the glottal area wave AII shown in Fig. 3.16. (After
Flanagan, 1961)
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Figure 3.18: Small-signal equivalent circuit for the glottal source. (After Flanagan, 1958)

3.5.4 Source-Tract Coupling Between Glottis and Vocal Tract

Considering only the resistance Rg given in Eq. (3.46), it is possible to approximate an ac or small-
signal equivalent source for the glottal source. Such a specification essentially permits the source
impedance to be represented by a time-invariant quantity and is useful in performing vocal tract
calculations. The Thevenin (or Norton) equivalent generator for the glottis can be obtained in the
same manner that the ac equivalent circuit for an electronic amplifier is derived. According to (3.46)

Ug(t) = f(Ps, A).

The glottal volume velocity, area and subglottic pressure are unipolar time functions. Each has a
varying component superposed upon a mean value. That is,

Ug(t) = Ug0 + U ′(t)
A(t) = A0 + A′(t)
Ps(t) = Ps0 + P ′

s(t).

Expanding Ug(t) as a Taylor series about (Ps0, A0) and taking first terms gives

Ug(Ps, A) = Ug(Ps0, A0) +
∂Ug

∂Ps

∣∣∣∣
Ps0,A0

(Ps − Ps0) +
∂Ug

∂A

∣∣∣∣
Ps0,A0

(A−A0) + · · · ,

= Ug0 + U ′
g(t),

and

U ′
g(t) =

∂Ug

∂Ps

∣∣∣∣
Ps0,A0

P ′
s +

∂Ug

∂A

∣∣∣∣
Ps0,A0

A′(t). (3.50)

One can interpret (3.50) as an ac volume velocity (current) source of value ∂Ug/∂A|Ps0,A0
A′(t) with

an inherent conductance ∂Ug/∂Ps|Ps0,A0
. The source delivers the ac volume current U ′

g(t) to its
terminals. The source configuration is illustrated in Fig. 3.18. The instantaneous polarity of P ′

s(t)
is reckoned as the pressure beneath the glottis relative to that above.

The partials in (3.50) can be evaluated from (3.46). Let

R′
g =

∂Ps

∂Ug

∣∣∣∣
Ps0,A0

.

Then
∂Ps

∂Ug
= Rg + Ug

∂Rg

∂Ug
,

and
R′

g = (Rv + 2Rk)Ps0,A0
(3.51)

The magnitude of the equivalent velocity source is simply

∂Ug

∂A

∣∣∣∣
Ps0,A0

A′(t) =
[
u + A

∂u

∂A

]
Ps0,A0

A′(t).
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Figure 3.19: Simplified representation of the impedance looking into the vocal tract at the glottis

Neglecting the viscous component of the resistance, Eq. (3.42) may be used to approximate u, in
which case ∂u/∂A = 0 and

∂Ug

∂A

∣∣∣∣
Ps0,A0

≈
(

2Ps0

ρ

)1/2

A′(t) (3.52)

The approximations (3.51) and (3.52) therefore suggest that the ac resistance of the glottal source
is equal the viscous (first) term of (3.46) plus twice the kinetic (second) term, and that the ac volume
current source has a waveform similar to the time-varying component of A(t). To consider a typical
value of R′

g, take Ps0 = 10cmH20 and A0 = 5 mm2. For these commonly encountered values R′
g

is computed to be approximately 100 cgs acoustic ohms. This source impedance can be compared
with typical values of the acoustic impedance looking into the vocal tract (i.e., the tract driving
point impedance). Such a comparison affords an insight into whether the glottal source acts more
nearly as a constant current (velocity) generator or a voltage (pressure) source.

The driving point impedance of the tract is highly dependent upon vocal configuration, but it
can be easily estimated for the unconstricted shape. Consider the tract as a uniform pipe, 17 cm
long and open at the far end. Assuming no nasal coupling, the tract is terminated only by the mouth
radiation impedance. The situation is illustrated in Fig. 3.19.

Using the transmission line relations developed earlier in the chapter, the impedance Zt looking
into the straight pipe is

Zt = Z0
Zr cosh γl + Z0 sinh γl

Z0 cosh γl + Zr sinh γl
, (3.53)

where l = 17cm, and the other quantities have been previously defined. If for a rough estimate the
pipe is considered lossless, γ = jβ and (3.53) can be written in circular functions

Zt = Z0
Zr cos βl + jZ0 sinβl

Z0 cos βl + jZr sinβl
, (3.54)

where Z0 = ρc/A, β = ω/c. The maxima of Zt will occur at frequencies where l = (2n + 1)λ/4, so
that βl = (2n + 1)π/2 and cos JI=O. The maxima of Zt for the lossless pipe are therefore

Ztmax = Z2
0/Zr, (3.55)

and the pipe acts as a quarter-wave transformer. The minima, on the other hand, are Ztmin
= Zr

and the pipe acts as a half-wave transformer.
To estimate Ztmax we can use the radiation impedance for the piston in the infinite baffle,

developed earlier in the chapter [see Eq. (3.36)].

Zr = zp
ρc

A
=

ρc

A

[
(ka)2

2
+ j

8
3π

(ka)
]

, (3.56)

where
a =

√
A/π, and ka � 1.
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As a reasonable area for the unconstricted tract, take A = 5cm2. The first quarter-wave resonance
for the 17cm long pipe occurs at a frequency of about 500 Hz. At this frequency

Zr|500Hz = (0.18 + j0.81), and Ztmax |500Hz =
(ρc/A)2

Zr
= 866 − 77 deg

cgs acoustic ohms. This driving point impedance is comparable in size to the ac equivalent resistance
of the glottal source just determined. As frequency increases, the magnitude of Zr increases, and
the load reflected to the glottis at the quarter-wave resonances becomes smaller. At the second
resonance, for example, Zr|1500Hz = (1.63 + j2.44) and Ztmax |1500Hz = 24 6 − 56 deg cgs acoustic
ohms. The reflected impedance continues to diminish with frequency until at very high frequencies
Zr = Z0 = 8.4 cgs acoustic ohms. Note, too, that at the half-wave resonances of the tract, i.e.,
l = nλ/2, the sine terms in (3.54) are zero and Zt = Zr.

The input impedance of the tract is greatest therefore at the frequency of the first quarter-wave
resonance (which corresponds to the first formant). At and in the vicinity of this frequency, the
driving point impedance (neglecting all losses except radiation) is comparable to the ac resistance
of the glottal source. At all other frequencies it is less. For the unconstricted pipe the reflected
impedance maxima are capacitive because the radiation load is inductive. To a first approximation,
then, the glottal source appears as a constant volume velocity (current) source except at frequencies
proximate to the first formant. As previously discussed, the equivalent vocal cord source sends an ac
current equal to u ·A′(t) into Zr in parallel with R′

g. So long as constrictions do not become small,
changes in the tract configuration generally do not greatly influence the operation of the vocal folds.
At and near the frequency of the first formant, however, some interaction of source and tract might
be expected, and in fact does occur. Pitch-synchronous variations in the tuning and the damping of
the first formant–owing to significant tract-source interaction–can be observed experimentally7.

3.5.5 High-Impedance Model of the Glottal Source

TO DO: Describe three successive approximations of the glottal volume velocity waveform: (1) the
periodic triangle waveform, (2) the Fant model (LF with discontinuity), and (3) the Liljencrants-
Fant model (?, ?, ?). Provide equations, waveforms, and spectra to show the characteristics of glottal
volume velocity correctly and incorrectly modeled by each function.

3.6 Turbulent Noise Sources

Noise excitation is generated by air moving quickly through a constriction. When air is moving
slowly, it moves in a laminar fashion, meaning that the air particle velocity vectors are layered in
planes roughly parallel to the vocal tract wall. When the velocity of the air becomes too great, or the
constriction width too small, viscous forces tear apart the laminar flow, forcing the jet of air to twist
and turn upon itself in a series of eddies and vortices. Each vortex serves as an initial condition for
creation of the next vortex, in a kind of highly nonlinear feedback. Because of the nonlinear feedback
between successive vortices, there is tremendous variability in the size and angular momentum of
successive vortices. Successive vortices are created with diameters more or less randomly selected
from a distribution ranging from the micrometer scale to the centimeter scale. Each successive vortex
is carried downstream by the air jet, until it strikes against some kind of obstacle downstream from
the constriction, and is broken up into yet smaller vortices. As each vortex strikes against obstacles
in the vocal tract, the moving air creates local pressure fluctuations on the surface of the obstacle;
these pressure fluctuations are pretty random, but the pressure fluctuations created by any single

7The acoustic mechanism of vocal-cord vibration and the interactions between source and system are discussed in
more detail later. An acoustic oscillator model of the folds is derived in Chapter ?? and a computer simulation of the
model is described.
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Figure 3.20: Equivalent circuit for noise excitation of the vocal tract

vortex tend to be concentrated at a frequency inversely proportional to the diameter of the vortex.
Because the vortex diameters are uniformly distributed over a wide range, the center frequencies of
the noise signals are also uniformly distributed over a wide range. The noise source that listeners hear
is therefore very similar to “white noise,” containing energy at all frequencies. The sound TIPA/s/,
for example, is produced by forcing air through the narrow constriction between the tongue and
the roof of the mouth. If the jet of air leaving the constriction is directed outward, the noise is not
very loud; if the jet of air is directed downward against the lower teeth, then vortex energy is very
effectively converted into noise, and listeners hear a loud fricative sound. The upper teeth serve this
purpose in the production of dental fricatives such as TIPA/f/. One fricative consonant, TIPA/h/,
is produced by turbulent flow generated at the glottis. The excitation mechanism is similar to that
for the oral fricatives, except that the nonvibrating vocal folds create the constriction (the glottis
during TIPA/h/ is open wider than it would be for any vowel, but it is still a narrower constriction
than any constriction downstream in the vocal tract). The noise in TIPA/h/ may be increased in
amplitude if the talker constricts his or her pharynx so that the airstream strikes the epiglottis.

Because it is spatially distributed, the location of the noise source in the tract is difficult to
fix precisely. Generally it can be located at the constriction for a short closure, and just anterior
to a longer constriction. In terms of a network representation, the noise source and its inherent
impedance can be represented as the series elements in Fig. 3.20. Ps is the sound pressure generated
by the turbulent flow and Zs is the inherent impedance of the source. The series connection of the
source can be qualitatively justified by noting that a shunt connection of a low-impedance pressure
source would alter the mode structure of the vocal network. Furthermore, experimentally measured
mode patterns for consonants appear to correspond to the series connection of the exciting source (?,
?).

Voiced fricative sounds, such as /v/, are produced by simultaneous operation of the glottal and
turbulent sources. Because the vibrating vocal folds cause a pulsive flow of air, the turbulent sound
generated at the constriction is modulated by the glottal puffs. The turbulent sound is therefore
generated as pitch-synchronous bursts of noise.

It is possible to be a little more quantitative about several aspects or fricative excitation. For
example, Meyer-Eppler(?, ?) has carried out measurements on fricative generation in constricted
plastic tube models of the vocal tract. He has related these measurements to human production of
the fricative consonants TIPA/f,s,S/. For these vocal geometries a critical Reynold’s number, Ree,
apparently exists below which negligible turbulent sound is produced. Meyer-Eppler found that the
magnitude of the noise sound pressure Pr–measured at a distance r from the mouth of either the
model or the human–is approximately described by

Pr = K(R2
e −R2

ec), (3.57)

where K is a constant, Re is the dimensionless Reynold’s number Re = uwρ/µ and, as before, u is
the particle velocity, ρ the air density, µ the coefficient of viscosity and w the effective width of the
passage.

TO DO: Provide equations for the dipole turbulence source. Provide a figure showing the mech-
anism by which it is produced. Provide equations for the effective spectrum, and a figure showing
the spectrum (?, ?, ?).
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Figure 3.21: Approximate vocal relations for stop consonant production

We recall from the earlier discussion (Eq. (3.41)) that for turbulent flow at a constriction the pres-
sure drop across the orifice is approximately Pd = ρu2/2 = ρU2/2A2. Therefore, R2

e = 2ρ(w/µ)2Pd

and (3.57) can be written
Pr = (K1w

2Pd −K2); Pr � 0, (3.58)

where K1 and K2 are constants. This result indicates that, above some threshold value, the frica-
tive sound pressure in front of the mouth is proportional to the pressure drop at the constriction
(essentially the excess pressure behind the occlusion) and to the square of the effective width of the
passage.

By way of illustrating typical flow velocities associated with consonant production, a constriction
area of 0.2 cm2 and an excess pressure of 10cm H20 are not unusual for a fricative like TIPA/s/. The
particle velocity corresponding to this pressure is u = (2Pd/ρ)

1
2 ≈ 4100 cm/sec8 and the volume

flow is U ≈ 820cm3/sec.
If the constricted vocal passage is progressively opened and the width increased, a constant excess

pressure can be maintained behind the constriction only at the expense of increased air flow. The
flow must be proportional to the constriction area. The power associated with the flow is essentially
PdU and hence also increases. Since the driving power is derived from the expiratory muscles, their
power capabilities determine the maximum flow that can be produced for a given Pd. At some value
of constriction area, a further increase in area, and consequently in w, is offset by a diminution of
the Pd that can be maintained. The product w2Pd in (3.58) then begins to decrease and so does the
intensity of the fricative sound.

3.7 The Source for Transient Excitation

Stop consonants are produced by making a complete closure at an appropriate point (labial, dental
or palatal), building up a pressure behind the occlusion, and sharply releasing the pressure by an
abrupt opening of the constriction. This excitation is therefore similar to exciting an electrical
network with a step function of voltage. The stop explosion is frequently followed by a fricative
excitation. This latter element of the stop is similar to a brief fricative continuant of the same
articulation.

Voiceless stop consonants contrast with fricatives in that they are more transient. For strongly
articulated stops, the glottis is held open so that the subglottal system contributes to the already
substantial volume behind the closure (VB). The respiratory muscles apply a force sufficient to build
up the pressure, but do not contract appreciably to force air out during the stop release. The air
flow during the initial part of the stop release is mainly turbulent, with laminar streaming obtaining
as the flow decays. In voiced stops in word-initial position (for example /d, g/), voicing usually
commences following the release, but often (for example, in /b/) can be initiated before the release.

In very crude terms, stop production can be considered analogous to the circuit of Fig. 3.21. The
capacitor CB is the compliance (VB/ρc2) of the cavities back of the closure and is charged to the

8Note this velocity is in excess of 0.1 Mach!
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excess pressure Pc. The resistance Rc is that of the constriction and is, according to the previous
discussion [Eq. (3.43)], approximately Rc = ρUm/2A2. Suppose the constriction area is changed
from zero as a step function, that is,

A(t) = 0; t < 0
= A; t ≥ 0.

The mouth volume current then satisfies

UmRc +
1

CB

∫ t

0

Umdt = Pc

or
ρU2

m

2A2
+

1
CB

∫ t

0

Umdt = Pc, for Um > 0

and the solution for positive values of Um is

Um(t) =
(

2Pc

ρ

) 1
2

A

[
1− At

CB(ρ2Pc)
1
2

]
(3.59)

According to (3.59) the flow diminishes linearly with time during the initial phases of the stop
release. At the indicated rate, the time to deplete the air charge would be

t1 =
Cb(ρ2Pc)

1
2

A
. (3.60)

As the flow velocity becomes small, however, the tendency is toward laminar streaming, and the
resistance becomes less velocity dependent [sec first term in Eq. (3.46)]. The flow decay then becomes
more nearly exponential9

9This can be seen exactly by letting Rc include a constant (viscous) term as well as a flow-dependent term.
Although the differential equation is somewhat more complicated, the variables separate, and the solution can be
written in terms of Um and ln Um.

Let
Rc = rvA−3(t) + rkA−2(t) |Um| ,

where rv and rk are constants involving air density and viscosity [as described in Eq. (3.46)]. If the constriction area
is changed stepwise from zero to A at time zero, the resulting flow will again be unipolar and now will satisfy

(rk/A2)U2
m + (rv/A3)Um + 1/Cb

∫ t

0

Umdt = Pc

The variables in this equation are separable and the solution can be obtained by differentiating both sides with
respect to time. This yields

rv

A3

(
dUm

dt

)
+ 2

rk

A2
Um

dUm

dt
+

Um

Cb
= 0

and
rvCB

A3

(
dUm

Um

)
+ 2

rkCB

A2
dUm = −dt.

Integrating termwise give
rvCB

A3
ln Um]t0 + 2

rkCB

A2
Um

]t

0

= −t.

At t = 0, Um = U0, where U0 is the positive real root of the quadratic(
rk

A2

)
U2

0 +
rv

A3
U0 − Pc = 0.

Then

ln

(
Um

U0

)
+

2rkA

rv
(Um − U0) +

tA3

rvCB
= 0.
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To fix some typical values, consider the production of a voiceless stop such as /t/. According to
Fant (?, ?), realistic parameters for articulation of this sound are Pc = 6 cm H20, VB = ρc2CB = 4
liters (including lungs) and A = 0.1 cm2. Assuming the area changes abruptly, substitution of these
values into (3.59) and (3.60) gives Um(0) = 320 cm3/sec and t1 = 130 msec. The particle velocity at
the beginning of the linear decay is um(0) = 3200 cm/sec. After 50 msec it has fallen to the value
1300 cm/sec which is about the lower limit suggested by Meyer-Eppler for noise generation. As Fant
points out, the amount of air consumed during this time is quite small, on the order of 10 cm3.

Both Stevens(?, ?) and Fant(?, ?) emphasize the importance of the open glottis in the production
of a strong stop consonant. A closed glottis reduces VB to something less than 100 cm3, and the
excess pressure which can be produced behind the constriction is typically on the order of 3 cm H20.
For such conditions is it difficult to produce flows sufficient for noise generation. The turbulent noise
produced during the stop release is essentially a secondary effect of the excitation. The primary
excitation is the impact of the suddenly applied pressure upon the vocal system. As mentioned
earlier, this excitation for an abrupt area change is analogous to a step function of voltage applied
to an electrical circuit. Such a source is characterized by a spectrum which is proportional to 1/ω,
or diminishes in amplitude at -6 db/oct.

TO DO: Compare the calculations above to those of (?, ?), and derive Massey’s equivalent
transient source.

3.8 Some Characteristics of Vocal Tract Transmission

Some of the fundamental relations developed in the foregoing sections can now be used to put in
evidence certain properties of vocal transmission. These characteristics are easiest demonstrated
analytically by highly simplifying the tract geometry. Calculations on detailed approximations are
more conveniently done with computers. Although our examples generally will be oversimplified,
the extensions to more exact descriptions will in most cases be obvious.

As a first step, consider the transmission from glottis to mouth for nonnasal sounds. Further, as
an ultimate simplification, consider that the tract is uniform in cross section over its whole length
l, is terminated in a radiation load whose magnitude is negligible compared with the characteristic
impedance of the tract, and is driven at the glottis from a volume-velocity source whose internal
impedance is large compared to the tract input impedance. The simple diagram in Fig. 3.22 rep-
resents this situation. The transmission function relating the mouth and glottal volume currents is
then

Um

Ug
=

zb

zb + za
=

1
cosh γl

(3.61)

The normal modes (poles) of the transmission are the values of γl which make the denominator zero.

Note

for A large: Um ≈
[
U0 −

(
A2

2rkCB

)
t

]
for A small: Um ≈ U0e

−
(

A3
rvCB

)
t
.

It also follows that

dUm

dt
=

−Um

rvCB
A3 +

2rkCB
A2 Um

≈
−A2

2rkCB
, for large A

≈
−UmA3

rvCB
, for small A.
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Figure 3.22: Relation between glottal and mouth volume currents for the unconstricted tract. The
glottal impedance is assumed infinite and the radiation impedance is zero

These resonances produce spectral varialions in the sound radiated from the mouth. They are

cosh γl = 0
γl = ±j(2n + 1)π

2 , n = 0, 1, 2, . . .
(3.62)

The poles therefore occur at complex values of frequency. Letting jω = σ + jω = s, the complex
frequency, and recalling from (3.8) that γ = α + jβ and β ≈ ω/c for small losses, the complex pole
frequencies may be approximated as

sn ≈ −αc± j
(2n + 1)πc

2l
, n = 0, 1, 2, . . . 10 (3.63)

The transmission (3.61) can be represented in factored form in terms of the roots of the denom-
inator, namely

H(s) =
Um(s)
Ug(s)

=
∏
n

sns∗n
(s− sn)(s− s∗n)

, (3.64)

where s∗n is the complex conjugate of sn, and the numerator is set to satisfy the condition

Um(jω)
Ug(jω)

∣∣∣∣
jω=0

=
1

coshαl
≈ 1,

for small α. The transmission is therefore characterized by an infinite number of complex conjugate
poles11. The manifestations of these normal modes as spectral peaks in the output sound are called
formants. The transmission (3.64) exhibits no zeros at finite frequencies. Maxima occur in

|H(jω)| for ω = ±(2n + 1)
π

2
c

l

and the resonances have half-power bandwidths in Hertz approximately equal to ∆f = σ/n = αc/π.
For an adult male vocal tract, approximately 17 cm in length, the unconstricted resonant frequencies
therefore fall at about f1 = 500 Hz, f2 = 1500 Hz, f3 = 2500 Hz, and continue in c/2l increments.

In the present illustration the only losses taken into account are the classical heat conduction
and viscous losses discussed earlier. A calculation of formant bandwidth on this basis alone will
consequently be abnormally low. It is nevertheless instructive to note this contribution to the
formant damping. Recall from Eq. (3.8) that for small losses

α ≈ Ra

2

√
CaLa +

Ga

2

√
LaCa,

10Actually α is an implicit function of ω [see Eq. (3.33)]. However, since its frequency dependence is relatively
small, and since usually σn � ωn, the approximation (3.63) is a convenient one.

11Rigorous justification of the form (3.64) has its basis in function theory (?, ?, ?). See Chapter ??, Sec. ?? for
further discussion of this point.
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Figure 3.23: Magnitude and phase of the glottis-to-mouth transmission for the vocal tract approxi-
mation shown in Fig. 3.22

where Ra, Ga, La and Ca have been given previously in Section (3.2.5). At the first-formant
frequency for the unconstricted tract (i.e., 500 Hz), and assuming a circular cross-section with
typical area 5 cm2, α is computed to be approximately 5.2× 10−4, giving a first-formant bandwidth
∆f1 = 6 Hz. At the second formant frequency (i.e., 1500 Hz) the same computation gives ∆f2 = 10
Hz. The losses increase as f

1
2 , and at the third formant (2500 Hz) give ∆f3 = 13 Hz. It is also

apparent from (3.64) that H(s) is a minimum phase function (that is, it has all of its zeros, namely
none, in the left half of the s-plane) so that its amplitude and phase responses are uniquely linked
(that is, they are Hilbert transforms). Further, the function is completely specified by the sn’s,
so that the frequencyand amplitude of a formant peak in |H(jω)| are uniquely described by the
pole frequencies. In particular if the formant damping can be considered known and constant, then
the amplitudes of the resonant peaks of |H(jω)| are implicit in the imaginary parts of the formant
frequencies ω1, ω2, . . . , (?, ?, ?). In fact, it follows from (3.61) that

|H(jω)|ω=ωn
= 1

| cosh(α+jβ)l|ω=ωn

= 1
|j sinh αl|

≈ 1
αl

(3.65)

where β = ω/c and ωn = (2n + 1)πc/2l. Notice, too, that the phase angle of H(jω) advances n
radians in passing a formant frequency ωn; so the amplitude and phase response of H(jω) appear
as in Fig. 3.23. In the same connection, note that for the completely lossless case

H(jω) =
1

cos ωl
c

.

3.8.1 Effect of Radiation Load upon Mode Pattern

If the radiation load on the open end of the tube is taken into account, the equivalent circuit for the
tube becomes that shown in Fig. 3.24. Here At is the cross-sectional area of the tract and Am is the
radiating area of the mouth with equivalent radius am. The thickness of the mouth constriction is
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Figure 3.24: Equivalent circuit for the unconstricted vocal tract taking into account the radiation
load. The glottal impedance is assumed infinite

assumed negligible, the glottal impedance is high, and cross dimensions are small compared with a
wavelength. The transmission from glottis to mouth is therefore

Um

Ug
=

1
cosh γl + Zr

Z0
sinh γl

,

or, more conveniently
Um

Ug
=

cosh γrl

cosh(γ + γr)l
, (3.66)

where γrl = tanh−1 Zr/Z0. Note that for Zr � Z0, cosh γrl ≈ 1 and for low loss Z0 ρc/At.
By the transformation (3.66), the radiation impedance is carried into the propagation constant,

so that

(γ + γr) =
[
α + jβ +

1
l

tan−1 Zr

Z0

]
= (α + jβ + αr + jβr) = (α′ + jβ′) = γ′.

If the radiation load is taken as that on a piston in a wall [see Eq. 3.36 in Sec. 3.3] then

Zr ≈
ρc

Am

[
(ka)2

2
+ j

8ka

3π

]
, ka � 1 (3.67)

where a equals the mouth radius am. Expanding tanh−l Zr/Z0 as a series and taking only the first
term (i.e., assuming Zr ≈ Z0) gives

γr ≈
1
l

At

Am

[
(ka)2

2
+ j

8ka

3π

]
(3.68)

= αr + jβr.

For low loss β ≈ ω/c = k, so that

(α′ + jβ′) =
[
α +

At

Am

(βa)2

2l

]
+ jβ

[
1 +

At

Am

8a

3πl

]
. (3.69)

Again the poles of (3.66) occur for
e2γ′l + 1 = 0

or

γ′ = ±j
(2n + 1)π

2l
, n = 0, 1, 2, . . . (3.70)

Letting jω → s = (σ + jω), and remembering that in general σn � ωn, the poles are approximately

snr ≈
1

1 + At8a
Am3πl

[
−

(
αc +

Atω
2

2πlc

)
± j

(2n + 1)πc

2l

]
, (3.71)
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Figure 3.25: Equivalent circuit for the unconstricted vocal tract assuming the glottal impedance to
be finite and the radiation impedance to be zero

n = 0, 1, 2, . . . (Zr � Z0).

The general effect of the radiation, therefore, is to decrease the magnitude of the imaginary parts of
the pole frequencies and to make their real parts more negative.

For the special case Am = A0 the modes are

snr ≈
(

3πl

3πl + 8a

) [
−

(
αc +

a2ω2

2lc

)
± j

(2n + 1)πc

2l

]
. (3.72)

Using the values of the example in the previous section, At = 5 cm2, l = 17 cm, the spectral
resonances (formants) are lowered in frequency by the multiplying factor 3πl/(3πl+8a) = 0.94. The
original 500 Hz first formant is lowered to 470 Hz, and the 1500 Hz second formant is lowered to 1410
Hz. The first formant bandwidth is increased to about ∆f1 ≈ 0.94(6 + 4) = 9Hz, and the second
formant bandwidth to about ∆f2 ≈ 0.94(l0 + 32) = 40 Hz. The same computation for the third
formant gives ∆f3 ≈ 100 Hz. The latter figures begin to be representative of formant bandwidths
measured on real vocal tracts with the glottis closed (?, ?, ?, ?). The contributions of the radiation,
viscous and heat losses to ∆f1 are seen to be relatively small. Glottal loss and cavity wall vibration
generally are more important contributors to the first formant damping.

As (3.72) indicates, the contribution of the radiation resistance to the formant damping increases
as the square of frequency, while the classical heat conduction and viscous loss cause a to grow as ω

1
2 .

The radiation reactance is inertive and causes the formant frequencies to be lowered. For Am = At,
Eq. (3.71) shows that the radiation reactance has the same effect as lengthening the vocal tract by
an amount (8a/3π).

3.8.2 Effect of Glottal Impedance upon Mode Pattern

The effect of the equivalent glottal impedance can be considered in much the same manner as the
radiation load. To keep the illustration simple, again assume the radiation load to be negligible
compared with the characteristic impedance of the uniform tract, but take the glottal impedance as
finite. This situation is depicted by Fig. 3.25. Similar to the previous instance, the volume velocity
transmission function can be put in the form

Um

Ug
=

1
za

Zg

(
Zg

zb
+ za

zb
+ 1

)
+ 1 + za

Zg

=
1

cosh γl + Z0
Zg

sinh γl
(3.73)

=
cosh γgl

cosh(γ + γg)l
,

where γgl = tanh−1 Z0/Zg, and the glottal impedance is transformed into the propagation constant.
Again taking the first term of the series expansion for tanh−1 Z0/Zg (i.e., assumming Zg � Z0)
gives

(γ + γg) ≈
(

α + jβ +
1
l

Z0

Zg

)
.

The equivalent glottal impedance may be approximated as Zg = (R′
g + jωLg), where R′

g is the
ac equivalent resistance determined previously in Eq. (3.51), and Lg is the effective inductance of
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the glottal port. The zeros of the denominator of (3.73) are the poles of the transmission, and an
argument similar to that used in the preceding section for low losses (Z0 ≈ ρc/At, β ≈ ω/c) leads to

sng ≈
1

1−
(

LgZ0c
l|Zg|2

) {
−

(
αc +

R′
gZ0c

l|Zg|2

)
± j

(2n + 1)πc

2l

}
. (3.74)

According to (3.74), the effect of the finite glottal impedance is to increase the damping of the
formant resonances (owing to the glottal loss R′

g) and to increase the formant frequencies by the
factor multiplying the bracketed term (owing to the glottal inductance). A sample calculation of
the effect can be made. As typical values, take a subglottic pressure (Ps) of 8 cm H20, a mean
glottal area (A0) of 5mm2, a glottal orifice thickness (d) of 3 mm, a vocal tract area (At) of 5 cm2

and a tract length (l) of 17 cm. For these conditions the glottal resistance, computed according to
Eq. (3.51), is R′

g ≈ 91 cgs acoustic ohms. The glottal inductance is Lg = σd/A0 = 6.8 × 10−3 cgs
units. At about the frequency of the first formant, that is, ω ≈ πc/2l = 2π (500 Hz), the multiplying
factor has a value 1/(1 − 0.014), so that the first formant resonance is increased from its value for
the infinite glottal impedance condition by about 1.4%. The effect of the glottal inductance upon
formant tuning is greatest for the lowest formant because |Zg| increases with frequency. The same
computation for the second formant ( 1500 Hz) shows the multiplying factor to be 1/(1 − 0.010).
One notices also that the effect of the multiplying term is to shorten the apparent length of the tract
to (

l − LgZ0c

|Zg|2

)
.

The resonant bandwidth for the first formant is computed to be

∆f1 =
1

(1− 0.014)
[6Hz + 56Hz] = 63Hz,

which is reasonably representative of first formant bandwidths measured in real speech. The contri-
bution of the glottal loss R′

g to formant damping is greatest for the lowest formant. It diminishes
with increasing frequency because |Zg| grows with frequency. At the second formant frequency, the
same calculation gives ∆f2 = 1/(1 − 0.010)(10Hz + 40Hz) = 51Hz. One recalls, too, that the heat
conduction and viscous losses (which specify α) increase as ωt, while the radiation loss increases as
ω2 (for ka � 1). The lower-formant damping is therefore influenced more by glottal loss, and the
higher-formant damping is influenced more by radiation loss.

In this same connection, one is reminded that the glottal resistance and inductance (used here as
equivalent constant quantities) are actually time varying. There is consequently a pitch-synchronous
modulation of the pole frequencies sng given in (3.74). That is, as the vocal folds open, the damping
and resonant frequency of a formant increase, so that with each glottal period the pole frequency
traverses a small locus in the complex-frequency plane. This pitch-synchronous change in formant
damping and tuning can often be observed experimentally, particularly in inverse filtering of for-
mants. It is most pronounced for the first formant.

3.8.3 Effect of Cavity Wall Vibration

The previous discussion has assumed the walls of the vocal tract to be smooth and rigid. The
dissipative elements of concern are then the radiation resistance, the glottal resistance, and the
viscous and heat conduction losses at the cavity walls. The human vocal tract is of course not hard-
walled, and its surface impedance is not infinite. The yielding walls can consequently contribute to
the energy loss in the tract and can influence the mode tuning. We would like to estimate this effect.

The finite impedance of the tract wall constitutes an additional shunt path in the equivalent
“T” (or π) section for the pipe (see Fig. 3.3). Because the flesh surrounding the tract is relatively
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Figure 3.26: Representation of wall impedance in the equivalent T-section for a length l of uniform
pipe

massive and exhibits viscous loss, the additional shunt admittance for the frequency range of interest
(i.e., speech frequencies) can be approximated as a per-unit-length reciprocal inductance or inertance
(Γw = 1/Lw) and a per-unit-length conductance (Gw = 1/Rw) in parallel12. The modified equivalent
“T” section is shown in Fig. 3.26.

Let us note the effect of the additional shunt admittance upon the propagation constant for the
tube. As before, the basic assumption is that a plane wave is propagating in the pipe and that the
sound pressure at any cross section is uniform and cophasic. Recall that

γ = α + jβ =
√

yz,

where y and z are the per-unit-length shunt admittance and series impedance, respectively. The
latter quantities are now

z = (Ra + jwLa)

y = (Ga + Gw) + j

(
ωCa −

Γw

ω

)
. (3.75)

Again, most conditions of interest will be relatively small-loss situations for which

Ra � ωLa

and

(Ga + Gw) �
(

ωCa −
Γw

ω

)
.

Also, in general, the susceptance of the air volume will exceed that of the walls and ωCa � Γw/ω.
Following the earlier discussion [see Eq. (3.8)] the attenuation constant for this situation can be
approximated by

α ≈ 1
2
Ra

√
Ca

La
+

1
2

(Ga + Gw)
√

La

Ca
(3.76)

In a like manner, the phase constant is given approximately by

β ≈ ω

√
La

(
Ca −

Γw

ω2

)
=

ω

c′
. (3.77)

The effective sound velocity c′ in a pipe with “massive” walls–that is, with negative susceptance–
is therefore faster than for free space. The pipe appears shorter and the resonant frequencies are
shifted upward. The effect is greatest for the lower frequencies. The same result can be obtained
more elegantly in terms of specific wall admittance by writing the wave equation for the cylindrical
pipe, noting the radial symmetry and fitting the boundary impedance conditions at the walls (?,

12For describing the behavior at very low frequencies, a compliance element must also be considered.
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?). In addition to the plane-wave solution, the latter formulation also gives the higher cylindrical
modes.

Results (3.76) and (3.77) therefore show that vibration of the cavity wall contributes an additive
component to the attenuation constant, and when the wall is predominantly mass-reactive, its effect
is to diminish the phase constant or increase the speed of sound propagation. Following the previous
technique [see Eq. (3.63)], the natural modes for a uniform tube of this sort are given by

snw =
[
−αc′ ± j

(2n + l)πc′

2l

]
(3.78)

= (σnw + jωnw) ; n = 0, 1, 2, . . .

To calculate the shunting effect of the walls in the real vocal tract, it is necessary to have some
knowledge of the mechanical impedance of the cavity walls. Such measurements are obviously diffi-
cult and apparently have not been made. An order-of-magnitude estimate can be made, however, by
using mechanical impedance values obtained for other surfaces of the body. At best, such measure-
ments are variable, and the impedance can change appreciably with place. The data do, however,
permit us to make some very rough calculations.

One set of measurements (?, ?) has been made for chest, thigh and stomach tissues, and these
have been applied previously to estimate the wall effect (?, ?). For frequencies above about 100
Hz, the fleshy areas exhibit resistive and mass reactive components. The specific impedances fall
roughly in the range 4000-7000 dyne-sec/cm3. A typical measurement on the stomach surface gives
a specific impedance that is approximately

zs = (rs + jxs) = (rs + jωls)
= (6500 + jω0.4), (3.79)

for (2π · 200) ≤ ω ≤ (2π · 1000).
This specific series impedance can be put in terms of equivalent parallel resistance and inductance

by

rp =
r2
s + x2

s

rs
and jxp = j

r2
s + x2

s

xs
.

These specific values (per-unit-area) can be put in terms of per-unitlength of tube by dividing by S,
the inner circumference, to give

Rw = fracr2
s + x2

srsS and jXw = j
r2
s + x2

s

xsS
.

Therefore,

Gw =
rsS

r2
s + x2

s

and − j
Γw

ω
= −j

ωlsS

r2
s + x2

s

,

where,

Γw =
ω2lsS

r2
s + x2

s

. (3.80)

Assuming the vocal tract to be unconstricted and to have a uniform cross-sectional area of 5
cm2 (i.e., S = 7.9 cm), we can compute the effect of the wall admittance upon the propagation
constant, the formant bandwidth and formant frequency. According to (3.76) and (3.77), the wall’s
contribution to α and β is

αw ≈
Gw

2

√
La

Ca
,

and

βw ≈ ω

√
La

(
Ca −

lsS

r2
s + x2

s

)
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Figure 3.27: Two-tube approximation to the vocal tract. The glottal impedance is assumed infinite
and the radiation impedance zero

≈ ω

c

[
1− ρc2ls

a(r2
s + x2

s)

]
, (3.81)

where the radius of the tube is a =
√

A/π, and the bracketed expression is the first two terms in
the binomial expansion of the radical.

Substituting the measured values of rs and ls and computing αw, βw and formant bandwidths
at approximately the first three formant frequencies gives13

Frequency αw βw ∆fw = αwc′

π

500Hz 4.7× 10−3 ω
c (1− 0.011) 50Hz

1500Hz 3.6× 10−3 ω
c (1− 0.008) 40Hz

2500Hz 2.5× 10−3 ω
c (1− 0.006) 30Hz

The contribution of wall loss to the formant bandwidth is therefore greatest at the lowest formant
frequency and diminishes with increasing formant frequency. These computed values, however, when
combined with the previous loss contributions actually seem somewhat large. They suggest that the
walls of the vocal tract are more rigid than the stomach tissue from which the mechanical impedance
estimates were made.

The increase in formant tuning, occasioned by the mass reactance of the cavity walls, is seen to
be rather slight. It is of the order of one per cent for the lower formants and, like the damping,
diminishes with increasing frequency.

3.8.4 Two-Tube Approximation of the Vocal Tract

The previous sections utilized a uniform-tube approximation of the vocal tract to put in evidence
certain properties. The uniform tube, which displays modes equally spaced in frequency, comes
close to a realistic vocal configuration only for the unconstricted schwa sound //. Better insight into
the interaction of vocal cavities can be gained by complicating the approximation one step further;
namely, by approximating the tract as two uniform, cascaded tubes of different cross section. To
keep the discussion tractable and focused mainly upon the transmission properties of the tubes, we
again assume the glottal impedance to be high compared with the input impedance of the tract, and
the radiation load to be negligible compared with the impedance level at the mouth. This situation
is represented in Fig. 3.27.

For the circuit shown in Fig. 3.27, the mouth-to-glottis volume current ratio is

Um

Ug
=

1(
1 + za2

zb2

) (
1 + za1

zb1
+ za2

zb1

)
+ za2

zb1

,

which reduces to
Um

Ug
=

1

(cosh γ1l1)(cosh γ2l2)
(
1 + A1

A2
tanh γ1l1 tanh γ2l2

) . (3.82)

13Using c = 3.5× 104 cm/sec and ρ = 1.14X10−3 gm/cm3.
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Figure 3.28: Two-tube approximations to the vowels /i,æ,a,/ and their undamped mode (formant)
patterns

The poles of (3.82) occur for
A1

A2
tanh γ2l2 = − coth γ1l1. (3.83)

If the tubes are lossless, the hyperbolic functions reduce to circular functions and all impedances
are pure reactances. The normal modes then satisfy

A1

A2
tanβl2 = cot βl1 (3.84)

Because the vocal tract is relatively low loss, Eq. (3.84) provides a simple means for examining the
mode pattern of the two-tube approximation. For example, consider the approximations shown in
Fig. 3.28 to the articulatory configurations for four different vowels. The reactance functions of
(3.84) are plotted for each case, and the pole frequencies are indicated.

One notices that the high front vowel TIPA/i/ exhibits the most disparate first and second
formants, while the low back vowel TIPA/A/ gives rise to the most proximate first and second
formants. The neutral vowel TIPA/@/, corresponding to the unconstricted tract, yields formants
uniformly spaced 1000 Hz apart. The reactance plots also show that increasing the area ratio
(A1/A2) of the back-to-front cavities results in a decrease of the first formant frequency. On the
classical F1 vs F2 plot, the first two modes for the four approximations fall as shown in Fig. 3.29.
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Figure 3.29: First formant (F1) versus second formant (F2) for several vowels. Solid points are
averages from Peterson and Barney’s (1952) data for real speech uttered by adult males. Circles are
for the two-tube approximation to the vowels shown in Fig. 3.28

The unconstricted TIPA/@/ sound occupies the central position. For comparison, formant data for
four vowels–as spoken by adult males–are also plotted (?, ?).14 The lower left corner of the classical
vowel plot, the area appropriate to the vowel TIPA/u/, has been indicated for completeness. Because
of lip rounding, however, the vowel TIPA/u/ cannot be approximated in terms of only two tubes.

Eq. (3.84) also makes salient an aspect of compensatory articulation. The mode pattern for
l1 = a, l2 = b, is exactly the same as for l1 = b, l2 = a. In other words, so long as the area
ratio for the back and front cavities is maintained the same, their lengths may be interchanged
without altering the formant frquencies. This is exactly true for the idealized lossless tubes, and is
approximately so for practical values of loss. This interchangeability is one freedom available to the
ventriloquist. It is also clear from (3.84) that if l1 = 2l2, the infinite values of cot βl1 and tanβl2
are coincident (at βl2 = π/2) and indicate the second mode. The second formant frequency can
therefore be maintained constant by keeping the tube lengths in the ratio of 2:1. The same constancy
applies to the third formant if the length ratio is maintained at 3:2.

3.8.5 Excitation by Source Forward in Tract

As pointed out earlier, fricative sounds (except for TIPA/h/) are excited by a series pressure source
applied at a point forward in the tract. It is pertinent to consider the mouth volume velocity which
such an excitation produces.

A previous section showed that for glottal excitation the maxima of glottis-to-mouth transmission
occurred at the natural (pole) frequencies of the vocal system, and the transmission exhibited no
zeros. If excitation is applied at some other point in the system, without altering the network, the
normal modes of the response remain the same. The transmission can, however, exhibit zeros. For
the series excitation these zeros must occur at frequencies where the impedance looking back from
the source (toward the glottis) is infinite. By way of illustration let us retain the simple two-tube

14Most of the vocal tract dimensions used to illustrate acoustic relations in this chapter are appropriate to adult
males. Women and children have smaller vocal apparatus. Since the frequencies of the resonant modes are inversely
related to the tract length, the vowel formants for women and children are higher than for the men. According
to Chiba and Kajiyama (?, ?), the young adult female vocal tract is 0.87 as long as the young adult male. The
female formants, therefore, should be about 15% higher than those of the male. This situation is also reflected in the
measurements of Peterson and Barney.
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Figure 3.30: Two-tube approximation to the vocal tract with excitation applied forward of the
constriction

model used previously. Because the turbulent source for voiceless sound is spatially distributed, its
exact point of application is difficult to fix. Generally it can be thought to be applied either at or just
forward of the point of greatest constriction. The former seems to be more nearly the case for sounds
like TIPA/S,f,p,k/; the latter for TIPA/s,t/. Consider first the case where the source is forward of
the constriction. The two-tube circuit is shown in Fig. 3.30. The back cavity is shown closed, and
the impedance of the glottis and larynx tube is considered to be high (compared to the impedance
level of the back cavity) even though the glottis may be open. The radiation impedance is again
considered small compared with the impedance level at the mouth, and the inherent impedance of
the source per se is considered small.

The complex frequency (Laplace) transform of the transmission (Um/pt) can be written in the
form

Um(s)
pt(s)

= H(s)G(s), (3.85)

where H(s) is a given in (3.64) and contains all the poles of the system, and G(s) is a function
which includes all the zeros and constants appropriate to nonglottal excitation. In this particular
case, Um/pt is simply the driving point admittance at the lips. It is

Um

pt
=

(zb2 + zbl + za1 + za2)
za2(zb2 + zb1 + za1 + za2) + zb2(zb1 + za1 + za2)

,

which can be put into the form

Um

pt
=

1
Z01

sinh γ1l1 sinh γ2l2

(
coth γ2l2 + A2

A1
coth γ1l1

)
cosh γ1l1 cosh γ2l2

[
1 + A1

A2
tanh γ1l1 tanh γ2l2

] (3.86)

The zeros of transmission occur at frequencies which make the numerator zero, and therefore satisfy

coth γ2l2 = − coth γ1l1

or
tanh γ1l1 = − tanh γ2l2

which for lossless conditions reduces to

tanβl1 = −A2

A1
tanβl2 (3.87)

TO DO: Comment on the zero at zero frequency (obvious in Eq. 3.87, but not discussed in the
sequelae). Demonstrate that the spectra of real fricatives and TIPA/h/ is equal to the dipole source
of previous sections, pre-emphasized by the zero at zero frequency. Demonstrate that this zero
at zero-frequency is present in all turbulent sounds, and that its bandwidth is proportional to the
distance between the front of the constriction and the location of the noise source (?, ?, ?).

As an example, let us use (3.87) and (3.84) to determine the (lossless) zeros and poles of Um/pt

for an articulatory shape crudely representative of /s/. Take

A1 = 7cm2 A2 = 0.2cm2

l1 = 12.5cm l2 = 2.5cm.

39



Figure 3.31: Two-tube approximation to the fricative TIPA/s/. The undamped pole-zero locations
are obtained from the reactance plots

Figure 3.32: Measured spectra for the fricative TIPA/s/ in real speech. (After Hughes and Halle)

The pertinent reactance functions are plotted in Fig. 3.31, and the poles and zeros so determined
are listed.

The lower poles and zeros lie relatively close and essentially nullify one another. The first
significant uncompensated zero lies in the vicinity of 3400 Hz, with the first uncompensated pole in
the neighborhood of 6650 Hz. These two features, as well as the near-cancelling pole-zero pairs, can
often be seen in the spectra of real TIPA/s/ sounds. For example, Fig. 3.32 shows two measurements
of the natural speech fricative TIPA/s/ (?, ?)). For this speaker, the peak in the vicinity of 6000-7000
Hz would appear to correspond with the uncompensated pole, the dip in the vicinity of 3000 Hz with
the zero. The peak and valley alternations at the lower frequencies reflect roughly the effect of pole-
zero pairs such as indicated in the reactance diagrams. The measured spectra presumably include
the transformation from mouth volume current to pressure at a fixed point in space, as described in
Eq. (3.40). The spectra therefore include a zero at zero frequency owing to the radiation.

To further examine the influence of source position upon the transmission, suppose the turbulent
source is applied more nearly at the junction between the two tubes rather than at the outlet. This
situation is crudely representative of sounds like TIPA/f/, TIPA/k/ or possibly TIPA/S/. In TIPA/f/,

Figure 3.33: Two-tube approximation to the vocal tract with the source of excitation applied at the
tube junction
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for example, the turbulent flow is produced at the constriction formed by the upper teeth and lower
lip. The cavities behind the teeth are large, and the lips forward of the constriction form a short,
small-area tube. The circuit for such an arrangement is shown in Fig. 3.33. The transmission from
source to mouth is

Um

pt
=

zb2

zb2(za1 + za2 + zb1) + za1(zb2 + za1 + za2 + zb1)

or
Um

pt
=

1
Z01

sinh γ1l1

cosh γ1l1 cosh γ2l2

[
1 + A1

A2
tanh γ1l1 tanh γ2l2

] (3.88)

The system poles are the same as before, but the zeros now occur at

1
Z01

sinh γ1l1 = 0,

or

sm =
(
−α1c± j

mπc

l1

)
; m = 0, 1, 2, . . . (3.89)

Again for the lossless case, the zeros occur for sinβl1 = 0, or for frequencies

fm = m
c

2l1
Hz (m = 0, 1, 2, . . .),

where the length of the back cavity is an integral number of half wavelengths. The zeros therefore
occur in complex-conjugate pairs except for m = 0. The real-axis zero arises from the impedance of
the back cavity volume at zero frequency. Specifically, for the lossless situation at low frequencies,
the numerator of (3.88) approaches

lim
ω→0

1
Z01

sinβl1 ≈
ωl1
Z01c

=
A1l1
ρc2

ω = ωC1, where C1 =
V1

ρc2

is the acoustic compliance of the back cavity. The result (3.89) makes clear the reason that a labio-
dental fricative such as TIPA/f/ exhibits a relatively uniform spectrum (devoid of large maxima
and minima) over most of the audible frequency range. A crude approximation to the articulatory
configuration for TIPA/f/ might be obtained if the parameters of Fig. 3.33 are taken as follows: Al = 7
cm2, A2 = 0.1 cm2, l1 = 14cm, l2 = 1cm. As before the poles occur for cot βl1 = A1/A2 tanβl2.
Because of the large value of A1/A2 and the small value of l2, the poles occur very nearly at the
frequencies which make cot βl1 infinite; namely

fn ≈ n
c

2l1
, n = 0, 1, 2, . . .

(The first infinite value of tanβl2 occurs at the frequency c/4l2, in the vicinity of 8500 Hz.) The
zeros, according to (3.89), occur precisely at the frequencies

fm = m
c

2l1
, m = 0, 1, 2, . . .

so that each pole is very nearly cancelled by a zero. The transmission Um/Pt is therefore relatively
constant until frequencies are reached where the value of A1/A2 tanβl2 has its second zero. This
relative flatness is generally exhibited in the measured spectra of real TIPA/f/ sounds such as shown
in Fig. 3.34 (?, ?).
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Figure 3.34: Measured spectra for the fricative TIPA/f/ in real speech. (After Hughes and Halle)

Figure 3.35: An equivalent circuit for the combined vocal and nasal tracts. The pharynx, mouth
and nasal cavities are assumed to be uniform tubes.

3.8.6 Effects of the Nasal Tract

This highly simplified and approximate discussion of vocal transmission has so far neglected the
properties of the nasal tract. The nasal tract is called into play for the production of nasal consonants
and for nasalizing certain sounds primarily radiated from the mouth. Both of these classes of sounds
are voiced. For the nasal consonants, an oral closure is made, the velum is opened and the sound
is radiated chiefly from the nostrils. The blocked oral cavity acts as a side branch resonator. In
producing a nasalized vowel, on the other hand, coupling to the nasal tract is introduced by opening
the velum while the major radiation of sound continues from the mouth. Some radiation, usually
lower in intensity, takes place from the nostrils.

The functioning of the combined vocal and nasal tracts is difficult to treat analytically. The
coupled cavities represent a relatively complex system. Precise calculation of their interactions can
best be done by analog or digital computer simulation. Nevertheless, it is possible to illustrate
computationally certain gross features of the system by making simplifying approximations. More
specifically, suppose the pharynx cavity, mouth cavity and nasal cavity are each approximated as
uniform tubes. The equivalent network is shown in Fig. 3.35.

Notice that, in general, the parallel branching of the system at the velum causes zeros of nasal
output at frequencies where the driving point impedance (Zm) of the mouth cavity is zero, and
vice versa. At such frequencies, one branch traps all the velar volume flow. In particular for
nasal consonants, TIPA/m,n,N/, Zrm = ∞ and Um = 0. Zeros then occur in the nasal output at
frequencies for which Zm = 0 for the closed oral cavity. Nasal consonants and nasalized vowels are
generally characterized by resonances which appear somewhat broader, or more highly damped, than
those for vowels. Additional loss is contributed by the nasal tract which over a part of its length
is partitioned longitudinally. Its inner surface is convoluted, and the cavity exhibits a relatively
large ratio of surface area to cross-sectional area. Viscous and heat conduction losses are therefore
commensurately larger.

Following the approach used earlier, and with the purpose of indicating the origin of the poles
and zeros of a nasal consonant, let us make a crude, simple approximation to the vocal configuration
for TIPA/m/. Such an approximation is illustrated in Fig. 3.36. The poles of the nasal output
will be determined by the combined pharynx, mouth and nasal cavities, while the side-branch
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Figure 3.36: A simple approximation to the vocal configuration for the nasal consonant TIPA/m/

Figure 3.37: Reactance functions and undamped mode pattern for the articulatory approximation
to TIPA/m/ shown in Fig. 3.36

resonator-formed by the closed oral cavity will introduce zeros wherever its input impedance is
zero. Considering the system to be lossless, the radiation load to be negligible, and the glottal
impedance to be high, the easiest way to estimate the pole frequencies is to find the frequencies
where the velar admittance (at the point where the three cavities join) is zero. This requires∑

k=p,m,n

Yk = 0 =
1

Z0m
tanβlm +

1
Z0p

tanβlp −
1

Z0n
cot βln (3.90)

= Am tanβlm + Ap tanβlp −An cot βln.

The zeros of transmission occur for

Zm = 0 =
ρc

Am
cot βlm

or
βlm = (2n + 1)

π

2
, n = 0, 1, 2, . . .

or
f = (2n + 1)

c

4lm
. (3.91)

The mode pattern determined by relations (3.90) and (3.91) is shown in Fig. 3.37. One sees that
the first pole of the coupled systems is fairly low, owing to the substantial length of the pharynx
and nasal tract and the mouth volume. A pole and zero, additional to the poles of the pure vowel
articulation, are introduced in the region of 1000 Hz. This mode pattern is roughly representative
of all the nasal consonants in that the pharynx and nasal tract have roughly the same shape for all.
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Figure 3.38: Measured spectrum for the nasal consonant TIPA/m/ in real speech. (After Fant, 1960)

Figure 3.39: Nomogram for the first three undamped modes (F1, F2, F3) of a fourtube approximation
to the vocal tract (Data adapted from Fant, 1960). The parameter is the mouth area, A4. Curves
1, 2, 3 and 4 represent mouth areas of 4, 2, 0.65 and 0.16 cm2, respectively. Constant quantities are
Al = A3 = 8 cm2, l4 = 1cm and A2 = 0.65 cm2. Abscissa lengths are in cm

The first zero falls at approximately 1300 Hz in the present example. For the consonants TIPA/n/
and TIPA/N/, the oral cavity is progressively shorter, and the zero would be expected to move
somewhat higher in frquency. By way of comparison, the measured spectrum of a real /m/ is shown
in Fig. 3.38 (?, ?). In this measured spectrum, the nasal zero appears to be reflected by the relatively
broad spectral minimum near 1200 Hz. The larger damping and appreciable diminution of spectral
amplitude at the higher frequencies is characteristic of the nasal consonants.

3.8.7 Four-Tube, Three-Parameter Approximation of Vowel Production

To illustrate fundamental relations, the preceding sections have dealt with very simple approxima-
tions to the vocal system. Clearly these crude representations are not adequate to describe the gamut
of articulatory configurations employed in a language. The approximations can obviously be made
better by quantizing the vocal system into more and shorter tube sections. For vowel production in
particular, one generally can identify four main features in the tract geometry. These are the back
pharynx cavity, the tongue hump constriction, the forward mouth cavity and the lip constriction
(see Fig. 3.1). Approximation of these features by four abutting tubes gives a description of vocal
transmission substantially more precise than the two-tube approximation. The first several normal
modes of the four-tube model are reasonably good approximations to the lower formants of real
vowels. Such a fourtube model is illustrated in Fig. 3.39a (adapted from (?, ?)).

If the glottal impedance is taken as large and the radiation load small, the glottal-to-mouth
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transmission is
Um

Ug
=

1∏4
n=1 (cosh γnln) (ab + cd)

(3.92)

where

a =
(

1 +
A1

A2
tanh γ1l1 tanh γ2l2

)
b =

(
1 +

A3

A4
tanh γ3l3 tanh γ4l3

)
c =

A2

A3

(
tanh γ3l3 +

A3

A4
tanh γ4l4

)
d =

A1

A2
(tanh γ1l1 + tanh γ2l2)

One notices that if l3 = l4 = 0, Eq. (3.92) reduces to the two-tube relations given by Eq. (3.82).
To demonstrate how the first several normal modes of such a cavity arrangement depend upon

configuration, Fant (?, ?) has worked out detailed nomograms for several combinations of A’s and
l’s. One of these is particularly relevant and essentially depicts the scheme followed by Dunn (?, ?)
in his development of an electrical vocal tract analog. It is reproduced in adapted form in Fig. 3.39b.
The constraints are as follows: l1 + l2 + l3 = 15cm; l4 = 1cm; A1 = A3 = 8 cm2; A2 = 0.65cm2; and
l2 = 5cm, provided tube 2 is terminated by cavities on both sides. The parameters are the distance
from the glottis to the center of the tongue constriction, x, and the mouth area, A4. For very large
and very small values of x, l3 and l1 are zero, respectively, and the length l2 is varied to satisfy the
total length condition. The variation of the first three normal modes for a range of values of the
parameters and for one value of the tongue constriction (A2 = 0.65 cm2) are shown in Fig. 3.39b.

These data show that a shift of the tongue constriction from a back (x ≈ 3cm) to a front position
(x ≈ 9cm) is generally associated with a transition from high F1-low F2 to low F1-high F2. (This
general tendency was also evident in the two-tube models discussed in Section 3.8.4.) Increasing
the lip rounding, that is decreasing A4 (as well as increasing l4), generally reduces the frequencies
of all formants. Although not shown here, decreasing the tongue constriction reduces the frequency
variations of the formants with place of constriction. In terms of absolute frequency, the variations
in Fl are generally smaller than those of the higher formants. Perceptually, however, the percentage
change in formant frequency is more nearly the important quantity. This point will be discussed
further in Chapter ??.

Owing to the substantial coupling between the connecting tubes, a particular formant cannot
be strictly associated with a particular resonance of a particular vocal cavity. The normal mode
pattern is a characteristic of the whole coupled system. Numerous efforts have been made in the
literature to relate specific formants to specific vocal cavities, but this can be done exactly only
when the constrictions are so small in size that the cavities are, in effect, uncoupled. In instances
where the coupling is small, it is possible to loosely associate a given formant with a particular
resonator. The treachery of the association, however, can be simply illustrated. If a forward motion
of the tongue hump causes a resonant frequency to rise–for example, F2 for 3 < x < 9cm in
Fig. 3.39–the suggestion is that the resonance is mainly influenced by a cavity of diminishing length,
in this case the mouth cavity. On the other hand, the same resonance might be caused to rise in
frequency by a tongue retraction and a consequent shortening of the pharynx cavity-for example,
F2 for 16 > x > 13cm. It is therefore clear that a given formant may be principally dependent upon
different cavities at different times. It can change its cavity-mode affiliation with changes in vocal
configuration. In fact, its dependence upon the mode of vibration of a particular cavity may vary.

The four-tube approximation to vowel production implies that vowel articulation might be grossly
described in terms of three parameters, namely, the distance from the glottis to the tongue-hump
constriction, x; the size of the tongue constriction, A2; and a measure of lip rounding such as the
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area-to-length ratio for the lip tube, A4/l4. This basis notion has long been used qualitatively by
phoneticians to describe vowel production. It has been cast into quantitative frameworks by Dunn (?,
?), Stevens and House (?, ?), Fant (?, ?) and Coker (?, ?), in connection with work on models of
the vocal mechanism. As pointed out earlier, Dunn has used the scheme much as represented in
Fig. 3.39, that is, with constant-area tubes approximating the tract adjacent to the constriction.
Stevens and House and Fant have extended the scheme by specifying constraints on the taper of
the vocal tract in the vicinity of the constriction. Stevens and House use a parabolic function for
the area variation, and Fant uses a section of a catenoidal horn (i.e., a hyperbolic area variation).
Both use fixed dimensions for the larynx tube and the lower pharynx. In perceptual experiments
with synthetic vowels, Stevens and House find that a reasonably unique relation exists between
the allowed values of x, A2 and A4/l4 and the first three vowel formants. Although these three
parameters provide an adequate description of most nonnasal, nonretroflex, vowel articulations, it
is clear that they are not generally sufficient for describing consonant and nasal configurations.

Later work by Coker (?, ?) has aimed at a more detailed and physiologically meaningful descrip-
tion of the vocal area function. Coker’s articulatory model is specified by seven, relatively-orthogonal
parameters: the x−y position coordinates of the tongue body; the degree and the place of the tongue
tip constriction; the mouth area; the lip protrusion; and the degree of velar (nasal) coupling. Each
parameter has an associated time constant representative of its vocal feature. This articulatory
model has been used as the synthesis element in an automatic system for converting printed text
into synthetic speech (?, ?)15.

3.8.8 Multitube Approximations and Electrical Analogs of the Vocal Tract

As the number of elemental tubes used to approximate the vocal shape becomes large, the compu-
tational complexities increase. One generally resorts to analog or digital aids in solving the network
when the number of approximating sections exceeds about four. In early work analog electrical
circuitry has proven a useful tool for simulating both vocal and nasal tracts. It has been used exten-
sively by Dunn (?, ?); Stevens, Fant, and Kasowski (?, ?); Fant (?, ?); Stevens and House (?, ?, ?);
and Rosen (?, ?). The idea is first to approximate the linear properties of the vocal mechanism by a
sufficiently large number of tube sections and then to approximate, in terms of lumped-constant elec-
trical elements, the hyperbolic impedances of the equivalent T or π networks shown in Fig. 3.3. At
low frequencies the lumped-constant circuit behaves as a distributed transmission line and simulates
the one-dimensional acoustic wave propagation in the vocal tract. The number of approximating
tube sections used, the approximation of the hyperbolic elements, and the effect of cross modes in
the actual vocal tract determine the highest frequency for which the electrical transmission line is
an adequate analog.

As shown previously, the elements of the T-section equivalent of the cylindrical tube are

za = Z0 tanh
γl

2
and zb = Z0cschγl.

Taking first-order approximations to these quantities gives

za ≈ Z0

(
γl

2

)
and zb ≈ Z0

(
1
γl

)

za ≈ Z0
1
2
(αjβ)l zb ≈ Z0

1
(α + jβ)l

. (3.93)

From the relations developed earlier, Z0 = [(R+jωL)/(G+jωC)]
1
2 and γ = [(R+jωL)(G+jωC)]

1
2 ,

where R, G, L and C have been given in terms of per-unit-length acoustical quantities in Eq. (3.33).

15See further discussion of this system in Chapters ?? and ??.

46



The T-elements are therefore approximately

za =
1
2
(R + jωL)l and zb =

1
(G + jωC)l

.

In general, the acoustical quantities Ra, La, Ga, and Ca [in Eq. (3.33)] will not correspond to
practical electrical values. It is usually convenient to scale the acoustical and electrical impedance
levels so that

Z0e = kZ0a

or [
Re + jωLe

Ge + jωCe

] 1
2

=

[
kRa + jωkLa

Ga

k + jωCa

k

] 1
2

. (3.94)

By way of indicating the size of a practical scale constant k, consider the low-loss situation where

Z0e =
√

Le

Ce
= kZ0a = k

√
La

Ca
= k

(ρc

A

)
, (3.95)

where A is the cross-sectional area of the acoustic tube. A practical value for Z0e is 600 electrical
ohms, and a typical value of A is 8 cm2. Therefore k = 600/5.3 = 113, and the mks impedances
of the per-unitlength electrical elements are scaled up by 113 times the cgs impedances of the per-
unit-length acoustic elements.

Note, too, that βl ≈ ωl/c = ωle
√

LeCe = ωla
√

LaCa. Since the velocity of sound and the
air density in a given length of tube are constant, maintaining the LeCe product constant in the
electrical line is equivalent to maintaining constant velocity of sound propagation in the simulated
pipe. Similarly, changes in the pipe area A are represented by proportional changes in the Ce/Le

ratio.
The electrical simulation is of course applicable to both vocal and nasal tracts. Choice of the

elemental cylinder length l, the electrical scale constant k, and a knowledge of the cross-sectional
area A along the tract are the only parameters needed to determine the lossless elements of the
transmission line. An estimate of tract circumference along its length is needed to compute the
viscous and heat conduction losses (R and G). The radiation loads at the mouth and nostrils are
obtained hy applying the electrical scale constant to the acoustic radiation impedances obtained
earlier in the chapter. It is likewise possible to apply these techniques to the subglottal system and
to incorporate it into the electrical simulation. At least four designs of electrical vocal tracts have
been developed for studying vocal transmission and for synthesizing speech (?, ?, ?, ?, ?). At least
one design has been described for the subglottal system (?, ?).

The equations used to create electrical circuit simulations of the vocal tract may also be used to
implement a vocal tract simulation on a computer. Simulations using the equations described above
have been published by (?, ?, ?). Another approach has been to represent the cylindrical sections in
terms of the reflection coefficients at their junctions (?, ?, ?, ?). Vocal tract simulation in terms of
reflection coefficients is closely related to linear predictive analysis of the speech waveform, and will
be considered in considerably more detail in chapter ??.

TO DO: A third method for digital simulation of vocal tract transmission was proposed by
Sondhi and Schroeter (?, ?), and elaborated by Lin (?, ?). In this method, each of the T sections
is represented as a matrix transfer function of the following form.... the relationship of flow and
pressure at the lips to flow and pressure at the glottis is therefore given by... the vocal tract transfer
function can therefore be computed at any desired number of frequency samples using equations... a
vocal tract transfer function computed in this way can be inverse transformed, and convolved with
the time-domain waveform of the glottal source, in order to synthesize speech...
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3.9 Fundamentals of Speech and Hearing in Analysis-Synthesis
Telephony

The preceding sections have set forth certain basic acoustic principles for the vocal mechanism. Not
only do these relations concisely describe the physical behavior of the source of speech signals, but
they imply a good deal about efficient communication. They suggest possibilities for coding speech
information in forms other than merely the transduced pressure wave. The normal mode and exci-
tation relations, for example, indicate a schema on which an analysis-synthesis transmission system
might be based. The same can be said for describing the vocal tract by articulatory parameters.
Both results reflect constraints peculiar to the speech-producing mechanism.

As yet, however, the properties of hearing and the constraints exhibited by the ear have not
entered the discussion. The next chapter proposes to establish certain fundamental properties of
the mechanism of hearing–so far as they are known. The exposition will follow a pattern similar
to that of the present chapter. The results of both fundamental discussions will then be useful in
subsequent consideration of speech analysis and speech synthesis.
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