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Table 2.5. Glides and semi-vowels 

Place 

Palatal Ijl you 
Labial Iwl we 

(no final form) 
Palatal [t] read 
Alveolar III let 

W (WE) j (YOU) r (READ) I (LET) 

= ~~ 
Fig. 2.9. Vocal tract configurations for the beginning positions of the glides and semivowels. 

(After POTTER, Kopp and GREEN) 

2.225. Combination Sounds: Diphthongs and Affricates. Some of the 
preceding vowel or consonant elements can be combined to form basic 
sounds whose phonetic values depend upon vocal tract motion. An 
appropriate pair of vowels, so combined, form a diphthong. The diph­
thong is vowel-like in nature, but is characterized by change from one 
vowel position to another. For example, if the vocal tract is changed 
from the lei position to the /II position, the diphthong lell as in say is 
formed. Other GA diphthongs are llUj as in new, 1;)11 as in boy; laul as 
in out, faIl as in I, and jouj as in go. 

As vowel combinations form the diphthongs, stop-fricative combina­
tions likewise create the two GA affricates. These are the ItSI as in chew 
and the /d31 as in jar. 

2.3. Quantitative Description of Speech 
The preceding discussion has described the production of speech in 

a completely qualitative way. It has outlined the mechanism of the voice 
and the means for producing an audible code which, within a given 
language, consists of distinctive sounds. However, for any transmission 
system to benefit from prior knowledge of the information source, this 
knowledge must be cast into a tractable analytical form that can be 
employed in the design of signal processing operations. Detailed inquiry 
into the physical principles underlying the speech-producing mechanism 
is therefore indicated. 

The Vocal Tract as an Acoustic System 

The following chapter will consider the characteristics of the vocal 
system in a quantitative fashion. It will treat the physics of the vocal 
and nasal tracts in some depth and will set forth certain acoustical 
properties of the vocal excitations. The primary objective - as stated 
curlier - is to describe the acoustic speech signal in terms of the physical 
parameters of the system that produced it. Because of physiological 
HIlU linguistic constraints, such a description carries important implica­
I ions for analysis-synthesis telephony. 

III. Acoustical Properties of the Vocal System 
The collection of olfactory, respiratory and digestive apparatus 

which man uses for speaking is a relatively complex sound-producing 
system. Its operation has been described qualitatively in the preceding 
chapter. In this chapter we would like to consider in more detail the 
acoustical principles underlying speech production. The treatment is 
not intended to be exhaustive. Rather it is intended to circumscribe the 
problems of vocal tract analysis and to set forth certain fundamental 
relations for speech production. In addition, it aims to outline techniques 
and method for acoustic analysis of the vocal mechanism and to indicate 
their practical applications. Specialized treatments of a number of these 
points can be found elsewhere". 

3.1. The Vocal Tract as an Acoustic System 
The operations described qualitatively in the previous chapter can 

be crudely represented as in Fig. 3.1. The lungs and associated respira­
tory muscles are the vocal power supply. For voiced sounds, the expelled 
air causes the vocal cords to vibrate as a relaxation oscillator, and the 
air stream is modulated into discrete puffs or pulses. Unvoiced sounds 
are generated either by passing the air stream through a constriction in 
the tract, or by making a complete closure, building up pressure behind 
the closure and abruptly releasing it. In the first case, turbulent flow and 
incoherent sound are produced. In the second, a brief transient excita­
tion occurs. The physical configuration of the vocal tract is highly 
variable and is dictated by the positions of the articulators; that is, the 
jaw, tongue, lips and velum. The latter controls the degree of coupling 
to the nasal tract. 

! For this purpose G. FANT, Acoustic Theory of Speech Production, is highly 
recommended. Besides presenting the acoustical bases for vocal analysis, this volume 
contains a wealth of data on vocal configurations and their calculated frequency 
responses. An earlier but still relevant treatise is T. CHIBA and M. KAJIYAMA, The 
Vowel; Its Nature and Structure. Another excellent and more recent analysis of vowel 
articulation is G. UNGEHEUER, Elemente einerakustischen Theorie der Vokalartikulation. 
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Fig. 3.1. Schematic diagram of functional components of the vocal tract 

In general, several major regions figure prominently in speech pro­
duction. They are: (a) the relatively long cavity formed at the lower 
back of the throat in the pharynx region; (b) the narrow passage at the 
place where the tongue is humped; (c) the variable constriction of the 
velum and the nasal cavity; (d) the relatively large, forward oral cavity; 
(e) the radiating ports formed by the mouth and nostrils. 

Voiced sounds are always excited at the same point in the tract, 
namely at the vocal cords. Radiation of voiced sounds can take place 
either from the mouth or nose, or from both. Unvoiced excitation is 
applied to the acoustic system at the point where turbulent flow or pressure 
release occurs. This point may range from an anterior position [such as 
the labio-dental excitation for Iff] to a posterior position [such as the 
palatal excitation for Ikl]. Unvoiced sounds are normally radiated from 
the mouth. All sounds generated by the vocal apparatus are character­
ized by properties of the source of excitation and the acoustic trans­
mission system. To examine these properties, let us first establish some 
elementary relations for the transmission system, then consider the 
sound sources, and finally treat the combined operation of sources and 
system. 

The length of the vocal tract (about 17 em in man) is fully com­
parable to the wavelength of sound in air at audible frequencies. It is 
therefore not possible to obtain a precise analysis of the tract operation 
from a lumped-constant approximation of the major acoustic compo­
nents. Wave motion in the system must be considered for frequencies 

Equivalent Circuit for the Lossy Cylindrical Pipe 

II hovc several hundred cps. The vocal and nasal tracts constitute lossy 
III hcs of non-uniform cross-sectional area. Wave motion in such tubes 
is difficult to describe, even for lossless propagation. In fact, exact solu­
lions to the wave equation are available only for two nonuniform geo­
ructries, namely for conical and hyperbolic area variations (MORSE). And 
then only the conical geometry leads to a one-parameter wave. 

So long as the greatest cross dimension of the tract is appreciably 
less than a wavelength (this is usually so for frequencies below about 
4000 cps), and so long as the tube does not flare too rapidly (producing 
internal wave reflections), the acoustic system can be approximated by 
II one-dimensional wave equation. Such an equation assumes cophasic 
wave fronts across the cross-section and is sometimes called the Webster 
equation (WEBSTER). Its form is 

1 0 [ OP] 1 cPp
A(x) ax A(x)a:x =7 ot2 ' (3.1) 

where A (x) is the cross-sectional area normal to the longitudinal dimen­
sion, p is the sound pressure (a function of t and x) and c is the sound 
velocity. In general this equation can only be integrated numerically, 
und it does not include loss. At least three investigations, however, have 
made use of this formulation for studying vowel production (CHIBA and 
KAJIYAMA; UNGEHEUER; HEINZ, 1962a, b). 

A more tractable approach to the analysis problem (both computa­
tionally and conceptually) is to impose a further degree of approxima­
tion upon the nonuniform tube. The pipe may be represented in terms 
of incremental contiguous sections of right circular geometry. The 
approximation may, for example, be in terms of cylinders, cones, ex­
ponential or hyperbolic horns. Although quantizing the area function 
introduces error, its effect can be made small if the lengths of the ap­
proximating sections are kept short compared to a wavelength at the 
highest frequency of interest. The uniform cylindrical section is partic­
ularly easy to treat and will be the one used for the present discussion. 

3.2. Equivalent Circuit for the Lossy Cylindrical Pipe 
Consider the length dx of lossy cylindrical pipe of area A shown in 

Fig. 3.2a. Assume plane wave transmission so that the sound pressure 
and volume velocity are spatially dependent only upon x. Because of its 
mass, the air in the pipe exhibits an inertance which opposes acceleration. 
Because of its compressibility the volume of air exhibits a compliance. 
Assuming that the tube is smooth and hard-walled, energy losses can 
occur at the wall through viscous friction and heat conduction. Viscous 
losses are proportional to the square of the particle velocity, and heat 
conduction losses are proportional to the square of the sound pressure. 
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The characteristics of sound propagation in such a tube are easily 
described by drawing upon elementary electrical theory and some well­
known results for one-dimensional waves on transmission lines. Consider 
sound pressure analogous to the voltage and volume velocity analogous 
to the current in an electrical line. Sound pressure and volume velocity 
for plane wave propagation in the uniform tube satisfy the same wave 
equation as do voltage and current on a uniform transmission line. A dx 
length of lossy electrical line is illustrated in Fig. 3.2b. To develop the 
analogy let us write the relations for the electrical line. The per-unit­
length inductance, capacitance, series resistance and shunt conductance 
are L, C, R, and G respectively. Assuming sinusoidal time dependence 

r----- dx -----, 

I+- - - -- ~: --~~-1 

A_ 
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Fig. 3.2a and b. Incremental length of lossy cylindrical pipe. (a) acoustic representation; 
(b) electrical equivalent for a one-dimensional wave 

i w tfor voltage and current, (lei w t and E e ) , the differential current loss 
and voltage drop across the d x length of line are 

d1=-Eydx and dE=-1zdx, (3.2) 

where y=(G+jwC) and z=(R+jwL). 

The voltage and current therefore satisfy 

d21d 2 E 
~-zyE=O and dX2-Zy1=O, (3.3) 

the solutions for which are 

y x+BE=A 1 e 1 e- Yx 

Y x (3.4)
1=A2 eYX + B2 e- , 

where y =Vzy =(ex +j fj) is the propagation constant, and the A's and 
B's are integration constants determined by terminal conditions. 

Equivalent Circuit for the Lossy Cylindrical Pipe 

l-or a piece of line I in length, with sending-end voltage and current 
1':1 and /1' the receiving-end voltage and current E2 and 12 are given by 

E2 =E1 cosh Y1-11 z, sinh y I 
(3.5)

12 = 11 cosh y1- E 1 Yo sinh y1, 

where Zo=Vz/y and Yo=Vyjz are the characteristic impedance and 
admittance of the line. Eq. (3.5) can be rearranged to make evident the 
impedance parameters for the equivalent four-pole network 

E 1 =Zo1 1 coth yI-Zo12 csch Y1 
(3.6)

E2 = z;11 csch Y1-z; 12 coth YI. 

~-------l-------->-/ 

...!4 

IE, 

Za=Zo TANH ~t Ya=Yo TANH ~t 

Zb= Zo cscH ,..t Yb= Yo cscH 71. 

(8' «» 

Fig. 3.3 a and b. Equivalent four-pole networks for a length / of uniform transmission line. 
(a) T-section; (b) zr-section 

The equivalent T-network for the I length of line is therefore as shown 
in Fig.3.3a. Similarly, a different arrangement makes salient the ad­
mittance parameters for the four-pole network. 

11 = Yo E 1 coth y1- Yo E 2 csch y1 
(3.7)

12 = Yo E 1 csch yl- YOE2 coth yi. 

The equivalent rr-network is shown in Fig. 3.3 b. 

One recalls also from conventional circuit theory the lossless case 
corresponds to y=Vzy=jfj=jwVLC, and Zo=VLjC. The hyperbolic 
functions then reduce to circular functions which are purely reactive. 
Notice, too, for small loss conditions, (that is, R <{wL and G <{w C) the 
attenuation and phase constants are approximately 

R - G ­
ex~2VCfL+2VLjC (3.8) 

fj~wVLC. 
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Having recalled the relations for the uniform, lossy electrical line, we 
want to interpret plane wave propagation in a uniform, lossy pipe in 
analogous terms. If sound pressure, p, is considered analogous to voltage 
and acoustic volume velocity, U, analogous to current, the lossy, one­
dimensional, sinusoidal sound propagation is described by the same 
equations as given in (3.3). The propagation constant is complex (that 
is, the velocity of propagation is in effect complex) and the wave at­
tenuates as it travels. In a smooth hard-walled tube the viscous and heat 
conduction losses can be represented, in effect, by an 12 R loss and an 
£2 G loss, respectively. The inertance of the air mass is analogous to the 
electrical inductance, and the compliance of the air volume is analogous 
to the electrical capacity. We can draw these parallels quantitatively', 

3.21. The Acoustic "L" 
The mass of air contained in the dx length of pipe in Fig. 3.2a is 

pA dx, where p is the air density. The differential pressure drop in 
accelerating this mass is by NEWTON'S law: 

dp=pdx	 du =p dx. dU(x,t) 
dt A dt' 

where u is particle velocity and U is volume velocity. 
i eot For U(x, t)= U(x) e


dx
 
dp=jwPA U 

and (3.9) 
dp . L U
dx =JW a , 

where La = pjA is the acoustic inertance per unit length. 

3.22. The Acoustic"R" 

The acoustic R represents a power loss proportional to U 2 and is the 
power dissipated in viscous friction at the tube wall (INGARD). The 
easiest way to put in evidence this equivalent surface resistance is to 
consider the situation shown in Fig. 3.4. Imagine that the tube wall is a 
plane surface, large in extent, and moving sinusoidally in the x-direc­
tion with velocity u(t) = Um ei "", The air particles proximate to the wall ex­
perience a force owing to the viscosity, u, of the medium. The power 
expended per unit area in dragging the air with the plate is the loss to be 
determined. 

1 The reader who is not interested in these details may omit the following four 
sections and find the results summarized in Eq. (3.33) of Section 3.25. 

The Acoustic "R" 

Consider a layer of air dy thick and of unit area normal to the y 
uxis, The net force on the layer is 

Il [( au) - (au)] =pdy­-ay -ay 
au
at'y+dy y 

where u is the particle velocity in the x-direction, The diffusion equation 
specifying the air particle velocity as a function of the distance above 
I he wall is then 

a2u p au (3.10)ayz=JiJi-' 

AIR LAYER -----.tYL l ?--i u= fly) 

x~.%~d:M'-
PLANE WALL U(t)\= umejWt 

y=o 

Fig. 3.4. Relations illustrating viscous loss at the wall of a smooth tube 

For harmonic time dependence this gives 

d2u . wp	 2 (3.11)d y2 = ) ---;- u = k; u , 

where k; = (1 +j) V W pj21l, and the velocity distribution is 

u=ume-kvY=um e-vwp/2/lYe-iVroP/2/lY. (3.12) 

The distance required for the particle velocity to diminish to Ije of its 
value at the driven wall is often called the boundary-layer thickness and 
is bv = V2lljwp. In air at a frequency of 100 cps, for example, bv~0.2mm. 

The viscous drag, per unit area, on the plane wall is 

F=-Il (~ay ) y=o =jJ k; tim' 

or	 (3.13) 

F =um (1+j)VWIlPj2. 

Notice that this force has a real part and a positive reactive part. The 
latter acts to increase the apparent acoustic L. The average power 
dissipated per unit surface area in this drag is 

p=t IFI umcos9=t u;,Rs ,	 (3.14) 
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where Rs= V OJ PIl12 is the per-unit-area surface resistance and [) is the 
phase angle between F and u, namely, 45°. For a length I of the acoustic 
tube, the inner surface area is S· I, where S is the circumference. There­
fore, the average power dissipated per unit length of the tube is p. S= 
tu;'. S· R" or in terms of the acoustic volume velocity 

p. S=! U;,Ra , 

where 
(3.15)

SV--Ra = A 2 OJ P1112 , 

and A is the cross-sectional area of the tube. R; is then the per-unit­
length acoustic resistance for the analogy shown in Fig. 3.2. 

As previously mentioned, the reactive part of the viscous drag 
contributes to the acoustic inductance per unit length. In fact, for the 
same area and surface relations applied above, the acoustic inductance 
obtained in the foregoing section should be increased by the factor 
A2
 

S V IlpI2OJ, or
 

La= ~ ( 
1+ ~ V2:OJ ) . (3.16) 

Thus, the viscous boundary layer increases the apparent acoustic in­
ductance by effectively diminishing the cross-sectional area. For vocal 
tract analysis, however, the viscous boundary layer is usually so thin 
that the second term in (3.16) is negligible. For example, for a circular 
cross-section of 9 em", the second term at a frequency of 500 cps is 
about (0.006) plA, 

3.23. The Acoustic "C" 
The analogous acoustic capacitance, or compliance, arises from the 

compressibility of the volume of air contained in the dx length of tube 
shown in Fig. 3.2a. Most of the elemental air volume A dx experiences 
compressions and expansions which follow the adiabatic gas law 

P vq = constant, 

where P and V are the total pressure and volume of the gas, and I] is the 
adiabatic constant", Differentiating with respect to time gives 

1 dP I] dV 
Pdt=-v7!' 

1 'I is the ratio of specific heat at constant pressure to that at constant volume. 
For air at normal conditions, 'l=cp/c 1.4. v= 

The Acoustic "e" 

lhc diminution of the original air volume, owing to compression caused 
hy an increase in pressure, must equal the volume current into the 
compliance ; that is, 

U=- dV 
dt' 

lind 
1 dP I]U 

» s.>v: 
For sinusoidal time dependence P=Po+peiwr, where Po is the quiescent 
pressure and is large compared with p. The volume flow into the com­
pliance of the A dx volume is therefore approximately 

U=}OJ~' P=}OJ Adx . p. (3.17)
Pol] Pol] 

From wave considerations Pol] can be shown to equal o c". The volume 
velocity into the per-unit-length compliance can therefore be written as 

U=}OJ·Ca·p, 
where 

C-~- A (3.18)
a - PoI] -----;;? 

is the per-unit-length acoustic compliance. 

3.24. The Acoustic "G" 
The analogous shunt conductance provides a power loss proportional 

to the square of the local sound pressure. Such a loss arises from heat 
conduction at the walls of the tube. The per-unit-length conductance can 
be deduced in a manner similar to that for the viscous loss. As before, 
it is easier to treat a simpler situation and extend the result to the vocal 
lube. 

Consider a highly conductive plane wall of large extent, such as 
shown in Fig. 3.5. The air above the boundary is essentially at constant 
pressure and has a coefficient of heat conduction A. and a specific heat 
cpo Suppose the wall is given an oscillating temperature Tly=o=Tmeiwt. 
The vertical temperature distribution produced in the air is described 
by the diffusion equation (HILDEBRAND) 

2Ta _ cpP aT 
ay 2 --A.- at' 

or 
",2 T . cpP T 
U =JOJ _ . (3.19)() y2 A. 
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The solution is T=Tme- khY, where 

-

VOJ cpp 
k h = (1 +j) -----v:-' (3.20) 

which is the same form as the velocity distribution due to viscosity. In 
a similar fashion, the boundary layer depth for temperature is bh = 

VU/OJcpp, and k h = (1 +})/bh • 

Now consider more nearly the situation for the sound wave. Imagine 
an acoustic pressure wave moving parallel to the conducting boundary, 

,u~, 

PLANE WALL 

AWALL. = 00 

Fig. 3.5. Relations illustrating heat conduction at the wall of a tube 

that is, in the x-direction. We wish to determine the temperature dis­
tribution above the wall produced by the sound wave. The conducting 
wall is assumed to be maintained at some quiescent temperature and 
permitted no variation, that is, AWaIl = 00. If the sound wavelength is 
long compared to the boundary extent under consideration, the harmonic 
pressure variation above the wall may be considered as P=Po+P, where 
Po is the quiescent atmospheric pressure and P=Pmejrot is the pressure 
variation. (That is, the spatial variation of P with x is assumed small.) 
The gas laws prescribe 

pvq=constant and PV=RT (for unit mass). 

Taking differentials gives 

dV 1 dP and dP + dV = dT (3.21)V=-t/P P V T' 

Combining the equations yields 

dP (1-~) = dT (3.22)
P '7 T ' 

where 
j cot

dP=P=Pm e 

j rot
dT='='m e , 

The Acoustic" G" 

~() lrom (3.22) 

, =~('7-1)p (3.23) 
m Po m''7
 

AI the wall, y=O and ,(0)=0 (because Awall=OO). Far from the wall 
(i.c., for y large), I'(Y)/='m as given in (3.23). Using the result of (3.20), 
I he temperature distribution can be constructed as 

khY] j ro t Ley, t) = [1- e- 'm e , 

or 

Ley, 0= ~ ('7;1) [1_e-khY]Pmejrot. (3.24) 

Now consider the power dissipation at the wall corresponding to 
this situation. A long wavelength sound has been assumed so that the 
acoustic pressure variations above the boundary can be considered 
II=Pm e j 

rot, and the spatial dependence of pressure neglected. Because 
or the temperature distribution above the boundary, however, the par­
ticle velocity will be nonuniform, and will have a component in the 
j-direction. The average power flow per unit surface area into the 
boundary is P uy~, where uYO is the velocity component in the y direction 
lit the boundary. To examine this quantity, u, is needed. 

Conservation of mass in the y-direction requires 

iJuy ap 
p-=-- (3.25)oy at . 

Also, for a constant mass of gas dp/p= -dV/V which with the second 
equation in (3.21) requires 

dP dp dT 
P-P=Y' (3.26) 

Therefore, 

OU y 

ay 
_ 

-
(_1_ ()~ __1_~) 

To at Po iJ t ' 
(3.27) 

and 

-fOUY 
U y - oy -d y 

_ j OJ P {'7 -1 ( e -k 
y y

) }U --- -- y+-- -y (3.28)
Y Po .'7 ky 
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And, 
W t]-l j 

U =P--~--. (jh' (3.29) 
Yo C pc 1+] 

The equivalent energy flow into the wall is therefore 

--t W t]-1 1 1 T 2 ( IT)
Wh=pUyO=c----pcbh V2 r!Pmcos wt+4 cos an v dt 

1 w t]-1 2 1 2
 
Wh=-4 - --bhPm=-2 GaPm,
 (3.30) 

c pc 

where Ga is an equivalent conductance per unit wall area and is equal 

G =~ ~_ tl-l Y 2...l . (3.31) 
a 2 C pc wCpP 

The equivalent conductance per unit length of tube owing to heat 
conduction is therefore 

G =5 t]-l V).w (3.32) 
a ----;;cr- 2 Cp P , 

where 5 is the tube circumference. 
To reiterate, both the heat conduction loss G; and the viscous loss Ra 

are applicable to a smooth, rigid tube. The vocal tract is neither, so that 
in practice these losses might be expected to be somewhat higher. In 
addition, the mechanical impedance of the yielding wall includes a mass 
reactance and a conductance which contribute to the shunt element of 
the equivalent circuit. The effect of the wall reactance upon the tuning 
of the vocal resonances is generally small, particularly for open articulations. 
The contribution of wall conductance to tract damping is more important. 
Both of these effects are estimated in a later section. 

3.25. Summary of the Analogous Acoustic Elements 

The per-unit-length analogous constants of the uniform pipe can be 
summarized. 

p A 
C =La=A' -2-' 

a pC 

5 VWPJ.l G = 5 t] - 1 y;:o;­
a 2·-- (3.33)Ra = A 2 ·2-' p c 2cp p ' 

where A is tube area, S is tube circumference, p is air density, c is sound 
velocity, u is viscosity coefficient, A is coefficient of heat conduction, 

Summary of the Analogous Acoustic Elements 

/1 is the adiabatic constant, and cp is the specific heat of air at constant 
pressure". 

Having set down these quantities, it is possible to approximate the 
nonuniform vocal tract with as many right circular tube sections as 
desired. The transmission characteristics can be determined either from 
calculations on equivalent network sections such as shown in Fig. 3.3, 
or from electrical circuit simulations of the clements. When the ap­
proximation involves more than three or four network loops, manual 
computation becomes prohibitive. Computer techniques can then be 
used to good advantage. 

A further level of approximation can be made for the equivalent 
networks in Fig. 3.3. For a given length of tube, the hyperbolic elements 
may be approximated by the first terms of their series expansions, 
namely, 

3x 2x 5 

tanhx=x-T+15'" , 

and 
3 S . x X 

smhx=x+3T+5T'" , 

so that 

-zotanh1i~l(R=2 . L)lZa- 2 a+JW a 

and 

_1 =-Z1 sinhyl~(Ga+jwCa)1. (3.34) 
Zb 0 

The error incurred in making this approximation is a function of the 
elemental length I and the frequency, and is 

XX

(1__) and (1 __)
tanh x sinh x ' 

respectively. In constructing electrical analogs of the vocal tract it has 
been customary to use this approximation while keeping I sufficiently 
small. We shall return to this point later in the chapter. 

We will presently apply the results of this section to some simplified 
analyses of the vocal tract. Before doing so, however, it is desirable to 
establish several fundamental relations for sound radiation from the 
mouth and for certain characteristics of the sources of vocal excitation. 

1 p=1.14x 10-3 gm/cm-' (moist air at body temperature, 37°C). 
c= 3.5 x 104 em/sec (moist air at body temperature, 37°C). 
Jl= 1.86 X 10-4 dyne-sec/em! (20°C, 0.76 m. Hg), 
,1,=0.055 x 10-3 caljcm-sec-deg (0° C). 

c =0.24 caljgm-degrce (O°C, 1 atmos.). 
p 
11= 1.4. 
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3.3. The Radiation Load at the Mouth and Nostrils 
At frequencies where the transverse dimensions of the tract are 

small compared with a wavelength, the radiating area of the mouth or 
nose can be assumed to have a velocity distribution that is approximately 
uniform and cophasic. It can therefore be considered a vibrating surface, 
all parts of which move in phase. The radiating element is set in a 
baffle that is the head. To a rough approximation, the baffle is spherical 
and about 9 em in radius for a man. 

MORSE has derived the radiation load on a vibrating piston set in a 
spherical baffle and shows it to be a function of frequency and the 
relative sizes of the piston and sphere. The analytical expression for the 
load is involved and cannot be expressed in closed form. A limiting 
condition, however, is the case where the radius of the piston becomes 
small compared with that of the sphere. The radiation load then ap­
proaches that of a piston in an infinite, plane baffle. The latter iswell 
known and can be expressed in closed form. In terms of the normalized 
acoustic impedance 

A p A
Z=ZA .-=--.- ­

pe V pe 

(that is, per-unit-free-space impedance), it is 

= [1- J1(2 k a) ] . [K1(2ka)] (3.35)zp ka +} 2(ka)2 , 

where k = calc, a is the piston radius, A the piston area, J 1(x) the first 
order Bessel function, and K 1(x) a related Bessel function given by the 
series 

3 5 7 
2 [X x x ]

K 1(x ) = --n T-~+ 32.52.7'" . 

For small values of ka, the first terms of the Bessel functions are the most 
significant, and the normalized radiation impedance is approximately 

(ka)2 . 8(ka). ka~1. 
- c:::: --+J-3~ , (3.36)
"'p- 2 " 

This impedance is a resistance proportional to w 2 in series with an in­
ductance of normalized value 8a/3ne. The parallel circuit equivalent is 
a resistance of 128/9n 2 in parallel with an inductance of 8a/3ne. 

By way of comparison, the normalized acoustic load on a vibrating 
sphere is also well known and is 

jka 
Zs (3.37)

l+jka' 
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Fig. 3.6. Normalized acoustic radiation resistance and reactance for (a) circular piston in 
all infinite baffle; (b) circular piston in a spherical baffle whose radius is approximately 
Ihree times that of the piston; (c) pulsating sphere. The radius of the radiator, whether 

circular or spherical, is a 

where a is the radius of the sphere. Note that this is the parallel combina­
tion of a unit resistance and an ale inductance. Again, for small ka, 

zs~(ka)2 +j(ka); ka~1. (3.38) 

Using MORSE'S results for the spherical baffle, a comparison of the 
real and imaginary parts of the radiation impedances for the piston-in­
sphere, piston-in-wall, and pulsating sphere is made in Fig. 3.6. For the 
former, a piston-to-sphere radius ratio of a/as = 0.35 is illustrated. The 
piston-in-wall curves correspond to a/as =0. For ka<l, one notices that 
the reactive loads are very nearly the same for all three radiators. The 
real part for the spherical source is about twice that for the pistons. 

These relations can be interpreted in terms of mouth dimensions. 
Consider typical extreme values of mouth area (smallest and largest) for 
vowel production. A man articulating a rounded vowel such as /u/ 
produces a mouth opening on the order of 0.9 em". For an open vowel 
such as /a/ an area of 5.0 em? is representative. The radii of circular 
pistons with these areas are 0.5 em and 1.3 em, respectively. For fre­
quencies less than about 5000 cps, these radii place ka less than unity. 
If the head is approximated as a sphere of 9 em radius, the ratios of 
piston-to-sphere radii for the extreme areas are 0.06 and 0.1, respectively. 
For these dimensions and frequencies, therefore, the radiation load on 
the mouth is not badly approximated by considering it to be the load on 
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a piston in an infinite wall. The approximation is even better for the 
nostrils whose radiating area is smaller. For higher frequencies and large 
mouth areas, the load is more precisely estimated from the piston-in­
sphere relations. Notice, too, that approximating the normalized mouth­
radiation load as that of a pulsating sphere leads to a radiation resist­
ance that is about twice too high. 

3.4. Spreading of Sound about the Head 
In making acoustic analyses of the vocal tract one usually determines 

the volume current delivered to the radiation load at the mouth or 
nostrils. At these points the sound energy is radiated and spreads spatially. 
The sound is then received by the ear or by a microphone at some fixed 
point in space. It consequently is desirable to know the nature of the 
transmission from the mouth to the given point. 

The preceding approximations for the radiation impedances do not 
necessarily imply how the sound spreads about the head. It is possible 
for changes in the baffling of a source to make large changes in the 
spatial distribution of sound and yet produce relatively small changes 
in the radiation load. For example, the piston-in-wall and piston-in­
sphere were previously shown to be comparable assumptions for the 
radiation load. Sound radiated by the former is of course confined to 
the half-space, while that from the latter spreads spherically. The lobe 
structures are also spatially different. 

One might expect that for frequencies where the wavelength is long 
compared with the head diameter, the head will not greatly influence 
the field. The spatial spreading of sound should be much like that 
produced by a simple spherical source of strength equal to the mouth 
volume velocity. At high frequencies, however, the diffraction about 
the head might be expected to influence the field. 

A spherical source, pulsating sinusoidally, produces a particle veloc­
ity and sound pressure at r distance from its center equal respectively to 

u(r)= auo ~~ 1+jkr e-jk(r-lI) 

r l+jka j k r ' 
and 

p ca u., jka e- j k(r-lI)p(r) , (3.39)
r l+jka 

where a is the radius, Uo is the velocity magnitude of the surface, and 
k=OJ/c. [Note the third factor in u(r) accounts for the "bass-boost" 
that is obtained by talking close to a velocity microphone, a favorite 
artifice of nightclub singers.] If ka~l, the source is a so-called simple 
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(point) source, and the sound pressure is 

p(r)=LOJPUo _.~e »: (3.40) 

where Uo=4na2uo is the source strength or volume velocity. The simple 
source therefore produces a sound pressure that has spherical symmetry 
and an amplitude that is proportional to l/r and to OJ. 

MORSE has derived the pressure distribution in the far field of a small 
vibrating piston set in a spherical baffle. Assuming that the mouth and 

Fig. 3.7. Spatial distributions of sound pressure for a small piston in a sphere of 9 em radius. 
Pressure is expressed in db relative to that produced by a simple spherical source of equal 

strength 

head are approximately this configuration, with a 9 ern radius roughly 
appropriate for the sphere, the radiation pattern can be expressed rela­
tive to that which would be produced by a simple source of equal 
strength located at the same position. When this is done, the result is 
shown in Fig. 3.7. If the pressure field were identical to that of a simple 
spherical source, all the curves would fall on the zero db line of the polar 
plot. The patterns of Fig. 3.7 are symmetrical about the axis of the 
mouth (piston) which lies at zero degrees. One notices that on the 
mouth axis the high frequencies are emphasized slightly more than the 
+6 db/oct variation produced by the simple source (by about another 
+2 db/oct for frequencies greater than 300 cps). Also some lobing oc­
curs, particularly at the rear of the" head". 

The question can be raised as to how realistic is the spherical ap­
proximation of the real head. At least one series of measurements has 
been carried out to get a partial answer and to estimate spreading of 
sound about an average life-sized head (FLANAGAN, 1960a). A sound 
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Fig. 3.8. Life-size mannequin for measuring the relation between the mouth volume 
velocity and the sound pressure at an external point. The transducer is mounted in the 

mannequin's head 

transducer was fitted into the head of the adult mannequin shown in 
Fig. 3.8. The transducer was calibrated to produce a known acoustic 
volume velocity at the lips of the dummy, and the amplitude and phase 
of the external pressure field were measured with a microphone. When 
the amplitudes are expressed relative to the levels which would be 
produced by a simple source of equal strength located at the mouth, the 
results for the horizontal and vertical planes through the mouth are 
shown in Fig. 3.9. 

The Source for Voiced Sounds 

r.u r 

(a) (b) 

Fig. 3.9 a and b. Distribution of sound pressure about the head, relative to the distribution 
for a simple source; (a) horizontal distribution for the mannequin; (b) vertical distribution 

for the mannequin 

One notices that for frequencies up to 4000 cps, the pressures within 
vertical and horizontal angles of about ± 60 degrees, centered on the 
mouth axis, differ from the simple source levels by no more than ± 3 db. 
Simultaneous phase measurements show that within this same solid 
angle, centered on the mouth axis, the phase is within approximately 
30 degrees of that for the simple source. Within these limits, then, the 
function relating the volume velocity through the mouth to the sound 
pressure in front of the mouth can be approximated as the simple 
source function of Eq.(3.40). Notice thatp(r)/Uo""'w, and the relation 
has a spectral zero at zero frequency. 

3.5. The Source for Voiced Sounds 
3.51. Glottal Excitation 

The nature of the vocal tract excitation for voiced sounds has been 
indicated qualitatively in Figs. 2.1 through 2.4. It is possible to be 
more quantitative about this mechanism and to estimate some of the 
acoustical properties of the glottal sound source. (The glottis, as pointed 
out earlier, is the orifice between the vocal cords.) Such estimates are 
based mainly upon a knowledge of the subglottal pressure, the glottal 
dimensions, and the time function of glottal area. 

The principal physiological components of concern are illustrated 
schematically in Fig. 3.] O. The diagram represents a front view of the 
subglottal system. The dimensions are roughly appropriate for an adult 
male (JUDSON and WEAVER). In terms of an electrical network, this 
system might be thought analogous to the circuit shown in Fig. 3.11. 
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Fig. 3.10. Schematic diagram of the human subglottal system 

Fig. 3.11. An equivalent circuit for the subglottal system 

A charge of air is drawn into the lungs and stored in their acoustic 
capacity CL' The lungs are spongy tissues and exhibit an acoustic loss 
represented by the conductance GL • The loss is a function of the state 
of inflation. The muscles of the rib cage apply force to the lungs, raise 
the lung pressure PL , and cause air to be expelled - via the bronchi and 
trachea - through the relatively small vocal cord orifice. (Recall Fig. 3.1.) 
Because of their mass and elastic characteristics, the cords are set 
vibrating by the local pressure variations in the glottis. The quasi­
periodic opening and closing of the cords varies the series impedance 
(R g +jwLg) and modulates the air stream. The air passing into the 
vocal tract is therefore in the form of discrete puffs or pulses. As air is 
expelled, the rib-cage muscles contract and tend to maintain a constant 
lung pressure for a constant vocal effort. The lung capacity is therefore 
reduced so that the ratio of air charge to capacity remains roughly 
constant. 

Glottal Impedance 

The bronchial and tracheal tubes - shown as equivalent T-sections 
III Fig. 3.11-are relatively large so that the pressure drop across them 
is small", The subglottal pressure P, and the lung pressure PL are there­
l'ore nearly the same. The variable-area glottal orifice is the time-varying 
impedance across which most of the subglottic pressure is expended. 
The subglottal potential is effectively converted into kinetic energy in 
I he form of the glottal volume velocity pulses, Ug • 

For frequencies less than a couple of thousand cps, the main compo­
nent of the glottal impedance is the resistive term. For many purposes 
in vocal tract analysis, it is convenient to have a small-signal (ac) equi­
valent circuit of the glottal resistance; that is, a Thevenin equivalent 
or the circuit to the left of the X's in Fig. 3.11. Toward deducing such 
an equivalent, let us consider the nature of the time-varying glottal 
impedance and some typical characteristics of glottal area and volume 
flow. 

3.52. Glottal Impedance 

To make an initial estimate of the glottal impedance, assume first 
that the ratio of the glottal inertance to resistance is small compared to 
the period of area variation (that is, the Lg/Rg time constant is small 
compared with the fundamental period, T). We will show presently the 
conditions under which this assumption is tenable. For such a case, the 
glottal volume flow may be considered as a series of consecutively estab­
lished steady states, and relations for steady flow through an orifice can 
be used to estimate the glottal resistance. 

Flow through the vocal cord orifice in Fig. 3.10 can be approximated 
as steady, incompressible flow through the circular orifice shown in 
Fig. 3.12. The subglottal and supraglottal pressures are P, and Pz , 
respectively. The particle velocity in the port is u, the orifice area is A 
and its depth (thickness) is d. If the cross-sectional areas of the adjacent 
tubes are much larger than A, variations in P, and Pz caused by the flow 

P, 

J~l(~
 
P, 

-l 
d 

t 

Fig. 3.12. Simple orifice approximation to the human glottis 

1 The branching bronchi are represented as a single tube having a cross-sectional 
area equal to the sum of the areas of the branches. 
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are small, and the pressures can be assumed sensibly constant. Also, if 
the dimensions of the orifice are small compared with the wavelength of 
an acoustic disturbance, and if the mean flow is much smaller than the 
speed of sound, an acoustic disturbance is known essentially instantane­
ously throughout the vicinity of the orifice, and incompressibility is a 
valid assumption. Further, let it be assumed that the velocity distribu­
tion over the port is uniform and that there is no viscous dissipation. 

Under these conditions, the kinetic energy per-unit-volume possessed 
by the air in the orifice is developed by the pressure difference (P - P ) 
and is 

1 z

z 
(P1 -Pz) = -

pu
2- ' (3.41) 

The particle velocity is therefore 

u = [2(P Z) f.
1p-P (3.42) 

We can define an orifice resistance, Ri, as the ratio of pressure drop to 
volume flow 

* pu pU 
Rg = 2A = 2A 2 ' (3.43) 

where U = u- A is the volume velocity. In practice, P is essentially z 
atmospheric pressure, so that (P1 - Pz)= P" the excess subglottal pres­
sure, and 

(2pPs}tR*g (3.44)2A 

In situations more nearly analogous to glottal operation, the assump­
tions of uniform velocity distribution across the orifice and negligible 
viscous losses are not good. The velocity profile is generally not uniform, 
and the streamlines are not straight and parallel. There is a contraction 
of the jet a short distance downstream where the distribution is uniform 
and the streamlines become parallel (vena contracta). The effect is to 
reduce the effective area of the orifice and to increase Ri. Also, the 
pressure-to-kinetic energy conversion is never accomplished without vis­
cous loss, and the particle velocity is actually somewhat less than that 
given in (3.42). In fact, if the area and flow velocity are sufficiently 
small, the discharge is actually governed by viscous laws. This can 
certainly obtain in the glottis where the area of opening can go to zero. 
Therefore, an expression for orifice resistance - valid also for small 
velocities and areas - might, as a first approximation, be a linear com­
bination of kinetic and viscous terms 

Rg=Rv+k (~~z), (3.45) 

where R; is a viscous resistance and k is a real constant. For steady laminar 
flow, R; is proportional to the coefficient of viscosity and the length of 
the conducting passage, and is inversely proportional to a function of 
area. 

To find approximations of the form (3.45), WEGEL and VAN DEN 
HERG et al. have made steady-flow measurements on models of the 
human larynx. Both investigations give empirical formulas which agree 
i 11 order of magnitude. VAN DEN BERG'S data are somewhat more ex­
tcnsive and were made on plaster casts of a normal larynx. The glottis 
was idealized as a rectangular slit as shown in Fig. 3.13. The length, I, 
of the slit was maintained constant at 18 mm, and its depth, d, was 

1 w r-
L_ 

d=3MM - ········Ii-T/ 

111 
Fig. 3.13. Model of the human glottis. (After VAN DEN BERG et al.) 

maintained at 3 mm. Changes in area were made by changing the width, 
w. Measurements on the model show the resistance to be approximately 

t, 12/ld pU 
(3.46)Rg=U=~+0.8752(lw)2' 

where /l is the coefficient of viscosity. According to VAN DEN BERG, 
(3.46) holds within ten per cent for 0.1 ;:;; w;:;; 2.0 mm, for P ;:;; 64 cm H 20s 

at small w, and for U;:;; 2000 ccjsec at large w. As (3.46) implies, values 
of P, and A specify the volume flow, U. 

The glottal area is A = lw so that the viscous (first) term of (3.46) is 
proportional to A - 3. The kinetic (second) term is proportional to uA- 1 

or, to the extent that u can be estimated from (3.42), it is approximately 
proportional to P: A - 1. Whether the viscous or kinetic term predomi­
nates depends upon both A and 1'.,. They become approximately equal 
when (pPJtA 2 = 19.3 u.dl". For typical values of vocal P" this equality 
occurs for glottal areas which generally are just a fraction (usually less 
than !) of the maximum area. In other words, over most of the open 
cycle of the vocal cords the glottal resistance is determined by the second 
term in (3.46). 
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As pointed out previously, (3.46) is strictly valid only for steady flow 
conditions. A relevant question is to what extent might (3.46) be applied 
in computing the glottal flow as a function of time when A(t) and P, 
are known. The question is equivalent to inquiring into the influence 
of the inertance of the glottal air plug. Because the pressure drop across 
the bronchi and trachea is small, and because P, is maintained sensibly 
constant over the duration of several pitch periods by the low-impedance 
lung reservoir", the circuit of Fig. 3.11 can, for the present purpose, be 
simplified to that shown in Fig. 3.14. Furthermore, it is possible to 
show that at most frequencies the driving point impedance of the vocal 

Z;I ~~~~~ 

u;nJ 

Fig. 3.14. Simplified circuit for the glottal source 

tract, Zt, is small compared with the glottal impedance. If the idealiza­
tion Zt=O is made, then Ug(t) satisfies 

d 
Ug(t) Rg(t)+([t [Lg(t) Ug(t)J =P,,, (3.47) 

where Eq. (3.46) can be taken as the approximation to Rg(t) and, neg. 
lecting end corrections, Lg(t)=pd/A(t). 

Because Rg is a flow-dependent quantity, Eq. (3.47) is a nonlinear, 
first-order differential equation with nonconstant coefficients. For an 
arbitrary A (t), it is not easily integrated. However, a simplification in 
the area function provides some insight into the glottal flow. Consider 
that A (t) is a step function so that 

A(t)=Ao; t~O 

=0; t<O, and Ug(O)=O. 

Then dLg/dt is zero for t>O, and the circuit acts as a flow-dependent 
resistance in series with a constant inductance. A step of voltage (P.) 
is applied at t = O. The behavior of the circuit is therefore described by 

dd~g-= L(Ps-RgUg)' (3.48) 

1 VAN DEN BERG et al. estimate the variation to be less than five per cent of the 
mean subglottal pressure. Ps was measured by catheters inserted in the trachea and 
esophagus. 

Glottal Impedance 

1\1 1=0, Ug(O) =0 and 

au, I - r,
----;[t- t = 0 - L; , 

so 1hat initially 
p

U (t):=::::_s t (for positive t near zero) . 
g - L 

g 

Similarly, at t=oo, dUg/dt=O and Ug(oo)=Ps/Rg. The value of Ug(oo) 
is the steady-flow value which is conditioned solely by R g • In this case 
1J£ is the solution of P, - UgRg= 0, and is the positive root of a second­
degree polynominal in Ug • 

A time constant of a sort can be estimated from these asymptotic 
values of the flow build-up. Assume that the build-up continues at the 
i 11 itial rate, Ps/Lg, until the steady-state value U, ( (0) is achieved. The 
lime, T, necessary to achieve the build-up is then 

Ug(t)= 2T= Ug(oo)= ;s , 
g g 

or 

T= L g (3.49)
R' 

g 

Since Rg is a sum of viscous and kinetic terms R" and R k , respectively, 
1he time constant Lg/(R" +R k ) is smaller than the smaller of Lg/R" and 
L~/Ri . If the step function of area were small, R" would dominate and 
the Lg/R" time constant, which is proportional to A 2

, would be more 
nearly appropriate. If the area step were large, the Lg/R k constant would 
apply. In this case, and to the extent that R" might be neglected [i.e., to 
the extent that Rg might be approximated as R k=0.875(2pP.)t/2A], the 
Lg/Rk constant is proportional to Ps-t and is independent of A. 

On the basis of these assumptions, a plot of the factors L g/ R" and 
Lg/Rk is given in Fig. 3.15. Two values of P, are shown for Lg/Rk> namely 
4 em H20 and 16 em H20. The first is about the minimum (liminal) 
intensity at which an adult male can utter a vowel. The latter corresponds 
to a fairly loud, usually high-pitched utterance. The value of Lg/ Rg is 
therefore less than the solid curves of Fig. 3.15. 

The curves of Fig. 3.15 show the greatest value of the time constant 
(i.e., for liminal subglottic pressure) to be of the order of a quarter milli­
second. This time might be considered negligible compared with a 
Fundamental vocal cord period an order of magnitude greater, that is, 
2.5 msec. The latter corresponds to a fundamental vocal frequency of 
400 cps which is above the average pitch range for a man's voice. To a 
First order approximation, therefore, the waveform of glottal volume 
velocity can be estimated from P, and A(t) simply by applying (3.46). 
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Notice also from the preceding results that for LgIRg~0.25 msec 
(i.e., Ps~4 em H20) the inductive reactance becomes comparable to the 
resistance for frequencies between 600 and 700 cps. For P =16 em H20,s 

the critical frequency is about doubled, to around 1300 cps. This sug­
gests that for frequencies generally greater than about 1000 to 2000 cps, 
the glottal impedance may exhibit a significant frequency-proportional 
term, and the spectrum of the glottal volume flow may reflect the in­
fluence of this factor. 

2.0"-----------------, 

1.< II Lg {JA
2 

I~--- ""R'; == 12,"12 
VJ 1.6 ! 
~ 
~ 
:3 1.2 
i 

/
/

~ t.o 

1'1; 
... 0.5 /


,/ Lg IS\rl 0.8 

/' ,/Rk~"'d (f,r=
0.4 , ' 
O.Z	 / t Ps - 4 eM H 20 

o ~:;::>	 Ps=16CM H 20 

10 1!) 20 
A IN ~..HJl2 

Fig. 3.15. Ratios of glottal inertance (L g ) to viscous and kinetic resistance (R v , R k ) as a 
function of glottal area (A) 

If the effects of inertance are neglected, a rough estimate of the glottal 
volume velocity can be made from the resistance expression (3.46). 
Assuming constant subglottal pressure, the corresponding volume veloc­
ity is seen to be proportional to A 3 at small glottal areas and to A at 
larger areas. Typical volume velocity waves deduced in this manner for 
a man are shown in Fig. 3.16 (FLANAGAN, 1958). The area waves are 
measured from high speed motion pictures of the glottis (see Fig. 2.3 in 
Chapter 2), and the subglottal pressure is estimated from the sound 
intensity and direct tracheal pressure measurements. The first condition 
is for the vowel lrel uttered at the lowest intensity and pitch possible. 
The second is for the same sound at a louder intensity and the same 
pitch. In the first case the glottis never completely closes. This is char­
acteristic of weak, voiced utterances. Note that the viscous term in Rg 
operates to sharpen the leading and trailing edges of the velocity wave. 
This effect acts to increase the amplitude of the high-frequency compo­
nents in the glottal spectrum. 

The spectrum of the glottal volume flow is generally irregular and 
is characterized by numerous minima, or spectral zeros. For example, 
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if the wave in Fig. 3.16 b were idealized as a symmetrical triangle, its 
spectrum would be of the form (sin X/X)2 with double-order spectral 
zeros occurring for w= 4n n/To, where n is an integer and To is the open 
time of the glottis. If the actual area wave of Fig. 3.16 b is treated as 
periodic with period 1/125 sec, and its Fourier spectrum computed 
(most conveniently on a digital computer), the result is shown in Fig. 3.17 
(FLANAGAN, 1961b). The slight asymmetry of the area wave causes the 
spectral zeros to lie at complex frequencies, so that the spectral minima 
are neither equally spaced nor as pronounced as for the symmetrical 
triangle. 

3.53. Small-Signal Equivalent Source for the Glottis 
Considering only the resistance Rg , given in Eq. (3.46), it is possible 

to approximate an ac or small-signal equivalent source for the glottal 
source. Such a specification essentially permits the source impedance 
to be represented by a time-invariant quantity and is useful in performing 
vocal tract calculations. The Thevenin (or Norton) equivalent generator 
for the glottis can be obtained in the same manner that the ac equivalent 
circuit for an electronic amplifier is derived. According to (3.46) 

Ug(t)=f(Ps' A). 

The glottal volume velocity, area and subglottic pressure are unipolar 
time functions. Each has a varying component superposed upon a mean 
value. That is, 

Ug(t) = Ugo+ U'(t) 

A(t)=Ao+A'(t) 

Ps(t)=Pso+P;(t). 

Expanding Ug(t) as a Taylor series about (Pso, Ao) and taking first 
terms gives 

Ug(Ps' A)= Ug(Pso , A o)+ ~~gl (Ps-Pso)+ j)o~gl (A-Ao)+"', 
s pso. Ao PsD. Ao 

= UgO+ U~(t), 
and 

U~(t)=~~gl p;+Oa~gl A'(t). (3.50) 
,5 PSO I Ao psO. Ao 

One can interpret (3.50) as an ac volume velocity (current) source of 
value aUg/aA!Pso.AoA'(t) with an inherent conductance aUg/o P, /p,o, do' 

The source delivers the ac volume current U;(t) to its terminals. The 
source configuration is illustrated in Fig. 3.18. The instantaneous polar­
ity of P; (t) is reckoned as the pressure beneath the glottis relative to 
that above. 

Small-Signal Equivalent Source for the Glottis 

Ugltl 
rl--,---"'li------=-:;';, 

g ap'l
R = aUg Pso,A

o 

Fig. 3.18. Small-signal equivalent circuit for the glottal source. (After FLANAGAN, 1958) 

The partials in (3.50) can be evaluated from (3.46). Let 

R' = 
g 

oP, \ 
eu, P,o,Ao' 

Then 
OPs oR g 

oUg =Rg + o; mi,: 

and 
R~=(Rv+2Rk)PsO.AO' (3.51) 

The magnitude of the equivalent velocity source is simply 

°a~g \ A'(t)= [u+A ~~] A'(t). 
psO. Ao pso. An 

Neglecting the viscous component of the resistance, Eq. (3.42) may be 
used to approximate u, in which case ou/oA=O and 

aug\ ~(2PsO)t.A'(t). (3,52) 
vA Pso. Ao P 

The approximations (3.51) and (3.52) therefore suggest that the ac 
resistance of the glottal source is equal the viscous (first) term of (3.46) 
plus twice the kinetic (second) term, and that the ac volume current 
source has a waveform similar to the time-varying component of A (t). 
To consider a typical value of R~, take Pso= 10 em H 20 and A o= 5 mm", 
For these commonly encountered values R~ is computed to be approxi­
mately 100 cgs acoustic ohms. This source impedance can be compared 
with typical values of the acoustic impedance looking into the vocal 
tract (i.e., the tract driving point impedance). Such a comparison affords 
an insight into whether the glottal source acts more nearly as a constant 
current (velocity) generator or a voltage (pressure) source. 

The driving point impedance of the tract is highly dependent upon 
vocal configuration, but it can be easily estimated for the unconstricted 
shape. Consider the tract as a uniform pipe, 17 cm long and open at the 
far end. Assuming no nasal coupling, the tract is terminated only by 
the mouth radiation impedance. The situation is illustrated in Fig. 3.19. 
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u 
p z, ~ F~r}

~"--11CM--

Fig. 3.19. Simplified representation of the impedance looking into the vocal tract at the 
glottis 

Using the transmission line relations developed earlier in the chapter, 
the impedance Z, looking into the straight pipe is 

Z =Z Z,coshyl+Zosinhyl (353) 
t 0 Zocoshyl+Z,sinhyl ' . 

where 1=17 em, and the other quantities have been previously defined. 
If for a rough estimate the pipe is considered lossless, y=j{J and (3.53) 
can be written in circular functions 

Z =Z Z,cos{Jl+jZosin{J1 (354) 
t 0 Zo cos {J I +j Z, sin {J I ' . 

where Zo=pcIA, {J=wlc. The maxima of Z, will occur at frequencies 
where 1=(2n+ 1) }../4, so that {JI=(2n+ 1) nl2 and cos {JI=O. The 
maxima of Z, for the lossless pipe are therefore 

Z'ma,=Z~/Z" (3.55)
 

and the pipe acts as a quarter-wave transformer. The minima, on the
 
other hand, are Z'min =Z, and the pipe acts as a half-wave transformer.
 

To estimate Z'max' we can use the radiation impedance for the piston
 
in the infinite baffle, developed earlier in the chapter [see Eq. (3.36)].
 

pcpc [(k a)2 . 8 ]
Z,=zPT=T -2-+Jh(ka) , (3.56) 

where 

a =VAln , and k a ~ 1. 

As a reasonable area for the unconstricted tract, take A = 5 ern". The 
first quarter-wave resonance for the 17 em long pipe occurs at a fre­
quency of about 500 cps. At this frequency 

. (pcIA)2
Z,1500 cps =(0.18 +JO.81), and Z'm." 500 cps Z =86/-77 

0 

r 

cgs acoustic ohms. This driving point impedance is comparable in size 
to the ac equivalent resistance of the glottal source just determined. 

As frequency increases, the magnitude of Z, increases, and the load 
reflected to the glottis at the quarter-wave resonances becomes smaller. 

The Source for Noise and Transient Excitation of the Tract 

1\t the second resonance, for example, Z, 11500 cps = (1.63 +j 2.44) and 
.I'onn" 1500 cps=24/-56° cgs acoustic ohms. The reflected impedance 
continues to diminish with frequency until at very high frequencies 
Z,=Zo =8.4 cgs acoustic ohms. Note, too, that at the half-wave reso­
nances of the tract, i.e., l=n}..12, the sine terms in (3.54) are zero and 
//=Z,. 

The input impedance of the tract is greatest therefore at the fre­
quency of the first quarter-wave resonance (which corresponds to the 
I'irst formant). At and in the vicinity of this frequency, the driving 
point impedance (neglecting all losses except radiation) is comparable 
to the ac resistance of the glottal source. At all other frequencies it is 
less. For the unconstricted pipe the reflected impedance maxima are 
capacitive because the radiation load is inductive. To a first approxima­
tion, then, the glottal source appears as a constant volume velocity 
(current) source except at frequencies proximate to the first formant. 
As previously discussed, the equivalent vocal cord source sends an ac 
current equal to u- A'(t) into Z, in parallel with R;. So long as constric­
tions do not become small, changes in the tract configuration generally 
do not greatly influence the operation of the vocal cords. At and near 
the frequency of the first formant, however, some interaction of source 
and tract might be expected, and in fact does occur. Pitch-synchronous 
variations in the tuning and the damping of the first formant - owing 
to significant tract-source interaction - can be observed experimentally". 

3.6. The Source for Noise and Transient Excitation 
of the Tract 

Our present knowledge of the mechanism and properties of noise 
and transient excitation of the vocal tract is considerably less than our 
understanding of voiced excitation. Not least among the reasons are 
the difficulties connected with direct measurement of the tract con­
figuration, the size of constrictions, the spectral properties and inherent 
impedance of the source, and its spatial distribution. Noise excitation 
is generated by the air stream at a constriction. The resulting rotational 
flow and eddies produce a sound pressure which is largely random. The 
sound III, for example, is produced by forcing air through the narrow 
constriction between the tongue and the roof of the mouth. Turbulent 
flow can also be generated by directing an air jet across an obstacle or 
sharp edge. The upper teeth serve this purpose in the production of 

1 The acoustic mechanism of vocal-cord vibration and the interactions between 
source and system are discussed in more detail later. An acoustic oscillator model of 
the cords is derived in Chapter VI and a computer simulation of the model is 
described. 
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dental fricatives such as IfI. One fricative consonant, Ihl, is produced 
by turbulent flow generated at the glottis. The excitation mechanism 
is similar to that for the front-excited fricatives except the nonvibrating 
vocal cords create the constriction. 

Stop consonants are produced by making a complete closure at an 
appropriate point (labial, dental or palatal), building up a pressure 
behind the occlusion, and sharply releasing the pressure by an abrupt 
opening of the constriction. This excitation is therefore similar to ex­
citing an electrical network with a step function of voltage. The stop 
explosion is frequently followed by a fricative excitation. This latter 
element of the stop is similar to a brief fricative continuant of the same 
articulation. 

Because it is spatially distributed, the location of the noise source 
in the tract is difficult to fix precisely. Generally it can be located 
at the constriction for a short closure, and just anterior to a longer 
constriction. In terms of a network representation, the noise source and 
its inherent impedance can be represented as the series elements in 
Fig. 3.20. P, is the sound pressure generated by the turbulent flow and 
Z, is the inherent impedance of the source. The series connection of the 
source can be qualitatively justified by noting that a shunt connection 
of a low-impedance pressure source would alter the mode structure of 
the vocal network. Furthermore, experimentally measured mode pat­
terns for consonants appear to correspond to the series connection of 
the exciting source (FANT, 1960). 

Although the spectral characteristics and inherent impedance of the 
noise source are not well known, estimates of these quantities can be 
made from a knowledge of the sound output and the tract configuration, 
and from measurements on tube models (HEINZ, 1958). Data obtained 
in this manner suggest that the spectrum is relatively flat in the mid­
audio frequency range and that the source impedance is largely resistive. 
In fact, the relations for orifice resistance developed in the previous 
section appear to give reasonable estimates for the inherent impedance. 

Voiced fricative sounds, such as [v], are produced by simultaneous 
operation of the glottal and turbulent sources. Because the vibrating 
vocal cords cause a pulsive flow of air, the turbulent sound generated 
at the constriction is modulated by the glottal puffs. The turbulent 
sound is therefore generated as pitch-synchronous bursts of noise. 

Fig. 3.20. Equivalent circuit for noise excitation of the vocal tract 

It is possible to be a little more quantitative about several aspects 
or fricative and stop excitation. For example, MEYER-EpPLER (1953) 
has carried out measurements on fricative generation in constricted 
plastic tube models of the vocal tract. He has related these measurements 
10 human production of the fricative consonants If, s, fl. For these 
vocal geometries a critical Reynold's number, Reo apparently exists 
below which negligible turbulent sound is produced. MEYER-EpPLER 
round that the magnitude of the noise sound pressure P, - measured 
at a distance r from the mouth of either the model or the human - is 
approximately described by 

Pr=K(R; -R;c), (3.57) 

where K is a constant, R, is the dimensionless Reynold's number 
Rc=uwplfl and, as before, u is the particle velocity, p the air density, 
II the coefficient of viscosity and w the effective width of the passage. 

We recall from the earlier discussion [Eq. (3.41)] that for turbulent 
now at a constriction the pressure drop across the orifice is approxi­
mately Pd= pu2/2= p U2/2A 2. Therefore, R;= 2p(wlfl)2 Pd and (3.57) 
can be written 

Pr=(K1 w
2 Pd-K2); Pr~O, (3.58) 

where K 1 and K2 are constants. This result indicates that, above some 
threshold value, the fricative sound pressure in front of the mouth is 
proportional to the pressure drop at the constriction (essentially the 
excess pressure behind the occlusion) and to the square of the effective 
width of the passage. 

By way of illustrating typical flow velocities associated with con­
sonant production, a constriction area of 0.2 cnr' and an excesspressure 
of 10 em H20 are not unusual for a fricative like lsi. The particle veloc­
ity corresponding to this pressure is u = (2Pdlp)t~ 4100 ern/sec 1 and the 
volume flow is U~820 cm3/sec. 

If the constricted vocal passage is progressively opened and the 
width increased, a constant excess pressure can be maintained behind 
the constriction only at the expense of increased air flow. The flow must 
be proportional to the constriction area. The power associated with the 
flow is essentially Pd U and hence also increases. Since the driving 
power is derived from the expiratory muscles, their power capabilities 
determine the maximum flow that can be produced for a given Pd' 
At some value of constriction area, a further increase in area, and 
consequently in w, is offset by a diminution of the Pd that can be main­
tained. The product w2 Pd in (3.58) then begins to decrease and so does 
the intensity of the fricative sound. 

1 Note this velocity is in excess of 0.1 Mach! 
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Voiceless stop consonants contrast with fricatives in that they are 
more transient. For strongly articulated stops, the glottis is held open 
so that the subglottal system contributes to the already substantial 
volume behind the closure (VB)' The respiratory muscles apply a force 
sufficient to build up the pressure, but do not contract appreciably to 
force air out during the stop release. The air flow during the initial part 
of the stop release is mainly turbulent, with laminar streaming obtaining 
as the flow decays. In voiced stops in word-initial position (for example 
Id, g/), voicing usually commences following the release, but often (for 
example, in Ib/) can be initiated before the release. 

In very crude terms, stop production can be considered analogous 
to the circuit of Fig. 3.21. The capacitor C B is the compliance (VB/pe 2) 

~ff~CB-' t'A(~t)~r 

Fig. 3.21. Approximate vocal relations for stop consonant production 

of the cavities back of the closure and is charged to the excess pressure 
Pc. The resistance R; is that of the constriction and is, according to the 
previous discussion [Eq. (3.43)], approximately R, = PUm/2A 2. Suppose 
the constriction area is changed from zero as a step function, that is, 

A(t)=O; r-cO 

=A; t~O. 

The mouth volume current then satisfies 

t 

UmRc+-
1 

f Umdt=Pc,cB 0 

or 
U 2 1 tiA2 +C;;[Umdt=Pc , for Um>O, 

and the solution for positive values of Um is 

At ]Um(t) = C:crA [1 ---t· (3.59)
CB(p2Pc) 

According to (3.59) the flow diminishes linearly with time during the 
initial phases of the stop release. At the indicated rate, the time to 
deplete the air charge would be 

)t CB(p2Pc (3.60)t1 A 

The Source for Noise and Transient Excitation of the Tract 

As the flow velocity becomes small, however, the tendency is toward 
laminar streaming, and the resistance becomes less velocity dependent 
[sec first term in Eq. (3.46)]. The flow decay then becomes more nearly 

exponential". 
1 This can be seen exactly by letting R include a constant (viscous) term as well c 

liS a flow-dependent term. Although the differential equation is somewhat more 
complicated, the variables separate, and the solution can be written in terms of Um 

IlI1d In Urn' 
Let 

R = r A - 3(t )+ rkA-2(t)1 Uml,c v
where r and rk are constants involving air density and viscosity [as described in 

vnq. (3.46)]. If the constriction area is changed stepwise from zero to A at time zero, 
the resulting flow will again be unipolar and now will satisfy 

r 

(rkIA2) U;,+(rvJA
3) Um+ uc; J Urn dt=Pc · 

o 

The variables in this equation are separable and the solution can be obtained by 
differentiating both sides with respect to time. This yields 

r; (dUm) rk su; UrnA3 -----at +ZA2Urn dt + c:; = 0 

and 
rvCB (dUm) rkCB----.:43\---U- +Z--ydUm=-dt. 

\ m 

Integrating termwise gives
 

rvCB ]' rkCB ]f
-----:43 In Um o+2 --y Um 0 = - t. 

At t= 0, U = U , where Uois the positive real root of the quadratic 
m o

rk ) 2 r,AT Uo+ A3Uo- Pc= O. ( 

Then 
Urn ) 2rkA tA3

In - + --(Um-Uo)+ --=0.( U rv rv CBo 
Note 

for Alarge: Um~ [Uo- (2~2C) t]
B 

-(~)t
 
forA small: Um~UOe JvCB •
 

It also follows that eu; -Um 
dt = rv CB Zrk CB

--::43 +~Um 

_A2 
~ -2C ,for large A 

rk B 

-U A3 
~ ~' for small A. 

rv B 
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To fix some typical values, consider the production of a voiceless 
stop such as /t/. According to FANT (1960), realistic parameters for 
articulation of this sound are Pc = 6 ern H 20, VB = PC2C

B = 4 1iters (in­
cluding lungs) and A = 0.1 em", Assuming the area changes abruptly, 
substitution of these values into (3.59) and (3.60) gives Um(O) = 320 cm3

/ 

sec and t1 = 130 msec. The particle velocity at the beginning of the 
linear decay is Um (0) = 3200 cm/sec. After 50 msec it has fallen to the 
value 1300 ern/sec which is about the lower limit suggested by MEYER­
EpPLER for noise generation. As FANT points out, the amount of air 
consumed during this time is quite small, on the order of 10 cm'. 

Both STEVENS (1956) and FANT (1960) emphasize the importance 
of the open glottis in the production of a strong stop consonant. A 
closed glottis reduces VB to something less than 100 cm', and the excess 
pressure which can be produced behind the constriction is typically on 
the order of 3 em H 20. For such conditions is it difficult to produce 
flows sufficient for noise generation. The turbulent noise produced 
during the stop release is essentially a secondary effect of the excitation. 
The primary excitation is the impact of the suddenly applied pressure 
upon the vocal system. As mentioned earlier, this excitation for an 
abrupt area change is analogous to a step function of voltage applied 
to an electrical circuit. Such a source is characterized by a spectrum 
which is proportional to l/w, or diminishes in amplitude at - 6 db/oct. 

3.7. Some Characteristics of Vocal Tract Transmission 
Some of the fundamental relations developed in the foregoing sec­

tions can now be used to put in evidence certain properties of vocal 
transmission. These characteristics are easiest demonstrated analytically 
by highly simplifying the tract geometry. Calculations on detailed ap­
proximations are more conveniently done with computers. Although our 
examples generally will be oversimplified, the extensions to more exact 
descriptions will in most cases be obvious. 

As a first step, consider the transmission from glottis to mouth for 
nonnasal sounds. Further, as an ultimate simplification, consider that 
the tract is uniform in cross section over its whole length I, is terminated 
in a radiation load whose magnitude is negligible compared with the 
characteristic impedance of the tract, and is driven at the glottis from a 
volume-velocity source whose internal impedance is large compared to 
the tract input impedance. The simple diagram in Fig. 3.22 represents 
this situation. The transmission function relating the mouth and glottal 
volume currents is then 

u; 1Zb 
(3.61)

U = zb+Za = cosh yl . g 

Some Characteristics of Vocal Tract Transmission 

1=5 
Zr=OUg~· ~. Um 

z.,=ZOTANH¥ 

Zb=ZocscH 7L 

1 = CIt +jj?) 

I'ill. 3.22. Relation between glottal and mouth volume currents for the unconstricted tract. 
The glottal impedance is assumed infinite and the radiation impedance is zero 

The normal modes (poles) of the transmission are the values of y I which 
make the denominator zero. These resonances produce spectral varia­
lions in the sound radiated from the mouth. They are 

cosh yl=O 
(3.62) 

yl=±j(2n+l) ~, n=0,1,2, .... 

The poles therefore occur at complex values of frequency. Letting 
jw=a+jw=s, the complex frequency, and recalling from (3.8) that 
y = Cf. +j Pand p~ w/c for small losses, the complex pole frequencies may 

be approximated as 
. (2n+l)nc 1

S,.~ -exc±l 21 . n=O, 1,2,... . (3.63) 

The transmission (3.61) can be represented in factored form in terms 
of the roots of the denominator, namely 

H(s)= Um(s) =IT s,.s: *' (3.64) 
Ug(S) ,. (s-S,.)(S-sn) 

where s: is the complex conjugate of Sn' and the numerator is set to 

satisfy the condition 

UmUw) \ 1 ~1
 
Ug(j w) jw=O cosh ex I - ,
 

for small ex. The transmission is therefore characterized by an infinite 
number of complex conjugate poles". The manifestations of these normal 
modes as spectral peaks in the output sound are called formants. The 

1 Actually C1. is an implicit function of OJ [see Eq, (3.33)]. However, since its 
frequency dependence is relatively small, and since usually O'n ~ OJIl , the approxima­

tion (3.63) is a convenient one. 
2 Rigorous justification of the form (3.64) has its basis in function theory 

(TlTCHMARSH; AHLfORS). See Chapter VI, Sec. 6.22 for further discussion of this point. 
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transmission (3.64) exhibits no zeros at finite frequencies. Maxima occur
in 

IH(jw)/ n efor w=+(2n+1).-_ 
- 2 I' 

and the resonances have half-power cps bandwidths approximately 
equal to iJf=a/n=rxe/n. For an adult male vocal tract, approximately 
17 cm in length, the unconstricted resonant frequencies therefore fall at 
about fl =500 cps, fz=1500cps, f3=2500cps, and continue in cl21 
increments. 

In the present illustration the only losses taken into account are the 
classical heat conduction and viscous losses discussed earlier. A calcula­
tion of formant bandwidth on this basis alone will consequently be 
abnormally low. It is nevertheless instructive to note this contribution 
to the formant damping. Recall from Eq. (3.8) that for small losses 

Ga '"s, VC: VL:O:=T r+T C' 
a a 

where Ra, Ga, La and Ca have been given previously in Section (3.25). 
At the first-formant frequency for the unconstricted tract (i.e., 500 cps), 
and assuming a circular cross-section with typical area 5 em", rx is com­
puted to be approximately 5.2 x 10-4 

, giving a first-formant bandwidth 
Af'; = 6 cps. At the second formant frequency (i.e., 1500 cps) the same 
computation gives iJfz = 10 cps. The losses increase as Ii, and at the 
third formant (2500 cps) give iJf3 = 13 cps. 

It is also apparent from (3.64) that H(s) is a minimum phase func­
tion (that is, it has all of its zeros, namely none, in the left half of the 
s-plane) so that its amplitude and phase responses are uniquely linked 
(that is, they are Hilbert transforms). Further, the function is completely 
specified by the sn's, so that the frequency and amplitude of a formant 
peak in IH(jw)1 are uniquely described by the pole frequencies. In par­
ticular if the formant damping can be considered known and constant, 
then the amplitudes of the resonant peaks of IH(jw)/ are implicit in the 
imaginary parts of the formant frequencies w

l 
, W z , ... , (FANT, 1956; 

FLANAGAN, 1957c). In fact, it follows from (3.61) that 

1
/H(jw)/w=wn=TC " 

1 

Ij sinh 0: 11 (3.65) 

1 
~;:r' 

Effect of Radiation Load upon Mode Pattern 
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Fig. 3.23. Magnitude and phase of the glottis-to-mouth transmission for the vocal tract 
approximation shown in Fig. 3.22 

where {J=wlc and wn=(2n+ 1) ne12/. Notice, too, that the phase angle 
of H(jw) advances n radians in passing a formant frequency co; so the 
amplitude and phase response of H(jw) appear as in Fig. 3.23. In the 
same connection, note that for the completely lossless case 

H(jw) 1 . 
W 1 

cos­
e 

3.71. Effect of Radiation Load upon Mode Pattern 

If the radiation load on the open end of the tube is taken into ac­
count, the equivalent circuit for the tube becomes that shown in Fig. 3.24. 
Here At is the cross-sectional area of the tract and Am is the radiating 
area of the mouth with equivalent radius am' The thickness of the mouth 
constriction is assumed negligible, the glottal impedance is high, and 

Am = 7T .~ 

=§
jJ./

U At _Umg _ 

~--t----

Fig. 3.24. Equivalent circuit for the unconstricted vocal tract taking into account the 
radiation load. The glottal impedance is assumed infinite 
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cross dimensions are small compared with a wavelength. The trans­
mission from glottis to mouth is therefore 

Um 1 

U z' 
g cosh y1+ y- sinh y1
 

o
 
or, more conveniently,
 

u; cosh y, 1 (366)
Ug cosh(y+y,) 1 , . 

1z,/Zo.
where y.!=tanh- Note that for Z,~Zo, cosh YJ~l and for 
low loss Zo~pc/At. 

By the transformation (3.66), the radiation impedance is carried 
into the propagation constant, so that 

(Y+Y,)= [a+jp++tan-l ~] 

=(a +j P+a,+ j P,) =(a' +j p')=y'. 

If the radiation load is taken as that on a piston in a wall [see Eq. (3.36)
in Sec. 3.3] then 

pc [(ka)Z . 8ka J 
z,« Am -2-+J-11t' ka~l, (3.67) 

where a equals the mouth radius am' Expanding tanh- l Z,/Zo as a 
series and taking only the first term (i.e., assuming Z, ~ Zo) gives 

'" 1 At [(ka)2 . Ska J 
y'=T Am 2 +J 3n 

(3.68) 
=a,+ j p,. 

For low loss p~w/c=k, so that 

( ' 'n') r At (pa)ZJ 'n [1 At Sa J 
a +Jp = La + Am -2-1- +Jp + Am 3nl . (3.69) 

Again the poles of (3.66) Occur for 

Ze Y'I+l =0 
or 

.(2n+1)n n=0,1,2, ....y'=±J 21 ' (3.70) 

Effect of Glottal Impedance upon Mode Pattern 

1,l"llillg.iw~s=((T+jw), and remembering that in general (Tn~Wn' the 
pilies are approximately 

1 At W
Z 

) • (2 n +1) n c ] 
AtlSa" [ - (ac+ 2nlc ±J--21- ,sn,~ . 

(3.71)I+-A 3nl 
m 

n =0,1,2, ... (Z, ~Zo). 

The general effect of the radiation, therefore, is to decrease the magni­
tude of the imaginary parts of the pole frequencies and to make their 
real parts more negative. 

For the special case Am=Ao the modes are 

Z).
3nl ) [( aZw (2n+1)nc] (3.72)sn,~ ( 3nl+Sa - ac+~- ±J 21 . 

Using the values of the example in the previous section, A t=5 em", 
1= 17 cm, the spectral resonances (formants) are lowered in frequency 
by the multiplying factor 3n 1/(3 n 1+ 8a) = 0.94. The original 500 cps first 
formant is lowered to 470 cps, and the 1500 cps second formant is 
lowered to 1410 cps. The first formant bandwidth is increased to about 
Llf~~0.94(6+4)=9cps, and the second formant bandwidth to about 
Llfz ~0.94(l0+ 32)= 40 cps. The same computation for the third for­
mant gives Af3 ~ 100 cps. The latter figures begin to be representative of 
formant bandwidths measured on real vocal tracts with the glottis closed 
(HOUSE and STEVENS, 1958; DUNN, 1961; VAN DEN BERG, 1955). The 
contributions of the radiation, viscous and heat losses to Afl are seen 
to be relatively small. Glottal loss and cavity wall vibration generally 
are more important contributors to the first formant damping. 

As (3.72) indicates, the contribution of the radiation resistance to the 
formant damping increases as the square of frequency, while the classical 
heat conduction and viscous loss cause a to grow as wt . The radiation 
reactance is inertive and causes the formant frequencies to be lowered. 
For Am=Ao Eq. (3.71) shows that the radiation reactance has the same 
effect as lengthening the vocal tract by an amount (8a/3n). 

3.72. Effect of Glottal Impedance upon Mode Pattern 

The effect of the equivalent glottal impedance can be considered in 
much the same manner as the radiation load. To keep the illustration 
simple, again assume the radiation load to be negligible compared with 
the characteristic impedance of the uniform tract, but take the glottal 
impedance as finite. This situation is depicted by Fig. 3.25. Similar to 
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Urn 

11 
2,."'0 

Fig. 3.25. Equivalent circuit for the unconstricted vocal tract assuming the glottal impedance 
to be finite and the radiation impedance to be zero 

the previous instance, the volume velocity transmission function can 
be put in the form 

m 

U )-
U

g = 2 (~+~+] +1+ ~a 
Zg zb Zb g 

] 

(3.73) 
cosh YI+ ~: sinh YI 

cosh Yg I 
cosh(y+yg)I ' 

where Yg 1= tanh -1 ZolZg, and the glottal impedance is transformed into 
the propagation constant. Again taking the first term of the series ex­
pansion for tanh -1 Zo/Zg (i.e., assumming Zg~ Zo) gives 

. 1 Zo)(Y+Yg)~ (a+.Ifl+T Zg- . 

The equivalent glottal impedance may be approximated as Zg= 
(R; + jwLg) , where R~ is the ac equivalent resistance determined pre­
viously in Eq. (3.51), and L g is the effective inductance of the glottal 
port. The zeros of the denominator of (3.73) are the poles of the trans­
mission, and an argument similar to that used in the preceding section 
for low losses (Zo~pcIA" fl~w/c) leads to 

~ 1 {( R~Zoc). (2n+1)1tc}
Sng= - ac+ liZ 12 ±} 21 . (3.74)

1- (LgZo C) g 

IIZg /
2 

According to (3.74), the effect of the finite glottal impedance is to 
increase the damping of the formant resonances (owing to the glottal 
loss R~) and to increase the formant frequencies by the factor multi­
plying the bracketed term (owing to the glottal inductance). A sample 
calculation of the effect can be made. As typical values, take a sub­
glottic pressure (Ps ) of 8 em H20 , a mean glottal area (A ) of 5 mm-, ao
glottal orifice thickness (d) of 3 mm, a vocal tract area (At) of 5 crrr' and 
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II tract length (I) of 17 cm. For these conditions the glottal resistance, 
computed according to Eq. (3.51), is R~~91 cgs acoustic ohms. The 
J.l.lottal inductance is Lg=(Jd/Ao=6.8 x 10- 3 cgs units. At about the 
frequency of the first formant, that is, w~1tc/21=21t (500 cps), the 
multiplying factor has a value 1/0-0.014), so that the first formant 
resonance is increased from its value for the infinite glottal impedance 
condition by about 1.4 %. The effect of the glottal inductance upon for­
mant tuning is greatest for the lowest formant because IZgl increases with 
f'rcquency. The same computation for the second formant (~1500 cps) 
shows the multiplying factor to be 1/0-0.010). One notices also that 
the effect of the multiplying term is to shorten the apparent length of 
the tract to 

( 
/ - LgZo C) 

•2IZgl 

The resonant bandwidth for the first formant is computed to be 

1 
LJf1= /1 [6cps+56 cps] =63 cps,1"\1"\"\ 

which is reasonably representative of first formant bandwidths measured 
in real speech. The contribution of the glottal loss R~ to formant damping 
is greatest for the lowest formant. It diminishes with increasing frequency 
because \Zgl grows with frequency. At the second formant frequency, 
the same calculation gives LJf2=0/1-0.01O) 00 cps + 40 cps) = 51 cps. 
One recalls, too, that the heat conduction and viscous losses (which 
specify a) increase as wt, while the radiation loss increases as w2 (for 
ka <:g 1). The lower-formant damping is therefore influenced more by 
glottal loss, and the higher-formant damping is influenced more by 
radiation loss. 

In this same connection, one is reminded that the glottal resistance 
and inductance (used here as equivalent constant quantities) are actually 
time varying. There is consequently a pitch-synchronous modulation of 
the pole frequencies Sng given in (3.74). That is, as the vocal cords open, 
the damping and resonant frequency of a formant increase, so that with 
each glottal period the pole frequency traverses a small locus in the 
complex-frequency plane. This pitch-synchronous change in formant 
dumping and tuning can often be observed experimentally, particularly 
in inverse filtering of formants. It is most pronounced for the first 
formant. 

3.73. Effect of Cavity Wall Vibration 
The previous discussion has assumed the walls of the vocal tract to 

be smooth and rigid. The dissipative elements of concern are then the 
radiation resistance, the glottal resistance, and the viscous and heat 
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conduction losses at the cavity walls. The human vocal tract is of course 
not hard-walled, and its surface impedance is not infinite. The yielding 
walls can consequently contribute to the energy loss in the tract and can 
influence the mode tuning. We would like to estimate this effect. 

The finite impedance of the tract wall constitutes an additional 
shunt path in the equivalent "T" (or n:) section for the pipe (see Fig. 3.3). 
Because the flesh surrounding the tract is relatively massive and ex­
hibits viscous loss, the additional shunt admittance for the frequency 
range of interest (i.e., speech frequencies) can be approximated as a 
per-unit-length reciprocal inductance or inertance (F;..= IlLw ) and a 
per-unit-length conductance (Gw =IfRw) in parallel". The modified equiv­
alent "T" section is shown in Fig. 3.26. 

Tv WALL 
TTANCE 

Fig. 3.26. Representation of wall impedance in the equivalent T-section for a length 1 of 
uniform pipe 

Let us note the effect of the additional shunt admittance upon the 
propagation constant for the tube. As before, the basic assumption is 
that a plane wave is propagating in the pipe and that the sound pressure 
at any cross section is uniform and cophasic. Recall that 

Y=IX+jP=Vyz, 

where y and z are the per-unit-length shunt admittance and series im­
pedance, respectively. The latter quantities are now 

z=(Ra+jwLa) 

y=(Ga+Gw )+j (w Ca- ~) . (3.75) 

Again, most conditions of interest will be relatively small-loss situations 
for which 

Ra4,wL. 

1 For describing the behavior at very low frequencies, a compliance element must 
also be considered. 

Effect of Cavity Wall Vibration 

and 

(Ga+Gw)4,(WCa - ; ) • 

Also, in general, the susceptance of the air volume will exceed that of the 
walls and w C

a 
'?> r..k». Following the earlier discussion [see Eq. (3.8)] the 

attenuation constant for this situation can be approximated by 

(3.76)IX~ ~ e,V~: + ~ (Ga+Gw ) V~: . 
Jn a like manner, the phase constant is given approximately by 

(3.77)P~w VLa (C.--£;) = ~ . 

The effective sound velocity c' in a pipe with "massive" walls - that is, 
with negative susceptance-is therefore faster than for free space. The 
pipe appears shorter and the resonant frequencies are shifted upward. 
The effect is greatest for the lower frequencies. The same result can be 
obtained more elegantly in terms of specific wall admittance by writing 
the wave equation for the cylindrical pipe, noting the radial symmetry 
and fitting the boundary impedance conditions at the walls (MORSE). 
Jn addition to the plane-wave solution, the latter formulation also gives 
the higher cylindrical modes. 

Results (3.76) and (3.77) therefore show that vibration of the cavity 
wall contributes an additive component to the attenuation constant, and 
when the wall is predominantly mass-reactive, its effect is to diminish 
the phase constant or increase the speed of sound propagation. Follow­
ing the previous technique [see Eq. (3.63)], the natural modes for a 
uniform tube of this sort are given by 

Sn .. = [-IXC'±j (2n+l)n:c']
2l (3.78) 

=(CTnw+jwnw); n=O, 1,2, .... 

To calculate the shunting effect of the walls in the real vocal tract, 
it is necessary to have some knowledge of the mechanical impedance of 
the cavity walls. Such measurements are obviously difficult and appar­
ently have not been made. An order-of-magnitude estimate can be made, 
however, by using mechanical impedance values obtained for other 
surfaces of the body. At best, such measurements are variable, and the 
impedance can change appreciably with place. The data do, however, 
permit us to make some very rough calculations. 
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One set of measurements (FRANKE) has been made for chest, thigh 
and stomach tissues, and these have been applied previously to estimate 
the wall effect (HOUSE and STEVENS, 1958). For frequencies above about 
100 cps, the fleshy areas exhibit resistive and mass reactive components. 
The specific impedances fall roughly in the range 4000-7000 dyne-sec/em3. 

A typical measurement on the stomach surface gives a specific impedance 
that is approximately 

zs=(1's+j xs)=(1's+j OJ 1.) 
(3.79)=(6500 +j OJ 0.4), 

for (2n- 200) ~ OJ ~ (2n- I 000). 

This specific series impedance can be put in terms of equivalent 
parallel resistance and inductance by 

1';+x; 2 2 
1'p and jXp=j 1's +xs 

r, Xs 

These specific values (per-unit-area) can be put in terms of per-unit­
length of tube by dividing by S, the inner circumference, to give 

R 1';+x; 2 2 
and jX = } 1's +xs 

w= 1'sS w 
xsS 

Therefore, 

G _ 1'S 
w- s . F; . OJ Is S 

2-- and -j-=-j
r: +x; OJ l';+x; , 

where, 

[' _ OJ21 S 
w- 1'2 +s 2 • (3.80)

s Xs 

Assuming the vocal tract to be unconstricted and to have a uniform 
cross-sectional area of 5 em? (i.e., S= 7.9 em), we can compute the effect 
of the wall admittance upon the propagation constant, the formant 
bandwidth and formant frequency. According to (3.76) and (3.77), the 
wall's contribution to IX and P is 

Gw VLa
IXw~2 C ' 

and 
a 

Is S )Pw~OJ VLa (Ca 2--2­
1's +xs 

P c Is ]~ ~ [1 
2 

(3.81)a(r;+x;) , 

Two-Tube Approximation of the Vocal Tract 

where the radius of the tube is a=VAjn, and the bracketed expression 
is the first two terms in the binomial expansion of the radical. 

Substituting the measured values of r s and Is and computing IXw ' Pw 
and formant bandwidths at approximately the first three formant fre­
quencies gives' 

, 
<X CwFrequency <x L1/, =-­w Pw w n 

(J) 

500 cps 4.7x 10-3 -(1-0.011) 50 cps 
c 

(J) 

1500 cps 3.6x 10-3 -(1-0.008) 40 cps 
c 

(J) 

2500 cps 2.5 X 10-3 -(1-0.006) 30 cps 
c 

1 Using c= 3.5 X 104 em/sec and p= 1.14 X 10-3 gm/crrr'. 

The contribution of wall loss to the formant bandwidth is therefore 
greatest at the lowest formant frequency and diminishes with increasing 
formant frequency. These computed values, however, when combined 
with the previous loss contributions actually seem somewhat large. They 
suggest that the walls of the vocal tract are more rigid than the stomach 
tissue from which the mechanical impedance estimates were made. 

The increase in formant tuning, occasioned by the mass reactance of 
the cavity walls, is seen to be rather slight. It is of the order of one per 
cent for the lower formants and, like the damping, diminishes with 
increasing frequency. 

3.74. Two-Tube Approximation of the Vocal Tract 

The previous sections utilized a uniform-tube approximation of the 
vocal tract to put in evidence certain properties. The uniform tube, 
which displays modes equally spaced in frequency, comes close to a 
realistic vocal configuration only for the unconstricted schwa sound /a/. 
Better insight into the interaction of vocal cavities can be gained by 
complicating the approximation one step further; namely, by approxi­
mating the tract as two uniform, cascaded tubes of different cross 
section. To keep the discussion tractable and focused mainly upon the 
transmission properties of the tubes, we again assume the glottal im­
pedance to be high compared with the input impedance of the tract, and 
the radiation load to be negligible compared with the impedance level 
at the mouth. This situation is represented in Fig. 3.27. 
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, A._U", Zrd' 
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z., :;!!.!:.TANH ~ 

A, .2­

Zb, := ~~ cscH ?'Il, 

Fig. 3.27. Two-tube approximation to the vocal tract. The glottal impedance is assumed 
infinite and the radiation impedance zero 

For the circuit shown in Fig. 3.27, the mouth-to-glottis volume 
current ratio is 

u; 1 

Ug = (1 + Za2) (1 + Zal + Za2) + Za2 

Zb2 Zbl Zbl Zbl 

which reduces to 

Um 1 
. (3.82) 

u, ( Al )(cosh I'tld (cosh 1'2 12) 1+A; tanh v,t, tanh 1'2 12 

The poles of (3.82) occur for 

Al 
~ tanh 1'212 = -coth 1'111 • (3.83) 

If the tubes are lossless, the hyperbolic functions reduce to circular 
functions and all impedances are pure reactances. The normal modes 
then satisfy 

At
A;tan pI2=cot Pl 1 • (3.84) 

Because the vocal tract is relatively low loss, Eq. (3.84) provides a simple 
means for examining the mode pattern of the two-tube approximation. 
For example, consider the approximations shown in Fig. 3.28 to the 
articulatory configurations for four different vowels. The reactance func­
tions of (3.84) are plotted for each case, and the pole frequencies are 
indicated. 

One notices that the high front vowel/if exhibits the most disparate 
first and second formants, while the low back vowel/a! gives rise to the 
most proximate first and second formants. The neutral vowel/~/, cor­
responding to the unconstricted tract, yields formants uniformly spaced 
1000 cps apart. The reactance plots also show that increasing the area 
ratio (A1/A2 ) of the back-to-front cavities results in a decrease of the 
first formant frequency. On the classical F 1 vs F 2 plot, the first two 
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Fig. 3,28a-d. Two-tube approximations to the vowels Ii, re, a, Q/ and their undamped mode 
(formant) patterns 

modes for the four approximations fall as shown in Fig. 3.29. The un­
constricted /~/ sound occupies the central position. For comparison, 
formant data for four vowels-as spoken by adult males-are also 
plotted (PETERSON and BARNEY)1 

• The lower left corner of the classical 
the vocal tract dimensions used to illustrate acoustic relations in this 

chapter are appropriate to adult males. Women and children have smaller vocal 
Ilpparatus. Since the frequencies of the resonant modes are inversely related to the 
Iract length, the vowel formants for women and children are higher than for the 
men. According to CmBA and KAJIYAMA, the young adult female vocal tract is 0.87 
as long as the young adult male. The female formants, therefore, should be about 
1.5% higher than those of the male. This situation is also reflected in the measurements 

of PETERSON and BARNEY. 
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Fig. 3.29. First formant (F I) versus second formant (F 2) for several vowels. Solid points 
are averages from PETERSON and BARNEY'S data for real speech uttered by adult males. 

Circles are for the two-tube approximation to the vowels shown in Fig. 3.28 

vowel plot, the area appropriate to the vowel lui, has been indicated 
for completeness. Because of lip rounding, however, the vowel lui can­
not be approximated in terms of only two tubes. 

Eq. (3.84) also makes salient an aspect of compensatory articulation. 
The mode pattern for II=a, Iz=b, is exactly the same as for II=b, 
Iz = a. In other words, so long as the area ratio for the back and front 
cavities is maintained the same, their lengths may be interchanged 
without altering the formant frquencies. This is exactly true for the 
idealized lossless tubes, and is approximately so for practical values of 
loss. This interchangeability is one freedom available to the ventrilo­
quist. It is also clear from (3.84) that if 11 =2Iz, the infinite values of 
cot {3/1 and tan {3lz are coincident (at {3lz=nI2) and indicate the second 
mode. The second formant frequency can therefore be maintained con­
stant by keeping the tube lengths in the ratio of 2: 1. The same constancy 
applies to the third formant if the length ratio is maintained at 3: 2. 

3.75. Excitation by Source Forward in Tract 

As pointed out earlier, fricative sounds (except for Ih/) are excited 
by a series pressure source applied at a point forward in the tract. It 
is pertinent to consider the mouth volume velocity which such an ex­
citation produces. 

A previous section showed that for glottal excitation the maxima of 
glottis-to-mouth transmission occurred at the natural (pole) frequencies 
of the vocal system, and the transmission exhibited no zeros. If excitation 

Excitation by Source Forward in Tract 

is applied at some other point in the system, without altering the net­
work, the normal modes of the response remain the same. The trans­
mission can, however, exhibit zeros. For the series excitation these 
zeros must occur at frequencies where the impedance looking back 
I'rom the source (toward the glottis) is infinite. 

By way of illustration let us retain the simple two-tube model used 
previously. Because the turbulent source for voiceless sound is spatially 
distributed, its exact point of application is difficult to fix. Generally 
it can be thought to be applied either at or just forward of the point 
01' greatest constriction. The former seems to be more nearly the case 
for sounds like If, f, p, k/; the latter for Is, t]. Consider first the case 
where the source is forward of the constriction. The two-tube circuit 
is shown in Fig. 3.30. The back cavity is shown closed, and the im­
pedance of the glottis and larynx tube is considered to be high (compared 

Pt 

Pt 
A, A'2. l __ Zr=O 

~ Urn 

f..--l,--+-L2-­
Fig. 3.30. Two-tube approximation to the vocal tract with excitation applied forward of 

the constriction 

to the impedance level of the back cavity) even though the glottis may 
be open. The radiation impedance is again considered small compared 
with the impedance level at the mouth, and the inherent impedance of 
the source per se is considered small. 

The complex frequency (LAPLACE) transform of the transmission 

(Urnlpt) can be written in the form 
Urnes)_(_)=H(s)G(s), (3.85) 
Pt S 

where R(s) is a given in (3.64) and contains all the poles of the system, 
and G(s) is a function which includes all the zeros and constants ap­
propriate to nonglottal excitation. In this particular case, Urnlpt is 
simply the driving point admittance at the lips. It is 

U'" (ZbZ + Zbl+ Zul + zaZ) 
--p; = ZuZ (zbZ+ Zb1 + Zul + zuz) + ZbZ (Zbl + Zul + zuz) , 

which can be put into the form 

U --j- sinh 1'1 11 sinh yzlz (coth yzlz + ~z coth 1'1 11) 
m 01 1. (3.86) 

A 1Pt coshY1 11 coshyzlz [ 1 +~tanhY111 tanhyzlz ] 
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The zeros of transmission occur at frequencies which make the numera­
tor zero, and therefore satisfy 

A2coth Y2 12 = -~ coth YIII
 
or
 

A 2tanh YIII = -- tanh Y2 12' 
Al 

which for lossless conditions reduces to 

A2tanpII = -T tanpl2 • (3.87)
1 

As an example, let us use (3.87) and (3.84) to determine the (lossless) 
zeros and poles of Urnlpt for an articulatory shape crudely representative 
of lsI. Take 

2AI = 7 cm2
, A2=0.2cm 

II = 12.5 cm , 12 =2.5 cm. 

The pertinent reactance functions are plotted in Fig. 3.31, and the poles 
and zeros so determined are listed. 

The lower poles and zeros lie relatively close and essentially nullify 
one another. The first significant uncompensated zero lies in the vicinity 
of 3400 cps, with the first uncompensated pole in the neighborhood of 

~2=O.2CM ZEROS POLES 
A 1 OCPS recess2 

-p(t) 1350 1375f7CM H 2675 2725
f.--..ri~ 3400 -- ­

t l = 12 . ,!)CM ..... 12 = 2.5CM 4100 4080 
5440 5440Is I ---- 6650 
6800 6950 

i -2 

~ -41 ! (b)
o I,

1000 ~nnn '::1."''''0 4000 5000 6000 7000 S()OO
FREQUENCY IN CYCLES PER SECOND 

Fig. 3.31 a and b. Two-tube approximation to the fricative lsi. The undamped pole-zero 
locations are obtained from the reactance plots 
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6650 cps. These two features, as well as the near-cancelling pole-zero 
pairs, can often be seen in the spectra of real lsI sounds. For example, 
Fig. 3.32 shows two measurements of the natural speech fricative lsI 
(HUGHES and HALLE). For this speaker, the peak in the vicinity of 
6000-7000 cps would appear to correspond with the uncompensated 
pole, the dip in the vicinity of 3000 cps with the zero. The peak and 
valley alternations at the lower frequencies reflect roughly the effect of 

~ -10~ lsi "SECT" 

a: 
~ -20 

~ 
~ -30 

I I! ,-40 1 ; ... I 
o A 8 10 0 2 4 .. to. •0 • 

FREQUENCY IN KILOCYCLES PER 5ECOND 

Fig. 3.32. Measured spectra for the fricative /s/ in real speech. (After HUGHES and HALLE) 

pole-zero pairs such as indicated in the reactance diagrams. The meas­
ured spectra presumably include the transformation from mouth volume 
current to pressure at a fixed point in space, as described in Eq. (3.40). 
The spectra therefore include a zero at zero frequency owing to the 
radiation. 

To further examine the influence of source position upon the trans­
mission, suppose the turbulent source is applied more nearly at the 
junction between the two tubes rather than at the outlet. This situation 
is crudely representative of sounds like (f/, Ikl or possibly IfI· In IfI, 
for example, the turbulent flow is produced at the constriction formed 
by the upper teeth and lower lip. The cavities behind the teeth are large, 
and the lips forward of the constriction form a short, small-area tube. 
The circuit for such an arrangement is shown in Fig. 3.33. The trans­
mission from source to mouth is 

Urn Zb2 

P; Zb2 (Zal + Za2 + Zbl) + Za2 (Zb2 + Zal + Za2 + Zbl) 

, _A. _Urn z,,=o 
Pt~~-ll- -J..l. ­

Fig. 3.33. Two-tube approximation to the vocal tract with the source of excitation applied 
at the tube junction 
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or 

u -l. sinh 'Y1 11 
--.!!!-= 01 (3.88) 
Pt [ Al ]cosh )/111 cosh 'Y212 1 +~ tanh 'Yl11 tanh )/2 12 

The system poles are the same as before, but the zeros now occur at 

1 
Z01 sinh )/1 11 =0, 

or 

mne)Sm= ( - ; m=0,1,2,.... (3.89)-cx 1c±j-I­
l 

Again for the lossless case, the zeros occur for sin 13/1 = 0, or for 
frequencies 

C
1,n = m 2T; cps (m =0,1,2, ... ), 

where the length of the back cavity is an integral number of half wave­
lengths. The zeros therefore occur in complex-conjugate pairs except 
for m = O. The real-axis zero arises from the impedance of the back 
cavity volume at zero frequency. Specifically, for the lossless situation 
at low frequencies, the numerator of (3.88) approaches 

. 1. W II Al II Vlhm- smf3I1';:;-Z--=--2-W=WCt> where C l = - -2 
Z"' ....001 OlC pc pc 

is the acoustic compliance of the back cavity. 

The result (3.89) makes clear the reason that a labio-dental fricative 
such as IfI exhibits a relatively uniform spectrum (devoid of large maxima 
and minima) over most of the audible frequency range. A crude approxi­
mation to the articulatory configuration for ffl might be obtained if the 
parameters of Fig. 3.33 are taken as follows: Al =7 em", A 2=O.1 em", 
II = 14 em, 12= 1 em. As before the poles occurfor cotPl l =AdA2tan 1312' 
Because of the large value of AllA 2 and the small value of 12 , the poles 
occur very nearly at the frequencies which make cotf311 infinite; namely 

c
in';:; n v' n= 0, 1, 2, .... 

1 

(The first infinite value of tanf312 occurs at the frequency e14/2 , in the 
vicinity of 8500 cps.) The zeros, according to (3.89), occur precisely at 
the frequencies 

e
im=mV' m=0,1,2, ... , 

1 

Effects of the Nasal Tract 

so that each pole is very nearly cancelled by a zero. The transmission 
lilt.!PI is therefore relatively constant until frequencies are reached where 
t he value of A IfA 2 tan 1312 has its second zero. This relative flatness is 
generally exhibited in the measured spectra of real IfI sounds such as 
shown in Fig. 3.34 (HUGHES and HALLE). 
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Fig. 3.34. Measured spectra for the fricative /fI in real speech. (After HUGHES and HALLE) 

3.76. Effects of the Nasal Tract 

This highly simplified and approximate discussion of vocal trans­
mission has so far neglected the properties of the nasal tract. The nasal 
tract is called into play for the production of nasal consonants and for 
nasalizing certain sounds primarily radiated from the mouth. Both of 
these classes of sounds are voiced. For the nasal consonants, an oral 
closure is made, the velum is opened and the sound is radiated chiefly 
from the nostrils. The blocked oral cavity acts as a side branch resonator. 
In producing a nasalized vowel, on the other hand, coupling to the nasal 
tract is introduced by opening the velum while the major radiation of 
sound continues from the mouth. Some radiation, usually lower in 

intensity, takes place from the nostrils. 
The functioning of the combined vocal and nasal tracts is difficult 

to treat analytically. The coupled cavities represent a relatively complex 
system. Precise calculation of their interactions can best be done by 
analog or digital computer simulation. Nevertheless, it is possible to 
illustrate computationally certain gross features of the system by making 
simplifying approximations. More specifically, suppose the pharynx cav­
ity, mouth cavity and nasal cavity are each approximated as uniform 
tubes. The equivalent network is shown in Fig. 3.35. 

Notice that, in general, the parallel branching of the system at the 
velum causes zeros of nasal output at frequencies where the driving 
point impedance (Zm) of the mouth cavity is zero, and vice versa. At 
such frequencies, one branch traps all the velar volume flow. In particu­
lar for nasal consonants, 1m, n, IJ/, Z,m= 00 and Um=O. Zeros then 
occur in the nasal output at frequencies for which Zm=O for the closed 
oral cavity. Nasal consonants and nasalized vowels are generally char­
acterized by resonances which appear somewhat broader, or more 
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Fig. 3.35. An equivalent circuit for the combined vocal and nasal tracts. The pharynll. 
mouth and nasal cavities are assumed to be uniform tubes 

highly damped, than those for vowels. Additional loss is contributed 
by the nasal tract which over a part of its length is partitioned longi­
tudinally. Its inner surface is convoluted, and the cavity exhibits a rela­
tively large ratio of surface area to cross-sectional area. Viscous and heat 
conduction losses are therefore commensurately larger. 

Following the approach used earlier, and with the purpose of in­
dicating the origin of the poles and zeros of a nasal consonant, let us 
make a crude, simple approximation to the vocal configuration for lm]. 
Such an approximation is illustrated in Fig. 3.36. The poles of the nasal 
output will be determined by the combined pharynx, mouth and nasal 
cavities, while the side-branch resonator-formed by the closed oral 
cavity - will introduce zeros wherever its input impedance is zero. Con­
sidering the system to be lossless, the radiation load to be negligible, 
and the glottal impedance to be high, the easiest way to estimate the 
pole frequencies is to find the frequencies where the velar admittance 
(at the point where the three cavities join) is zero. This requires 

111
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Fig. 3.36. A simple approximation to the vocal configuration for the nasal consonant 1m! 

Effects of the Nasal Tract 

Ihe zeros of transmission occur for 

pc
Zm=O=T cot Bi: 

m 

ur 
n 

/3 Im=(2n +1)2' n=O, 1,2, ... 

or 
c 

f=(2n+1) 4I . (3.91) 
m 

The mode pattern determined by relations (3.90) and (3.91) is shown 
in Fig. 3.37. One sees that the first pole of the coupled systems is fairly 
low, owing to the substantial length of the pharynx and nasal tract and 
the mouth volume. A pole and zero, additional to the poles of the pure 
vowel articulation, are introduced in the region of 1000 cps. This mode 
pattern is roughly representative of all the nasal consonants in that the 
pharynx and nasal tract have roughly the same shape for all. The first . 
zero falls at approximately 1300 cps in the present example. For the 
consonants In and TJ/, the oral cavity is progressively shorter, and the 
zero would be expected to move somewhat higher in frquency. By way 
of comparison, the measured spectrum of a real Iml is shown in Fig. 3.38 
(FANT, 1960). In this measured spectrum, the nasal zero appears to be 
reflected by the relatively broad spectral minimum near 1200 cps. The 
larger damping and appreciable diminution of spectral amplitude at the 
higher frequencies is characteristic of the nasal consonants. 
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Fig. 3.37. Reactance functions and undamped mode pattern for the articulatory approxima­
tion to Iml shown in Fig. 3.36 
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Fig. 3.38. Measured spectrum for the nasal consonant Iml in real speech. (After FANT, 1960) 

3.77 • Four-Tube, Three-Parameter Approximation 
of Vowel Production 

To illustrate fundamental relations, the preceding sections have dealt 
with very simple approximations to the vocal system. Clearly these ' 
crude representations are not adequate to describe the gamut of articula­
tory configurations employed in a language. The approximations can 
obviously be made better by quantizing the vocal system into more and 
shorter tube sections. For vowel production in particular, one generally 
can identify four main features in the tract geometry. These are the 
back pharynx cavity, the tongue hump constriction, the forward mouth 
cavity and the lip constriction (see Fig. 3.1). Approximation of these 'I, 

features by four abutting tubes gives a description of vocal transmission 
substantially more precise than the two-tube approximation. The first 
several normal modes of the four-tube model are reasonably good 
approximations to the lower formants of real vowels. Such a four­
tube model is illustrated in Fig. 3039a (adapted from FANT, 1960). 

If the glottal impedance is taken as large and the radiation load 
small, the glottal-to-mouth transmission is 

u; 1 
U 4 

g n (coshYnlnHab+cd) 
n=l 

where 

a = (1 + ~~ tanh Yl/1 tanh Y2 /2) 

b= (1+ ~: tallhY3/3tanhY4/4) 

(3.92)
2 3 

c=~A ( tanh Y3 /3 + AA tanh Y4 I)4 
4 

d = ~1 (tanh Yl/1 + tanh Y2 /2)'
2 
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Fig. 3.39 a and b. Nomogram for the first three undamped modes (F 1, F 2. F 3) of a four­
tube approximation to the vocal tract. (Data adapted from FANT, 1960.) The parameter 
Is the mouth area, A4 • Curves 1, 2, 3 and 4 represent mouth areas of 4, 2, 0.65 and 0.16 cm2, 

respectively. Constant quantities are Al = A3 = 8 cmz, /4= 1 em and A2 = 0.65 cm-. Abscissa 
lengths are in em 

One notices that if 13 = 14 = 0, Eq. (3.92) reduces to the two-tube relations 
given by Eq. (3.82). 

To demonstrate how the first several normal modes of such a cavity 
arrangement depend upon configuration, FANT (1960) has worked out 
detailed nomograms for several combinations of A's and P«. One of 
these is particularly relevant and essentially depicts the scheme followed 
by DUNN (1950) in his development of an electrical vocal tract analog. 
It is reproduced in adapted form in Fig. 3039b. The constraints are as 
follows: 12+/2+/3=15 em; 1 ern: A 1 =A 3=8 crrr' ; A 2=0.65 em";4=1 

and /2= 5 em, provided tube 2 is terminated by cavities on both sides. 
The parameters are the distance from the glottis to the center of the 
tongue constriction, x, and the mouth area, A4 • For very large and very 
small values of x, 13 and 11 are zero, respectively, and the length 12 is 
varied to satisfy the total length condition. The variation of the first 
three normal modes for a range of values of the parameters and for one 
value of the tongue constriction (A 2 =0.65 crrr') are shown in Fig. 3.39b. 

These data show that a shift of the tongue constriction from a back 
(x~ 3 em) to a front position (x~ 9 em) is generally associated with a 
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transition from high F I-low F 2 to low F I-high F 2. (This general ten­
dency was also evident in the two-tube models discussed in Section 3.74.) 
Increasing the lip rounding, that is decreasing A4 (as well as increasing 1 ) , 

4
generally reduces the frequencies of all formants. Although not shown 
here, decreasing the tongue constriction reduces the frequency variations 
of the formants with place of constriction. In terms of absolute cps, 
the variations in Flare generally smaller than those of the higher 
formants. Perceptually, however, the percentage change in formant fre­
quency is more nearly the important quantity. This point will be dis­
cussed further in Chapter VII. 

Owing to the substantial coupling between the connecting tubes, a 
particular formant cannot be strictly associated with a particular reso­
nance of a particular vocal cavity. The normal mode pattern is a char­
acteristic of the whole coupled system. Numerous efforts have been 
made in the literature to relate specific formants to specific vocal cav­
ities, but this can be done exactly only when the constrictions are so 
small in size that the cavities are, in effect, uncoupled. In instances where 
the coupling is small, it is possible to loosely associate a given formant 
with a particular resonator. The treachery of the association, however, 
can be simply illustrated. If a forward motion of the tongue hump 
causes a resonant frequency to rise-for example, F2 for 3<x<9 ern 
in Fig. 3.39- the suggestion is that the resonance is mainly influenced by 
a cavity of diminishing length, in this case the mouth cavity. On the 
other hand, the same resonance might be caused to rise in frequency by 
a tongue retraction and a consequent shortening of the pharynx cavity­
for example, F 2 for 16>x> 13 ern, It is therefore clear that a given for­
mant may be principally dependent upon different cavities at different 
times. It can change its cavity-mode affiliation with changes in vocal 
configuration. In fact, its dependence upon the mode of vibration of a 
particular cavity may vary. 

The four-tube approximation to vowel production implies that vowel 
articulation might be grossly described in terms of three parameters, 
namely, the distance from the glottis to the tongue-hump constriction, x; 
the size of the tongue constriction, A z ; and a measure of lip rounding 
such as the area-to-length ratio for the lip tube, A4/14 

• This basis notion 
has long been used qualitatively by phoneticians to describe vowel pro­
duction. It has been cast into quantitative frameworks by DUNN (1950), 
STEVENS and HOUSE (1955), FANT (1960) and COKER (1968), in connection 
with work on models of the vocal mechanism. 

As pointed out earlier, DUNN has used the scheme much as repre­
sented in Fig. 3.39, that is, with constant-area tubes approximating the 
tract adjacent to the constriction. STEVENS and HOUSE and FANT have 
extended the scheme by specifying constraints on the taper of the vocal 

IllIel in the vicinity of the constriction. STEVENS and HOUSE use a para­
hulic function for the area variation, and FANT uses a section of a 
cuicnoidal horn (i.e., a hyperbolic area variation). Both use fixed dimen­
Nlons for the larynx tube and the lower pharynx. In perceptual experi­
ments with synthetic vowels, STEVENS and HOUSE find that a reasonably 
unique relation exists between the allowed values of x, A z and A4/14 and 
the first three vowel formants. Although these three parameters provide 
an adequate description of most nonnasal, nonretroflex, vowel articula­
tions, it is clear that they are not generally sufficient for describing con­
sonant and nasal configurations. 

Later work by COKER has aimed at a more detailed and physiologi­
cally meaningful description of the vocal area function. COKER'S artic­
ulatory model is specified by seven, relatively-orthogonal parameters: 
the x - y position coordinates of the tongue body; the degree and the 
place of the tongue tip constriction; the mouth area; the lip protrusion; 
and the degree of velar (nasal) coupling. Each parameter has an asso­
ciated time constant representative of its vocal feature. This articulatory 
model has been used as the synthesis element in an automatic system 
for converting printed text into synthetic speech (COKER, UMEDA and 
BROMANr. 

3.78. Multitube Approximations and Electrical Analogs 
of the Vocal Tract 

As the number of elemental tubes used to approximate the vocal 
shape becomes large, the computational complexities increase. One gen­
erally resorts to analog or digital aids in solving the network when the 
number of approximating sections exceeds about four. In early work ana­
log electrical circuitry has proven a useful tool for simulating both vocal 
lind nasal tracts. It has been used extensively by DUNN (1950); STEVENS, 
FANT and KASOWSKI; FANT (1960); STEVENS and HOUSE (1955, 1956); 
and ROSEN. The idea is first to approximate the linear properties of the 
vocal mechanism by a sufficiently large number of tube sections and 
then to approximate, in terms of lumped-constant electrical elements, 
the hyperbolic impedances of the equivalent T or tt networks shown in 
Fig. 3.3. At low frequencies the lumped-constant circuit behaves as a 
distributed transmission line and simulates the one-dimensional acoustic 
wave propagation in the vocal tract. The number of approximating 
tube sections used, the approximation of the hyperbolic elements, and 
the effect of cross modes in the actual vocal tract determine the highest 
frequency for which the electrical transmission line is an adequate analog. 

1 See further discussion of this system in Chapters V and VI. 
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As shown previously, the elements of the T-section equivalent of the 
cylindrical tube are 

yl
za=Zotanh T and zb=Zocschyl. 

Taking first-order approximations to these quantities gives 

za=Zo """' (Yl) and """' (1)T Zb=ZO YT 
(3.93)

za~ZoHcx+jf3)1 Zb~ZO~~ .. 

From the relations developed earlier, Zo = [(R +jwL)/(G +jt» C)]t and 
y=[(R+jwL)(G+jwC)]t, where R, G, Land C have been given in 
terms of per-unit-Iength acoustical quantities in Eq. (3.33). The T-ele­
ments are therefore approximately 

za=HR+jwL)1 and Zb=(G+j~C)I' 

In general, the acoustical quantities Ra, La' G, and C [in Eq. (3.33)] a 
will not correspond to practical electrical values. It is usually convenient 
to scale the acoustical and electrical impedance levels so that 

Zoe=kZoo 
or 

[ Re+j WLe] t = [kRa+ j w kLa]t 
(3.94)Ge+jwCe G, jwCa . 

-+-­
k k 

By way of indicating the size of a practical scale constant k, consider 
the low-loss situation where 

Zoe=V ~: =kZoa=kV~:J =k (~C), (3.95) 

where A is the cross-sectional area of the acoustic tube. A practical 
value for ZOe is 600 electrical ohms, and a typical value of A is 8 em". 
Therefore k=600/5.3=II3, and the mks impedances of the per-unit­
length electrical elements are scaled up by I 13 times the cgs impedances 
of the per-unit-length acoustic elements. 

Note, too, that f31~wI/c=wleVLeCe=wlaVLaCa'Since the veloc­
ity of sound and the air density in a given length of tube are constant, 
maintaining the L; Ce product constant in the electrical line is equivalent 
to maintaining constant velocity of sound propagation in the simulated 
pipe. Similarly, changes in the pipe area A are represented by propor­
tional changes in the Ce/Le ratio. 

Fundamentals of Speech and Hearing in Analysis-Synthesis Telephony 

The electrical simulation is of course applicable to both vocal and 
nusal tracts. Choice of the elemental cylinder length I, the electrical 
scale constant k, and a knowledge of the cross-sectional area A along 
I he tract are the only parameters needed to determine the lossless ele­
ments of the transmission line. An estimate of tract circumference along 
its length is needed to compute the viscous and heat conduction losses 
(/~ and G). The radiation loads at the mouth and nostrils are obtained 
hy applying the electrical scale constant to the acoustic radiation im­
pedances obtained earlier in the chapter. It is likewise possible to apply 
these techniques to the subglottal system and to incorporate it into 
the electrical simulation. At least four designs of electrical vocal tracts 
have been developed for studying vocal transmission and for synthe­
sizing speech (DUNN, 1950; STEVENS, FANT and KASOWSKI; FANT, 1960; 
ROSEN). At least one design has been described for the subglottal system 
(VAN DEN BERG, 1960). 

The digital computer is also an exceedingly effective tool for analyzing 
multi-tube approximations to the vocal tract. Its ability to carry out 
complex calculations at high speed makes the solution of 20 or 30-sec­
tion approximations to the tract almost elementary. At least two com­
puter programs for calculating transfer functions and normal modes for 
multitube approximations have been used (FANT, 1960; MATHEWS and 
WALKER). 

Another approach has been to represent the cylindrical sections in 
terms of the reflection coefficients at their junctions (KELLY and LOCH­
IIAUM; MERMELSTEIN; STRONG). This simulation also produces a response 
which, after digital-to-analog conversion, represents the speech waveform. 
It therefore can be used effectively as a synthesizer. 

In another study of speech synthesis a computer program has been 
derived that is the difference equation equivalent of the multi-section, 
bilateral transmission line (FLANAGAN and LANDGRAF). This formulation 
allows computation of instantaneous pressure and velocity along the 
transmission line, including the sound pressure radiated from the mouth. 
When supplied a time-varying area function representative of realistic 
articulation, its calculated output represents samples of the synthesized 
speech waveform. Both analog and digital representations of the vocal 
system will be considered further in a later discussion on speech syn­
thesis. 

3.8. Fundamentals of Speech and Hearing 
in Analysis-Synthesis Telephony 

The preceding sections have set forth certain basic acoustic principles 
for the vocal mechanism. Not only do these relations concisely describe 
the physical behavior of the source of speech signals, but they imply a 
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good deal about efficient communication. They suggest possibilities for 
coding speech information in forms other than merely the transduced 
pressure wave. The normal mode and excitation relations, for example, 
indicate a schema on which an analysis-synthesis transmission system 
might be based. The same can be said for describing the vocal tract by 
articulatory parameters. Both results reflect constraints peculiar to the
speech-producing mechanism. 

As yet, however, the properties of hearing and the constraints ex­
hibited by the ear have not entered the discussion. The next chapter 
proposes to establish certain fundamental properties of the mechanism 
of hearing-so far as they are known. The exposition will follow a pat­
tern similar to that of the present chapter. The results of both funda­
mental discussions will then be useful in subsequent consideration of 
speech analysis and speech synthesis. 

IV. The Ear and Hearing 
The ultimate recipient of information in a speech communication 

link usually is man. His perceptual abilities dictate the precision with 
which speech data must be processed and transmitted. These abilities 
essentially prescribe fidelity criteria for reception and, in effect, deter­
mine the channel capacity necessary for the transmission of voice mes­
sages. It consequently is pertinent to inquire into the fundamental mecha­
nism of hearing and to attempt to establish capabilities and limitations
of human perception. 

As suggested earlier, speech information - originating from a speaker,
 
traversing a transmission medium and arriving at a listener-might be
 
considered at a number of stages of coding. On the transmitter side, the
 
stages might include the acoustic wave, the muscular forces manipulating
 
the vocal mechanism, or the physical shape and excitation of the tract.
 
On the receiver side, the information might be considered in terms of
 
the acoustic-mechanical motions of the hearing transducer, or in terms
 
of the electrical pulses transmitted to the brain over the auditory nerve.
 
Characteristics of one or more of these codings might have application

in practicable transmission systems. 

The previous chapter set forth fundamental relations between the 
acoustics and the physiology of the vocal mechanism. We will sub­
sequently have occasion to apply the results to analysis-synthesis tele­
phony. In the present chapter we wish to establish similar relations for 
the ear. Later we will utilize these in discussions of auditory discrimina­
tion and speech perception. 

Mechanism of the Ear 

4.1. Mechanism of the Ear 
The acousto-mechanical operation of the peripheral ear has been put 

on a rather firm base. This knowledge is due primarily to the brilliant 
experiments carried out by G. VON BEKESY, and for which he was 
awarded the Nobel Prize in 1961. In contrast, present knowledge is 
relatively incomplete about inner-ear processes for converting mechani­
cal motion into neural activity. Still less is known about the transmission 
of neural information to the brain and the ultimate mechanism of per­
ception. 

Despite these difficulties, it is possible to quantify certain aspects 
of perception without knowing in detail what is going on inside the 
"black box". Subjective behavior, in response to prescribed auditory 
stimuli, can of course be observed and measured, and such data are use­
ful guideposts in the design of speech communication systems. In some 
instances the correlations between perceptual behavior and the physio­
logical operation of the peripheral ear can be placed in clear evidence. 
The present discussion aims to indicate current understanding of audi­
tory physiology and psychoacoustic behavior, and to illustrate the ex­
tent to which the two can be brought into harmony. 

The primary acoustic transducer of the human is shown schematic­
ally in Fig. 4.1. The acousto-mechanical components of the organ are 
conventionally divided according to three regions, namely, the outer ear, 
the middle ear, and the inner ear. 
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Fig. 4.1. Schematic diagram of the human ear showing outer, middle and inner regions. 
The drawing is not to scale. For illustrative purposes the inner and middle ear structures 

are shown enlarged 


