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Table 2.5. Glides and semi-vowels

Place
Palatal /il you
Labial Iw/| we
(no final form)

Palatal /r/ read
Alveolar 1} let

j (vou) T (READ) 1 (Lem

I
Y \_
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Fig. 2.9. Vocal tract configurations for the beginning positions of the glides and semivowels.
(After PoTTER, KOPP and GREEN)

2.225. Combination Sounds: Diphthongs and Affricates. Some of the
preceding vowel or consonant elements can be combined to form basic
sounds whose phonetic values depend upon vocal tract motion. An
appropriate pair of vowels, so combined, form a diphthong. The diph-
thong is vowel-like in nature, but is characterized by change from one
vowel position to another. For example, if the vocal tract is changed
from the /e/ position to the /1/ position, the diphthong /e1/ as in say is
formed. Other GA diphthongs are /1u/ as in new, /o1/ as in boy; Jau/ as
in out, [a1/ as in I, and /ou/ as in go.

As vowel combinations form the diphthongs, stop-fricative combina-
tions likewise create the two GA affricates. These are the Jt§/ as in chew
and the /d3/ as in jar.

2.3. Quantitative Description of Speech

The preceding discussion has described the production of speech in
a completely qualitative way. It has outlined the mechanism of the voice
and the means for producing an audible code which, within a given
language, consists of distinctive sounds. However, for any transmission
system to benefit from prior knowledge of the information source, this
knowledge must be cast into a tractable analytical form that can be
employed in the design of signal processing operations. Detailed inquiry
into the physical principles underlying the speech-producing mechanism
is therefore indicated.
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The following chapter will consider the characteristics of the vocal
system in a quantitative fashion. It will treat the physics of the vocal
and nasal tracts in some depth and will set forth certain acoustical
properties of the vocal excitations. The primary objective—as stated
carlier —is to describe the acoustic speech signal in terms of the physical
parameters of the system that produced it. Because of physiological
and linguistic constraints, such a description carries important implica-
tions for analysis-synthesis telephony.

IT1. Acoustical Properties of the Vocal System

The collection of olfactory, respiratory and digestive apparatus
which man uses for speaking is a relatively complex sound-producing
system. Its operation has been described qualitatively in the preceding
chapter. In this chapter we would like to consider in more detail the
acoustical principles underlying speech production. The treatment is
not intended to be exhaustive. Rather it is intended to circumscribe the
problems of vocal tract analysis and to set forth certain fundamental
relations for speech production. In addition, it aims to outline techniques
and method for acoustic analysis of the vocal mechanism and to indicate
their practical applications. Specialized treatments of a number of these
points can be found elsewhere’.

3.1. The Vocal Tract as an Acoustic System

The operations described qualitatively in the previous chapter can
be crudely represented as in Fig. 3.1. The lungs and associated respira-
tory muscles are the vocal power supply. For voiced sounds, the expelled
air causes the vocal cords to vibrate as a relaxation oscillator, and the
air stream is modulated into discrete puffs or pulses. Unvoiced sounds
are generated either by passing the air stream through a constriction in
the tract, or by making a complete closure, building up pressure behind
the closure and abruptly releasing it. In the first case, turbulent flow and
incoherent sound are produced. In the second, a brief transient excita-
tion occurs. The physical configuration of the vocal tract is highly
variable and is dictated by the positions of the articulators; that is, the
jaw, tongue, lips and velum. The latter controls the degree of coupling
to the nasal tract.

1 For this purpose G.FANT, Acoustic Theory of Speech Production, is highly
recommended. Besides presenting the acoustical bases for vocal analysis, this volume
contains a wealth of data on vocal configurations and their calculated frequency
responses. An earlier but still relevant treatise is T. CHiBA and M. KanvaMma, The

Vowel; Its Nature and Structure. Another excellent and more recent analysis of vowel
articulation is G. UNGEHEUER, Elemente einer akustischen Theorie der Vokalartikulation.
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Fig. 3.1. Schematic diagram of functional components of the vocal tract

In general, several major regions figure prominently in speech pro-
duction. They are: (a) the relatively long cavity formed at the lower
back of the throat in the pharynx region; (b) the narrow passage at the
place where the tongue is humped; (c) the variable constriction of the
velum and the nasal cavity; (d) the relatively large, forward oral cavity;
() the radiating ports formed by the mouth and nostrils.

Voiced sounds are always excited at the same point in the tract,
namely at the vocal cords. Radiation of voiced sounds can take place
either from the mouth or nose, or from both. Unvoiced excitation is
applied to the acoustic system at the point where turbulent flow or pressure
release occurs. This point may range from an anterior position [such as
the labio-dental excitation for /f/] to a posterior position [such as the
palatal excitation for /k/). Unvoiced sounds are normally radiated from
the mouth. All sounds generated by the vocal apparatus are character-
ized by properties of the source of excitation and the acoustic trans-
mission system. To examine these properties, let us first establish some
elementary relations for the transmission system, then consider the
sound sources, and finally treat the combined operation of sources and
system,

The length of the vocal tract (about 17 cm in man) is fully com-
parable to the wavelength of sound in air at audible frequencies. It is
therefore not possible to obtain a precise analysis of the tract operation
from a lumped-constant approximation of the major acoustic compo-
nents. Wave motion in the system must be considered for frequencies
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nbove several hundred cps. The vocal and nasal tracts constitute lossy
tubes of non-uniform cross-sectional area. Wave motion in such tubes
is difficult to describe, even for lossless propagation. In fact, exact solu-
lions to the wave equation are available only for two nonuniform geo-
nictries, namely for conical and hyperbolic area variations (MoRsg). And
then only the conical geometry leads to a one-parameter wave.

So long as the greatest cross dimension of the tract is appreciably
less than a wavelength (this is usually so for frequencies below about
4000 cps), and so long as the tube does not flare too rapidly (producing
internal wave reflections), the acoustic system can be approximated by
u one-dimensional wave equation. Such an equation assumes cophasic
wave fronts across the cross-section and is sometimes called the Webster
cquation (WEBSTER). Its form is

1 ¢ ap 1 @p

A ax AW = G G-1)
where A4 (x) is the cross-sectional area normal to the longitudinal dimen-
sion, p is the sound pressure (a function of ¢ and x) and ¢ is the sound
velocity. In general this equation can only be integrated numerically,
and it does not include loss. At least three investigations, however, have
made use of this formulation for studying vowel production (CriBA and
KAJlYAMA ; UNGEHEUER ; HEINZ, 1962a, b).

A more tractable approach to the analysis problem (both computa-
tionally and conceptually) is to impose a further degree of approxima-
tion upon the nonuniform tube. The pipe may be represented in terms
of incremental contiguous sections of right circular geometry. The
approximation may, for example, be in terms of cylinders, cones, ex-
ponential or hyperbolic horns. Although quantizing the area function
introduces error, its effect can be made small if the lengths of the ap-
proximating sections are kept short compared to a wavelength at the
highest frequency of interest. The uniform cylindrical section is partic-
ularly easy to treat and will be the one used for the present discussion.

3.2. Equivalent Circuit for the Lossy Cylindrical Pipe

Consider the length dx of lossy cylindrical pipe of area 4 shown in
Fig. 3.2a. Assume plane wave transmission so that the sound pressure
and volume velocity are spatially dependent only upon x. Because of its
mass, the air in the pipe exhibits an inertance which opposes acceleration.
Because of its compressibility the volume of air exhibits a compliance.
Assuming that the tube is smooth and hard-walled, energy losses can
occur at the wall through viscous friction and heat conduction. Viscous
losses are proportional to the square of the particle velocity, and heat
conduction losses are proportional to the square of the sound pressure.
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The characteristics of sound propagation in such a tube are easily
described by drawing upon elementary electrical theory and some well-
known results for one-dimensional waves on transmission lines. Consider
sound pressure analogous to the voltage and volume velocity analogous
to the current in an electrical line. Sound pressure and volume velocity
for plane wave propagation in the uniform tube satisfy the same wave
equation as do voltage and current on a uniform transmission line. A dx
length of lossy electrical line is illustrated in Fig. 3.2b. To develop the
analogy let us write the relations for the electrical line. The per-unit-
length inductance, capacitance, series resistance and shunt conductance
are L, C, R, and G respectively. Assuming sinusoidal time dependence

w|—
nfD

@ (0)

Fig. 3.2a and b. Incremental length of lossy cylindrical pipe. (a) acoustic representation;
(b) electrical equivalent for a one-dimensional wave

for voltage and current, (Ie’®* and E ¢/*), the differential current loss
and voltage drop across the dx length of line are

dI=—Eydx and dE=-Izdx, 3.2)

where y=(G+jwC) and z=(R+joL).
The voltage and current therefore satisfy

d’E d’1
W—zyE—O and H5-—zyl—0, 3.3)

the solutions for which are

E=A1 e”-l—Bl e '

- 3.4
I=A237x+Bze 'yx, ( )

where y=)/zy=(x+jf) is the propagation constant, and the 4’s and

B’s are integration constants determined by terminal conditions.
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For a piece of line / in length, with sending-end voltage and current
I, and I, the receiving-end voltage and current E, and I, are given by
E,=E, coshyl—1I, Zysinhy!

I,=1,coshyl—E, Y,sinhyl, (-3)

where Zo=)/z/y and Y,=)/yJz are the characteristic impedance and
admittance of the line. Eq. (3.5) can be rearranged to make evident the
impedance parameters for the equivalent four-pole network

E,=Z,I,cothyl—Z,I,cschyl
E,=Zy I cschyl—Z,1,cothyl.

(3.6)

2,2, Tane ZE ya=Y, TANH -
2p=2Z, cscH »L Yp= Yo CsCH »1
@) [{<})

Fig. 3.3a and b. Equivalent four-pole networks for a length / of uniform transmission line.
(a) T-section; (b) m-section

The equivalent T-network for the / length of line is therefore as shown
in Fig. 3.3a. Similarly, a different arrangement makes salient the ad-
mittance parameters for the four-pole network.

I,=Y,E,cothyl— Y, E,cschyl

I,=Y,E,cschyl—Y,E,cothyl. G

The equivalent n-network is shown in Fig. 3.3b.

One recalls also from conventional circuit theory the lossless case
corresponds to y=}/zy=jB=jw)/LC, and Z,=])/L|C. The hyperbolic
functions then reduce to circular functions which are purely reactive.
Notice, too, for small loss conditions, (that is, R€wL and G<w () the
attenuation and phase constants are approximately

R.— G ,—
a:T]/C/L-l—?]/L/C G8)

Bw)/LC.
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Having recalled the relations for the uniform, lossy electrical line, we
want to interpret plane wave propagation in a uniform, lossy pipe in
analogous terms. If sound pressure, p, is considered analogous to voltage
and acoustic volume velocity, U, analogous to current, the lossy, one-
dimensional, sinusoidal sound propagation is described by the same
equations as given in (3.3). The propagation constant is complex (that
is, the velocity of propagation is in effect complex) and the wave at-
tenuates as it travels. In a smooth hard-walled tube the viscous and heat
conduction losses can be represented, in effect, by an IR loss and an
E?G loss, respectively. The inertance of the air mass is analogous to the
electrical inductance, and the compliance of the air volume is analogous
to the electrical capacity. We can draw these parallels quantitatively®.

3.21. The Acoustic “L”

The mass of air contained in the dx length of pipe in Fig. 3.2a is
pAdx, where p is the air density. The differential pressure drop in
accelerating this mass is by NEwToN’s law:

o du_ _dx dU(x1)
dp=pdx—r=p——V4; >

where u is particle velocity and U is volume velocity.
For U(x, t)=U(x) e/*

dp=jwp% U
and i» (3.9)
W=] (DLH U,

where L,=p/A is the acoustic inertance per unit length.

3.22. The Acoustic ““R”

The acoustic R represents a power loss proportional to U? and is the
power dissipated in viscous friction at the tube wall (INGARD). The
easiest way to put in evidence this equivalent surface resistance is to
consider the situation shown in Fig. 3.4. Imagine that the tube wall is a
plane surface, large in extent, and moving sinusoidally in the x-direc-
tion with velocity u(¢)=u,,e’ “*. The air particles proximate to the wall ex-
perience a force owing to the viscosity, u, of the medium. The power
expended per unit area in dragging the air with the plate is the loss to be
determined.

1 The reader who is not interested in these details may omit the following four
sections and find the results summarized in Eq. (3.33) of Section 3.25.
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Consider a layer of air dy thick and of unit area normal to the y
nxis. The net force on the layer is

(), )
ey ) e, oy ), at’

where u is the particle velocity in the x-direction. The diffusion equation
specifying the air particle velocity as a function of the distance above
the wall is then

*u  p ou
Pu_p ou (3.10)
v :
oy u ot
AR LAYER
9] dy u=fl
x //:'m_/;jue WALL 7 ul)[= uped¥t
y=o

Fig. 3.4. Relations illustrating viscous loss at the wall of a smooth tube

For harmonic time dependence this gives

d*u wp P
=.—~— =K . 3.11
75 p u=kiu, (3.11)

where k,=(1+/) |/ @p/2u, and the velocity distribution is

_ Ve l2hy —jVaPI2E
u=u,e kuy=ume Vwol2uny ,=iVop2ey (3.12)

The distance required for the particle velocity to diminish to 1/e of its
value at the driven wall is often called the boundary-layer thickness and
is 8,=]/2u/wp. In air at a frequency of 100 cps, for example, §,=0.2mm.

The viscous drag, per unit area, on the plane wall is
Ju
F=-— (~ ) :pkvum!
H ay y=0

F=u,(1+))oupl2.

Notice that this force has a real part and a positive reactive part. The
latter acts to increase the apparent acoustic L. The average power
dissipated per unit surface area in this drag is

or (3.13)

P=3|F|u,cos3=%uZR,, (3.14)
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where Rs=[/w pu2 is the per-unit-area surface resistance and 9 is the
phase angle between F and u, namely, 45°. For a length / of the acoustic
tube, the inner surface area is S- /, where S is the circumference. There-
fore, the average power dissipated per unit length of the tube is P.§=
$un-S-R,, or in terms of the acoustic volume velocity

P-S=}U.R,,
where (3.15)

S -
Ri=—zVwpu2,

and A4 is the cross-sectional area of the tube. R, is then the per-unit-
length acoustic resistance for the analogy shown in Fig. 3.2.

As previously mentioned, the reactive part of the viscous drag
contributes to the acoustic inductance per unit length. In fact, for the
same area and surface relations applied above, the acoustic inductance
obtained in the foregoing section should be increased by the factor

AZ
< Voo, or

p S 7
L = JR— [
= (1+A \/2pw)‘ (3.16)

Thus, the viscous boundary layer increases the apparent acoustic in-
ductance by effectively diminishing the cross-sectional area. For vocal
tract analysis, however, the viscous boundary layer is usually so thin
that the second term in (3.16) is negligible. For example, for a circular
cross-section of 9 cm?, the second term at a frequency of 500 cps is
about (0.006) p/A4.

3.23. The Acoustic <C*

The analogous acoustic capacitance, or compliance, arises from the
compressibility of the volume of air contained in the dx length of tube
shown in Fig. 3.2a. Most of the elemental air volume A dx experiences
compressions and expansions which follow the adiabatic gas law

P V"=constant,

whpre P and V are the total pressure and volume of the gas, and 7 is the
adiabatic constant'. Differentiating with respect to time gives
1 dP  n dv
P dt V4t
Ly is the ratio of specific heat at constant pressure to that at constant volume
For air at normal conditions, r]=cp/c,,= 1.4, )
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I'he diminution of the original air volume, owing to compression caused
by an increase in pressure, must equal the volume current into the

vompliance; that is,

dv
U= —W,
und
1 dP U
P dt V

I‘or sinusoidal time dependence P = Py +pe’“?, where Py, is the quiescent
pressure and is large compared with p. The volume flow into the com-
pliance of the 4 dx volume is therefore approximately

Vv p=jo Adx .
Pyn Pyn

From wave considerations Pyn can be shown to equal pc?. The volume
velocity into the per-unit-length compliance can therefore be written as

(3.17)

U=jw

U=jo-C,-p,
where
A A

== 3.18
a })0’7 ﬁf ( )

is the per-unit-length acoustic compliance.

3.24. The Acoustic ““G”

The analogous shunt conductance provides a power loss proportional
to the square of the local sound pressure. Such a loss arises from heat
conduction at the walls of the tube. The per-unit-length conductance can
be deduced in a manner similar to that for the viscous loss. As before,
it is easier to treat a simpler situation and extend the result to the vocal
tube.

Consider a highly conductive plane wall of large extent, such as
shown in Fig. 3.5. The air above the boundary is essentially at constant
pressure and has a coefficient of heat conduction 1 and a specific heat
¢,. Suppose the wall is given an oscillating temperature T'|,-o=T1,, el
The vertical temperature distribution produced in the air is described
by the diffusion equation (HILDEBRAND)

62T=cpp oT
oy* 1 aot’

or

T. (3.19)
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The solution is T=T, e *?*, where

weyp

(3.20)

which is the same form as the velocity distribution due to viscosity. In
a similar fashion, the boundary layer depth for temperature is §,=
V/24wc,p, and ky=(1+j)/5,.

Now consider more nearly the situation for the sound wave. Imagine
an acoustic pressure wave moving parallel to the conducting boundary,

1
[
[
|
1
i
1
1
|

1

Fig. 3.5. Relations illustrating heat conduction at the wall of a tube

% TwaLL = Tpe ot
FLANE WALL

AwaLL=®

that is, in the x-direction. We wish to determine the temperature dis-
tribution above the wall produced by the sound wave. The conducting
wall is assumed to be maintained at some quiescent temperature and
permitted no variation, that is, A,,y=o0. If the sound wavelength is
long compared to the boundary extent under consideration, the harmonic
pressure variation above the wall may be considered as P= P, +p, where
P, is the quiescent atmospheric pressure and p=p,,e’“" is the pressure
variation. (That is, the spatial variation of p with x is assumed small.)
The gas laws prescribe

PV"=constant and PV=RT (for unit mass).
Taking differentials gives

dv_ 1 4P dP  dv _dT

% —77 and _P_+7_ T (321)
Combining the equations yields
dP 1 dT
where
dP=p=p, e

S jot
dT=1=1,¢’"",
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so from (3.22)

T, (n—l)
Tp=—— [——) Pm- (3.23
P, n )

At the wall, y=0 and t(0)=0 (because A,,;=0). Far from the wall
(i.c., for y large), |t(y)| =rt., as given in (3.23). Using the result of (3.20),
the temperature distribution can be constructed as

t(y, )=[1—e ™)1,
or

<, z)=% (l;_l) [1—e 8] p, e®" (3.24)

Now consider the power dissipation at the wall corresponding to
this situation. A long wavelength sound has been assumed so that the
acoustic pressure variations above the boundary can be considered
p=pqe’®, and the spatial dependence of pressure neglected. Because
ol the temperature distribution above the boundary, however, the par-
ticle velocity will be nonuniform, and will have a component in the
r-direction. The average power flow per unit surface area into the
boundary is pu,, where u, is the velocity component in the y direction
ut the boundary. To examine this quantity, u, is needed.

Conservation of mass in the y-direction requires

ou,  0Jp

=

oy ot ’

(3.25)

Also, for a constant mass of gas dp/p= —dV/V which with the second
cquation in (3.21) requires

dP dp dT
Therefore,
Oy 1 Jr 1 é’p)
(- Y*_ - YF 3.27
dy (TO ot P, 0t)’ (3-27)
and
Ju
uy:f Oyy.d

_Jjop fn-1 e_k”)_ 18
u,= PO { n (y+ ky Y- (' )
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And,
o =1
u — =0,
Yo p ¢ p ¢ 1 + ] ] (329)

The equivalent energy flow into the wall is therefore

— -1 1 17T T
Woepn =2 """ s 1 _ (p2 r .
=Pl = e %3 T({Pmcos wi+ | cosot di
__1 « ’I—l 2 1 2
w]h—_ZT pc 5hpm_7Gapm7 (330)

where G, is an equivalent conductance per unit wall area and is equal

1 w n—171/ 24
Gy== 2 .
“® 2 ¢ pc Vwcpp (3:31)

The equivalent conductance per unit length of tube owing to heat
conduction is therefore

n—-11/ 2o
G,=S
=S 1/2%!)’ (3.32)

where S is the tube circumference.

To reiterate, both the heat conduction loss G, and the viscous loss R,
are applicable to a smooth, rigid tube. The vocal tract is neither, so that
in practice these losses might be expected to be somewhat higher. In
addition, the mechanical impedance of the yielding wall includes a mass
reactance and a conductance which contribute to the shunt element of
the equivalent circuit. The effect of the wall reactance upon the tuning
of the vocal resonancesis generally small, particularly for open articulations.
The contribution of wall conductance to tract damping is more important.
Both of these effects are estimated in a later section.

3.25. Summary of the Analogous Acoustic Elements

The per-unit-length analogous constants of the uniform pipe can be
summarized.

_r _A
L=% Co=pe
S wpu n—1 Aw
R{l_—-—* Y G= - 2 T~ 3
Azl/ 5 =S o | 3c (3.33)

where A is tube area, S is tube circumference, p is air density, ¢ is sound
velocity, u i1s viscosity coefficient, 4 is coefficient of heat conduction,
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i is the adiabatic constant, and c, is the specific heat of air at constant
pressure’.

Having set down these quantities, it is possible to approximate the
nonuniform vocal tract with as many right circular tube sections as
desired. The transmission characteristics can be determined ecither from
calculations on equivalent network sections such as shown in Fig. 3.3,
or from electrical circuit simulations of the clements. When the ap-
proximation involves more than three or four network loops, manual
computation becomes prohibitive. Computer techniques can then be
used to good advantage.

A further level of approximation can be made for the equivalent
nctworks in Fig. 3.3. For a given length of tube, the hyperbolic elements
may be approximated by the first terms of their serics expansions,
namely,

1 hx= _£+2—)65
anhx=x—— 5
and
. x* X
blnhx—:X‘l—?-FT!...,
so that
l
za=Zotanhy7;%(Ra+ija)l
and
1 1 . .
—=——sinhyl=(G,+jwC,)!. (3.34)
z, Zg

The error incurred in making this approximation is a function of the
clemental length / and the frequency, and is

X X
(1_ tanhx) and (1~ sinh x )’

respectively. In constructing electrical analogs of the vocal tract it has
been customary to use this approximation while keeping / sufficiently
small. We shall return to this point later in the chapter.

We will presently apply the results of this section to some simplified
analyses of the vocal tract. Before doing so, however, it is desirable to
cstablish several fundamental relations for sound radiation from the
mouth and for certain characteristics of the sources of vocal excitation.

1 p=1.14x 1073 gm/cm3 (moist air at body temperature, 37°C).
= 3.5 10* cm/sec (moist air at body temperature, 37°C).
1=1.86 x 10™4 dyne-sec/cm? (20°C, 0.76 m. Hg).

A=0.055 x 1073 cal/cm-sec-deg (0°C).
cp=0.24 cal/gm-degree (0°C, 1 atmos.).
n=14.
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3.3. The Radiation Load at the Mouth and Nostrils

At frequencies where the transverse dimensions of the tract are
small compared with a wavelength, the radiating area of the mouth or
nose can be assumed to have a velocity distribution that is approximately
uniform and cophasic. It can therefore be considered a vibrating surface,
all parts of which move in phase. The radiating element is set in a
baffle that is the head. To a rough approximation, the baffle is spherical
and about 9 cm in radius for a man.

MOoRsE has derived the radiation load on a vibrating piston set in a
spherical baffle and shows it to be a function of frequency and the
relative sizes of the piston and sphere. The analytical expression for the
load is involved and cannot be expressed in closed form. A limiting
condition, however, is the case where the radius of the piston becomes
small compared with that of the sphere. The radiation load then ap-
proaches that of a piston in an infinite, plane baffle. The latter iswell
known and can be expressed in closed form. In terms of the normalized
acoustic impedance

ez, AP A
pc U pc
(that is, per-unit-free-space impedance), it is

z,= [1 - J‘(Ifi‘ ”)] +j [ IZ‘((;;‘)‘;) ] , (3.35)

where k=w/c, a is the piston radius, A the piston area, J,(x) the first
order Bessel function, and K,(x) a related Bessel function given by the
series

2 [x* X x
K== [T_??J”W"'] -

For small values of k a, the first terms of the Bessel functions are the most
significant, and the normalized radiation impedance is approximately

~ (ka)* + 8(ka) ;

» 5 T ka<l. (3.36)

z

This impedance is a resistance proportional to w? in series with an in-
ductance of normalized value 8a/3nc. The parallel circuit equivalent is
a resistance of 128/97* in parallel with an inductance of 8a/3nc.
By way of comparison, the normalized acoustic load on a vibrating
sphere is also well known and is
Jjka

Zs=1+jkaa (3.3/)
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liig. 3.6. Normalized acoustic radiation resistance and reactance for (a) circular piston in

an infinite baffle; (b) circular piston in a spherical baffle whose radius is approximately

three times that of the piston; (c) pulsating sphere. The radius of the radiator, whether
circular or spherical, is a

where a is the radius of the sphere. Note that this is the parallel combina-
tion of a unit resistance and an a/c inductance. Again, for small ka,

zox(ka)+j(ka); ka<l. (3.38)

Using MORSE’s results for the spherical baffle, a comparison of the
real and imaginary parts of the radiation impedances for the piston-in-
sphere, piston-in-wall, and pulsating sphere is made in Fig. 3.6. For the
former, a piston-to-sphere radius ratio of a/a,=0.35 is illustrated. The
piston-in-wall curves correspond to a/a,=0. For ka<1, one notices that
the reactive loads are very nearly the same for all three radiators. The
real part for the spherical source is about twice that for the pistons.

These relations can be interpreted in terms of mouth dimensions.
Consider typical extreme values of mouth area (smallest and largest) for
vowel production. A man articulating a rounded vowel such as /u/
produces a mouth opening on the order of 0.9 cm?. For an open vowel
such as /a/ an area of 5.0 cm? is representative. The radii of circular
pistons with these areas are 0.5 cm and 1.3 cm, respectively. For fre-
quencies less than about 5000 cps, these radii place ka less than unity.
If the head is approximated as a sphere of 9 cm radius, the ratios of
piston-to-sphere radii for the extreme areas are 0.06 and 0.1, respectively.
For these dimensions and frequencies, therefore, the radiation load on
the mouth is not badly approximated by considering it to be the load on
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a piston in an infinite wall. The approximation is even better for the
nostrils whose radiating area is smaller. For higher frequencies and large
mouth areas, the load is more precisely estimated from the piston-in-
sphere relations. Notice, too, that approximating the normalized mouth-
radiation load as that of a pulsating sphere leads to a radiation resist-
ance that is about twice too high.

3.4. Spreading of Sound about the Head

In making acoustic analyses of the vocal tract one usually determines
the volume current delivered to the radiation load at the mouth or
nostrils. At these points the sound energy is radiated and spreads spatially.
The sound is then received by the ear or by a microphone at some fixed
point in space. It consequently is desirable to know the nature of the
transmission from the mouth to the given point.

The preceding approximations for the radiation impedances do not
necessarily imply how the sound spreads about the head. It is possible
for changes in the baffling of a source to make large changes in the
spatial distribution of sound and yet produce relatively small changes
in the radiation load. For example, the piston-in-wall and piston-in-
sphere were previously shown to be comparable assumptions for the
radiation load. Sound radiated by the former is of course confined to
the half-space, while that from the latter spreads spherically. The lobe
structures are also spatially different.

One might expect that for frequencies where the wavelength is long
compared with the head diameter, the head will not greatly influence
the field. The spatial spreading of sound should be much like that
produced by a simple spherical source of strength equal to the mouth
volume velocity. At high frequencies, however, the diffraction about
the head might be expected to influence the field.

A spherical source, pulsating sinusoidally, produces a particle veloc-
ity and sound pressure at r distance from its center equal respectively to

_auy jka 1+jkr _i,-,
u(r)= r 1+jka jkr ¢ ’

and

peaty  jka  _jie-o (3.39)

p(r)= r 1+jka ’

where a is the radius, u, is the velocity magnitude of the surface, and
k=w/c. [Note the third factor in u(r) accounts for the *‘bass-boost”
that is obtained by talking close to a velocity microphone, a favorite
artifice of nightclub singers.] If ka<1, the source is a so-called simple
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(point) source, and the sound pressure is

_JopUy _ji,

P(")——W e > (3.40)

where Uy =4na’u, is the source strength or volume velocity. The simple

source therefore produces a sound pressure that has spherical symmetry
and an amplitude that is proportional to 1/r and to w.

MorsE has derived the pressure distribution in the far field of a small

vibrating piston set in a spherical baffle. Assuming that the mouth and

240° 260° 280° 300°

Fig. 3.7. Spatial distributions of sound pressure for a small piston in a sphere of 9 cm radius.
Pressure is expressed in db relative to that produced by a simple spherical source of equal
strength

head are approximately this configuration, with a 9 cm radius roughly
appropriate for the sphere, the radiation pattern can be expressed rela-
tive to that which would be produced by a simple source of equal
strength located at the same position. When this is done, the result is
shown in Fig. 3.7. If the pressure field were identical to that of a simple
spherical source, all the curves would fall on the zero db line of the polar
plot. The patterns of Fig. 3.7 are symmetrical about the axis of the
mouth (piston) which lies at zero degrees. One notices that on the
mouth axis the high frequencies are emphasized slightly more than the
+6 dbjoct variation produced by the simple source (by about another
+2 db/oct for frequencies greater than 300 cps). Also some lobing oc-
curs, particularly at the rear of the “head”.

The question can be raised as to how realistic is the spherical ap-
proximation of the real head. At least one series of measurements has
been carried out to get a partial answer and to estimate spreading of
sound about an average life-sized head (FLANAGAN, 1960a). A sound
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Fig. 38 Life-size mannequin for measuring the relation between the mouth volume
velocity and the sound pressure at an external point. The transducer is mounted in the
mannequin’s head

transducer was fitted into the head of the adult mannequin shown in
Fig. 3.8. The transducer was calibrated to produce a known acoustic
volume velocity at the lips of the dummy, and the amplitude and phase
of the external pressure field were measured with a microphone. When
the amplitudes are expressed relative to the levels which would be
produced by a simple source of equal strength located at the mouth, the
results for the horizontal and vertical planes through the mouth are
shown in Fig. 3.9.
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F'ig. 3.9a and b. Distribution of sound pressure about the head, relative to the distribution
for a simple source; (a) horizontal distribution for the mannequin; (b) vertical distribution
for the mannequin

One notices that for frequencies up to 4000 cps, the pressures within
vertical and horizontal angles of about +60 degrees, centered on the
mouth axis, differ from the simple source levels by no more than +3 db.
Simultaneous phase measurements show that within this same solid
angle, centered on the mouth axis, the phase is within approximately
30 degrees of that for the simple source. Within these limits, then, the
function relating the volume velocity through the mouth to the sound
pressure in front of the mouth can be approximated as the simple
source function of Eq. (3.40). Notice that p(r)/U,~w, and the relation
has a spectral zero at zero frequency.

3.5. The Source for Voiced Sounds
3.51. Glottal Excitation

The nature of the vocal tract excitation for voiced sounds has been
indicated qualitatively in Figs. 2.1 through 2.4. It is possible to be
more quantitative about this mechanism and to estimate some of the
acoustical properties of the glottal sound source. (The glottis, as pointed
out earlier, is the orifice between the vocal cords.) Such estimates are
based mainly upon a knowledge of the subglottal pressure, the glottal
dimensions, and the time function of glottal area.

The principal physiological components of concern are illustrated
schematically in Fig. 3.10. The diagram represents a front view of the
subglottal system. The dimensions are roughly appropriate for an adult
male (JupsoN and WEAVER). In terms of an electrical network, this
system might be thought analogous to the circuit shown in Fig. 3.11.
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VOCAL FOLDS———__

VOCAL FOLOS__

Fig. 3.10. Schematic diagram of the human subglottal system

LUNGS BRONCH!I TRACHEA GLOTTIS
——
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l i
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Fig. 3.11. An equivalent circuit for the subglottal system

A charge of air is drawn into the lungs and stored in their acoustic
capacity C,. The lungs are spongy tissues and exhibit an acoustic loss
represented by the conductance G,. The loss is a function of the state
of inflation. The muscles of the rib cage apply force to the lungs, raise
the lung pressure P, and cause air to be expelled —via the bronchi and
trachea — through the relatively small vocal cord orifice. (Recall Fig. 3.1.)
B.ecause of their mass and elastic characteristics, the cords are set
vibrating by the local pressure variations in the glottis, The quasi-
periodic opening and closing of the cords varies the series impedance
(R;+jwL,) and modulates the air stream. The air passing into the
vocal tract is therefore in the form of discrete puffs or pulses. As air is
expelled, the rib-cage muscles contract and tend to maintain a constant
lung pressure for a constant vocal effort. The lung capacity is therefore
reduced so that the ratio of air charge to capacity remains roughly
constant.
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The bronchial and tracheal tubes—shown as equivalent T-sections
in Fig. 3.11 —are relatively large so that the pressure drop across them
is smalll. The subglottal pressure P, and the lung pressure P, are there-
lore nearly the same. The variable-area glottal orifice is the time-varying
impedance across which most of the subglottic pressure is expended.
The subglottal potential is effectively converted into kinetic energy in
the form of the glottal volume velocity pulses, U,.

For frequencies less than a couple of thousand cps, the main compo-
ncnt of the glottal impedance is the resistive term. For many purposes
in vocal tract analysis, it is convenient to have a small-signal (ac) equi-
valent circuit of the glottal resistance; that is, a Thevenin equivalent
of the circuit to the left of the X’s in Fig. 3.11. Toward deducing such
an equivalent, let us consider the nature of the time-varying glottal
impedance and some typical characteristics of glottal area and volume
flow.

3.52. Glottal Impedance

To make an initial estimate of the glottal impedance, assume first
that the ratio of the glottal inertance to resistance is small compared to
the period of area variation (that is, the L /R, time constant is small
compared with the fundamental period, 7). We will show presently the
conditions under which this assumption is tenable. For such a case, the
glottal volume flow may be considered as a series of consecutively estab-
lished steady states, and relations for steady flow through an orifice can
be used to estimate the glottal resistance.

Flow through the vocal cord orifice in Fig. 3.10 can be approximated
as steady, incompressible flow through the circular orifice shown in
Fig. 3.12. The subglottal and supraglottal pressures are P, and P,,
respectively. The particle velocity in the port is u, the orifice area is 4
and its depth (thickness) is d. If the cross-sectional areas of the adjacent
tubes are much larger than A, variations in P, and P, caused by the flow

Fig. 3.12. Simple orifice approximation to the human glottis

1 The branching bronchi are represented as a single tube having a cross-sectional
area equal to the sum of the areas of the branches.
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are small, and the pressures can be assumed sensibly constant. Also, if
the dimensions of the orifice are small compared with the wavelength of
an acoustic disturbance, and if the mean flow is much smaller than the
speed of sound, an acoustic disturbance is known essentially instantane-
ously throughout the vicinity of the orifice, and incompressibility is a
valid assumption. Further, let it be assumed that the velocity distribu-
tion over the port is uniform and that there is no viscous dissipation.

Under these conditions, the kinetic energy per-unit-volume possessed
by the air in the orifice is developed by the pressure difference (Py—Py)
and is

2
u
(P, —pP)=2 5 (3.41)
The particle velocity is therefore
N EL=AY
P

We can define an orifice resistance, R¥, as the ratio of pressure drop to
volume flow

(3.42)

R*_ P _pU
§ 24 24%
where U=u-A4 is the volume velocity. In practice, P, is essentially
atmospheric pressure, so that (P, —P,)=P,, the excess subglottal pres-
sure, and

(3.43)

R:= (2§P s)é )
A

In sitvations more nearly analogous to glottal operation, the assump-
tions of uniform velocity distribution across the orifice and negligible
viscous losses are not good. The velocity profile is generally not uniform,
and the streamlines are not straight and parallel. There is a contraction
of the jet a short distance downstream where the distribution is uniform
and the streamlines become parallel (vena contracta). The effect is to
reduce the effective area of the orifice and to increase R¥. Also, the
pressure-to-kinetic energy conversion is never accomplished withour vis-
cous loss, and the particle velocity is actually somewhat less than that
given in (3.42). In fact, if the area and flow velocity are sufficiently
small, the discharge is actually governed by viscous laws. This can
certainly obtain in the glottis where the area of opening can go to zero.
Therefore, an expression for orifice resistance—valid also for small
velocities and areas—might, as a first approximation, be a linear com-
bination of kinetic and viscous terms

(3.44)

R,=R,+k (;’32) , (3.45)
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where R, is a viscous resistance and k is a real constant. Forsteady laminar
llow, R, is proportional to the coefficient of viscosity and the length of
thc conducting passage, and is inversely proportional to a function of
area.

To find approximations of the form (3.45), WEGEL and VAN DEN
BERG ef al. have made steady-flow measurements on models of the
human larynx. Both investigations give empirical formulas which agree
in order of magnitude. VAN DEN BERG’s data are somewhat more ex-
tensive and were made on plaster casts of a normal larynx. The glottis
was idealized as a rectangular slit as shown in Fig. 3.13. The length, /,
of the slit was maintained constant at 18 mm, and its depth, 4, was

Fig. 3.13. Model of the human glottis. (After VAN DEN BERG er al.)

maintained at 3 mm. Changes in area were made by changing the width,
w. Measurements on the model show the resistance to be approximately
P, 12ud pU
R,= U =—lw3—+0.875 20wy’ (3.46)
where u is the coefficient of viscosity. According to VAN DEN BERG,
(3.46) holds within ten per cent for 0.1 Sw=2.0 mm, for P,< 6f1 cm H,O
at small w, and for U<2000 cc/sec at large w. As (3.46) implies, values
of P, and A specify the volume flow, U. _
The glottal area is A =1Iw so that the viscous (first) ter'm of (3.46)_118
proportional to 473, The kinetic (second) term is proportional tQ uA
or, to the extent that » can be estimated from (3.42), it is approximately
proportional to P¥A4~'. Whether the viscous or kinetic tc?rm predomi-
nates depends upon both 4 and P,. They become approx1ma.tely eqqal
when (p P)¥4>=19.3 udI?. For typical values of vocal P,, this equality
occurs for glottal areas which generally are just a fraction (usually less
than 1) of the maximum area. In other words, over most of the open
cycle of the vocal cords the glottal resistance is determined by the second

term in (3.46).
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A§ .pointed out previously, (3.46) is strictly valid only for steady flow
f:ondltlons. A relevant question is to what extent might (3.46) be applied
In computing the glottal flow as a function of time when A(t) and P,
are known. The question is equivalent to inquiring into the influence
of the inertance of the glottal air plug. Because the pressure drop across
the bronchi and trachea is small, and because P; is maintained sensibly
constant over the duration of several pitch periods by the low-impedance
lung reservoir!, the circuit of Fig. 3.11 can, for the present purpose, be
simplified to that shown in Fig. 3.14. Furthermore, it is possible to
show that at most frequencies the driving point impedance of the vocal

Fig. 3.14. Simplified circuit for the glottal source

t.ract, Z,, is small compared with the glottal impedance. If the idealiza-
ton Z,=0 is made, then U, () satisfies

U0 R+ [L () U, (0] =P, (3.47)

where Eq. (3.46) can be taken as the approximation to R,(¢) and, neg-
lecting end corrections, L, (t)=pd/A(2).

» Because R, is a flow-dependent quantity, Eq. (3.47) is a nonlinear,
first-order differential equation with nonconstant coefficients, For an
arbitrary A(t), it is not easily integrated. However, a simplification in
the area function provides some insight into the glottal flow. Consider
that A(7) is a step function so that

A)=A4,; t20
=0; t<0, and U,(0)=0.

'Then d{lg/d tis zero for >0, and the circuit acts as a flow-dependent
'res1stance In series with a constant inductance. A step of voltage (P)
is applied at =0. The behavior of the circuit is therefore described by

au, 1
T —:L—g(Ps—Rg U,). (3.48)
1 VAN DEN BERG ef al. estimate the variation to be less than five per cent of the

mean subglottal pressure. P, was measured by catheters inserted in the trachea and
esophagus.
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At 1=0, U, (0)=0 and
au, P
dt |imo Ly’

so that initially

U, ()= Ilj“ t  (for positive ¢ near zero).
g
Similarly, at t=c0, dU,/dt=0 and U,(c0)=P,/R,. The value of U,(0)
is the steady-flow value which is conditioned solely by R,. In this case
U, is the solution of P,—U,R,=0, and is the positive root of a second-
dcgree polynominal in U.

A time constant of a sort can be estimated from these asymptotic
values of the flow build-up. Assume that the build-up continues at the
initial rate, P/L,, until the steady-state value U,(c0) is achieved. The
time, T, necessary to achieve the build-up is then

P, Py
Ug(t)_ Lg T= Ug(oo)_ Rg ’
ar
Lg
=2t (3.49)

Since R, is a sum of viscous and kinetic terms R, and R, respectively,
the time constant L,/(R,+ R,) is smaller than the smaller of L /R, and
L,/Ry. If the step function of area were small, R, would dominate and
the L,/R, time constant, which is proportional to 4%, would be more
nearly appropriate. If the area step were large, the L,/R, constant would
apply. In this case, and to the extent that R, might be neglected [i.e., to
the extent that R, might be approximated as R, =0.875(2p P,)¥/24], the
L,/R, constant is proportional to P,”* and is independent of A.

On the basis of these assumptions, a plot of the factors L,/R, and
L,/R; is given in Fig. 3.15. Two values of P, are shown for L,/R,, namely
4cm H,O and 16 cm H,O. The first is about the minimum (liminal)
intensity at which an adult male can utter a vowel. The latter corresponds
to a fairly loud, usually high-pitched utterance. The value of L,/R, is
therefore less than the solid curves of Fig. 3.15.

The curves of Fig. 3.15 show the greatest value of the time constant
(i.e., for liminal subglottic pressure) to be of the order of a quarter milli-
second. This time might be considered negligible compared with a
fundamental vocal cord period an order of magnitude greater, that is,
2.5 msec. The latter corresponds to a fundamental vocal frequency of
400 cps which is above the average pitch range for a man’s voice. To a
first order approximation, therefore, the waveform of glottal volume
velocity can be estimated from P, and A4(z) simply by applying (3.46).
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Notice also from the preceding results that for L,/R,=0.25 msec
(i.e., P,=4 cm H,0) the inductive reactance becomes comparable to the
resistance for frequencies between 600 and 700 cps. For P,=16cm H,0,
the critical frequency is about doubled, to around 1300 cps. This sug-
gests that for frequencies generally greater than about 1000 to 2000 cps,
the glottal impedance may exhibit a significant frequency-proportional
term, and the spectrum of the glottal volume flow may reflect the in-
fluence of this factor.
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Fig. 3.15. Ratios of glottal inertance (L) to viscous and kinetic resistance (R,, Rx) as a
function of glottal area (A4)

If the effects of inertance are neglected, a rough estimate of the glottal
volume velocity can be made from the resistance expression (3.46).
Assuming constant subglottal pressure, the corresponding volume veloc-
ity is seen to be proportional to 4* at small glottal areas and to A at
larger areas. Typical volume velocity waves deduced in this manner for
a man are¢ shown in Fig. 3.16 (FLANAGAN, 1958). The area waves are
measured from high speed motion pictures of the glottis (see Fig. 2.3 in
Chapter 2), and the subglottal pressure is estimated from the sound
intensity and direct tracheal pressure measurements. The first condition
is for the vowel /&/ uttered at the lowest intensity and pitch possible.
The second is for the same sound at a louder intensity and the same
pitch. In the first case the glottis never completely closes. This is char-
acteristic of weak, voiced utterances. Note that the viscous term in R,
operates to sharpen the leading and trailing edges of the velocity wave.
This effect acts to increase the amplitude of the high-frequency compo-
nents in the glottal spectrum.

The spectrum of the glottal volume flow is generally irregular and
is characterized by numerous minima, or spectral zeros. For example,
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if the wave in Fig. 3.16b were idealized as a symmetrical triangle, its
spectrum would be of the form (sin x/x)* with double-order spectral
zeros occurring for w=4n n/t,, where n is an integer and 1, is the open
time of the glottis. If the actual area wave of Fig. 3.16Db is treated as
periodic with period 1/123sec, and its Fourier spectrum computed
(most conveniently on a digital computer), the result is shown in Fig. 3.17
(FLANAGAN, 1961b). The slight asymmetry of the area wave causes the
spectral zeros to lie at complex frequencies, so that the spectral minima
are neither equally spaced nor as pronounced as for the symmetrical
triangle.

3.53. Small-Signal Equivalent Source for the Glottis

Considering only the resistance R,, given in Eq. (3.46), it is possible
to approximate an ac or small-signal equivalent source for the glottal
source. Such a specification essentially permits the source impedance
to be represented by a time-invariant quantity and is useful in performing
vocal tract calculations. The Thevenin (or Norton) equivalent generator
for the glottis can be obtained in the same manner that the ac equivalent
circuit for an electronic amplifier is derived. According to (3.46)

U, ()=1(F;, 4).
The glottal volume velocity, area and subglottic pressure are unipolar

time functions. Each has a varying component superposed upon a mean
value. That is,

U,()=U,+U' (1)
A=A, + A’ (1)
Ps(t)=Ps0+Ps’(t)'

Expanding U,(7) as a Taylor series about (P4, 4y) and taking first
terms gives

ou ouU
Ug(Ps!A)zug(Ps05A0)+ £ (Ps—PsO)+—g (A_A0)+'“a
aI)s Pso, Ao aA Pgo, Ao
=U,+ Ug(1),
and
. aU, ,au, , ,
Uy ()= aP, P,O,AOPS + A P,O,AOA ®. (3.50)

One can interpret (3.50) as an ac volume velocity (current) source of
value ¢U,/0A|p_, 4,A(¢) with an inherent conductance JU/OP,|p,,. 4-
The source delivers the ac volume current U;(f) to its terminals. The
source configuration is illustrated in Fig. 3.18. The instantaneous polar-
ity of P/(?) is reckoned as the pressure beneath the glottis relative to
that above.
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IYig. 3.18. Small-signal equivalent circuit for the glottal source. (After FLANAGAN, 1958)

The partials in (3.50) can be evaluated from (3.46). Let

JP,
R, =—=" .
£ aUg Pso0, Ao
Then
OP, R,
au, Ret Ve
and
R’g =(RU+2RIL)P50, Ao (3.51)

The magnitude of the equivalent velocity source is simply

U,
¢A

-
ou

A= [u—!—A GALS(,,ABA’“)‘

Pso, 4o
Neglecting the viscous component of the resistance, Eq. (3.42) may be
used to approximate », in which case ouj6A=0 and

oU,
04

o (EZE_OYA'Q) . (3.52)

Pso0, Ao

The approximations (3.51) and (3.52) therefore s_uggcst that the ac
resistance of the glottal source is equal the viscous (first) term of (3.46)
plus twice the kinetic (second) term, and that the ac volume current
source has a waveform similar to the time-varying component of A(tz).
To consider a typical value of Ry, take P;o=10 cm H,0and 4;=5 mm -
For these commonly encountered values Rg is computed to be approxi-
mately 100 cgs acoustic ohms. This source impedanc; can be compared
with typical values of the acoustic impedance looking mtg the vocal
tract (i.e., the tract driving point impedance). Such a comparison affords
an insight into whether the glottal source acts more nearly as a constant
current (velocity) generator or a voltage (pressure) source.

The driving point impedance of the tract is highly dependent upon
vocal configuration, but it can be easily estimated for the unconstricted
shape. Consider the tract as a uniform pipe, 17 cm long apd open at the
far end. Assuming no nasal coupling, the tract is termma@ed (_)nly by
the mouth radiation impedance. The situation is illustrated in Fig. 3.19.
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Fig. 3.19. Simplified representation of the impedance looking into the vocal tract at the
glottis

Usipg the transmission line relations developed earlier in the chapter,
the impedance Z, looking into the straight pipe is

Z,coshyl+Z,sinhyl

Z,=7
‘770 Zocoshyl+Z, sinhyl

(3.53)

where /=17 cm, and the other quantities have been previously defined.
If for a rough estimate the pipe is considered lossless, y=j7B and (3.53)
can be written in circular functions

Z,cosfl+jZysinfl

Z, =
‘7% Zycos fl+jZ,sin Bl

(3.54)

where Z,=pc/A, f=w/c. The maxima of Z, will occur at frequencies
wher.e I=(2n+1) 4/4, so that fi=Q2n+ 1) /2 and cos f/=0. The
maxima of Z, for the lossless pipe are therefore

24 =23/Z,, (3.55)
and the pipe acts as a quarter-wave transformer. The minima, on the
other hanq, are Z,,..=Z, and the pipe acts as a half-wave transformer.
. To e.:stl.m.ate Z,...x> We can use the radiation impedance for the piston
in the infinite baffle, developed earlier in the chapter [see Eq. (3.36)].

pc  pc [(ka)* 8

where

a=)/Afx, and ka<l.

As a reasonable area for the unconstricted tract, take 4 =35 cm?2. The
first quarter-wave resonance for the 17 cm long pipe occurs at a fre-
quency of about 500 cps. At this frequency

Z,5006ps=(0.18+0.81), and Z

tmaxl 500 cps —

(pc/A)? .
S =86/-T1

r
cgs acoustic ohms. This driving point impedance is comparable in size
to the ac equivalent resistance of the glottal source just determined.
As frequency increases, the magnitude of Z, increases, and the load
reflected to the glottis at the quarter-wave resonances becomes smaller.
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At the second resonance, for example, Z,|s500 cps=(1.63+j2.44) and
Z ol 1500 cps =24/ —56° cgs acoustic ohms. The reflected impedance
continues to diminish with frequency until at very high frequencies
7Z,=Zy,=8.4cgs acoustic ohms. Note, too, that at the half-wave reso-
nances of the tract, i.e.,, /=n}/2, the sine terms in (3.54) are zero and
/=2,

The input impedance of the tract is greatest therefore at the fre-
quency of the first quarter-wave resonance (which corresponds to the
lirst formant). At and in the vicinity of this frequency, the driving
point impedance (neglecting all losses except radiation) is comparable
1o the ac resistance of the glottal source. At all other frequencies it is
less. For the unconstricted pipe the reflected impedance maxima are
capacitive because the radiation load is inductive. To a first approxima-
tion, then, the glottal source appears as a constant volume velocity
(current) source except at frequencies proximate to the first formant.
As previously discussed, the equivalent vocal cord source sends an ac
current equal to u- A'(¢) into Z, in parallel with R;. So long as constric-
tions do not become small, changes in the tract configuration generally
do not greatly influence the operation of the vocal cords. At and near
the frequency of the first formant, however, some interaction of source
and tract might be expected, and in fact does occur. Pitch-synchronous
variations in the tuning and the damping of the first formant— owing
to significant tract-source interaction—can be observed experimentally!.

3.6. The Source for Noise and Transient Excitation
of the Tract

Our present knowledge of the mechanism and properties of noise
and transient excitation of the vocal tract is considerably less than our
understanding of voiced excitation. Not least among the reasons are
the difficulties connected with direct measurement of the tract con-
{iguration, the size of constrictions, the spectral properties and inherent
impedance of the source, and its spatial distribution. Noise excitation
is generated by the air stream at a constriction. The resulting rotational
flow and eddies produce a sound pressure which is largely random. The
sound /J/, for example, is produced by forcing air through the narrow
constriction between the tongue and the roof of the mouth. Turbulent
flow can also be generated by directing an air jet across an obstacle or
sharp edge. The upper teeth serve this purpose in the production of

1 The acoustic mechanism of vocal-cord vibration and the interactions between
source and system are discussed in more detail later. An acoustic oscillator model of
the cords is derived in Chapter VI and a computer simulation of the model is
described.
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dental fricatives such as /f/. One fricative consonant, /h/, is produced
jby turbulent flow generated at the glottis. The excitation mechanism
is similar to that for the front-excited fricatives except the nonvibrating
vocal cords create the constriction.

Stop consonants are produced by making a complete closure at an
appropriate point (labial, dental or palatal), building up a pressure
behind the occlusion, and sharply releasing the pressure by an abrupt
opening of the constriction. This excitation is therefore similar to ex-
citing an electrical network with a step function of voltage. The stop
explosion is frequently followed by a fricative excitation. This latter
element of the stop is similar to a brief fricative continuant of the same
articulation.

Because it is spatially distributed, the location of the noise source
in the tract is difficult to fix precisely. Generally it can be located
at the constriction for a short closure, and just anterior to a longer
constriction. In terms of a network representation, the noise source and
itg. inherent impedance can be represented as the series elements in
Fig. 3.20. Py is the sound pressure generated by the turbulent flow and
Z, is the inherent impedance of the source. The series connection of the
source can be qualitatively justified by noting that a shunt connection
of a low-impedance pressure source would alter the mode structure of
the vocal network. Furthermore, experimentally measured mode pat-
terns for consonants appear to correspond to the series connection of
the exciting source (FANT, 1960).

'Although the spectral characteristics and inherent impedance of the
noise source are not well known, estimates of these quantities can be
made from a knowledge of the sound output and the tract configuration
and from measurements on tube models (HEenz, 1958). Data obtained’
in this manner suggest that the spectrum is relatively flat in the mid-
audio frequency range and that the source impedance is largely resistive.
In fact, the relations for orifice resistance developed in the previous
section appear to give reasonable estimates for the inherent impedance.

Voiced fricative sounds, such as /v/, are produced by simultaneous
operation of the glottal and turbulent sources. Because the vibrating
vocal cords cause a pulsive flow of air, the turbulent sound generated
at the constriction is modulated by the glottal puffs. The turbulent
sound is therefore generated as pitch-synchronous bursts of nojse.

TURBULENTY
SOURCE

m °
CAVITIES
CAVITIES
BEHINO Ps IN FRONT Zrm
SOURCE OF SOURCE

Fig. 3.20. Equivalent circuit for noise excitation of the vocal tract
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It is possible to be a little more quantitative about several aspects
ol fricative and stop excitation. For example, MEYER-EPPLER (1953)
llas carried out measurements on fricative generation in constricted
plastic tube models of the vocal tract. He has related these measurements
1o human production of the fricative consonants /f, s, [/. For these
vocal geometries a critical Reynold’s number, R,., apparently exists
below which negligible turbulent sound is produced. MEYER-EPPLER
f[ound that the magnitude of the noise sound pressure P,—measured
at a distance r from the mouth of either the model or the human—is
approximately described by

Pr=K(R§—R§c)’ (357)

where K is a constant, R, is the dimensionless Reynold’s number
R.=uwp/u and, as before, u is the particle velocity, p the air density,
1t the coefficient of viscosity and w the effective width of the passage.
We recall from the earlier discussion [Eq. (3.41)] that for turbulent
[low at a constriction the pressure drop across the orifice is approxi-
mately P,=pu?/2=pU?24*. Therefore, RZ=2p(w/u)*P, and (3.57)

can be written
P=(K;w*Pj—K;); P20, (3.58)

where K, and K, are constants. This result indicates that, above some
threshold value, the fricative sound pressure in front of the mouth is
proportional to the pressure drop at the constriction (essentially the
excess pressure behind the occlusion) and to the square of the effective
width of the passage.

By way of illustrating typical flow velocities associated with con-
sonant production, a constriction area of 0.2 cm? and an excess pressure
of 10 cm H,O are not unusual for a fricative like /s/. The particle veloc-
ity corresponding to this pressure is u=(2P,/p)¥*=4100 cm/sec’ and the
volume flow is U=820 cm?/sec.

If the constricted vocal passage is progressively opened and the
width increased, a constant excess pressure can be maintained behind
the constriction only at the expense of increased air flow. The flow must
be proportional to the constriction area. The power associated with the
flow is essentially P,U and hence also increases. Since the driving
power is derived from the expiratory muscles, their power capabilities
determine the maximum flow that can be produced for a given P,.
At some value of constriction area, a further increase in area, and
consequently in w, is offset by a diminution of the P, that can be main-
tained. The product w2 P, in (3.58) then begins to decrease and so does
the intensity of the fricative sound.

1 Note this velocity is in excess of 0.1 Mach!
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Voiceless stop consonants contrast with fricatives in that they are
more transient. For strongly articulated stops, the glottis is held open
so that the subglottal system contributes to the already substantial
volume behind the closure (V). The respiratory muscles apply a force
sufficient to build up the pressure, but do not contract appreciably to
force air out during the stop release. The air flow during the initial part
of the stop release is mainly turbulent, with laminar streaming obtaining
as the flow decays. In voiced stops in word-initial position (for example
/d, g/), voicing usually commences following the release, but often (for
example, in /b/) can be initiated before the release.

In very crude terms, stop production can be considered analogous
to the circuit of Fig. 3.21. The capacitor Cy is the compliance (Vy/p c?)

| i

tae Um

N

P]c

Fig. 3.21. Approximate vocal relations for stop consonant production

of the cavities back of the closure and is charged to the excess pressure
P,. The resistance R, is that of the constriction and is, according to the
previous discussion [Eq. (3.43)], approximately R, =pU,,/24%. Suppose
the constriction area is changed from zero as a step function, that is,
A{®=0; <0
=4; t=20.
The mouth volume current then satisfies

1 t
fUndi=P,

c?
CBO

U,R .+
or

t

L1
—ZZTJFCBgUmdt—PC, for U,>0,

and the solution for positive values of U, is
2P\ * At
va= () a - AL, ”
©=\% Cy(p2P)F -59)

According to (3.59) the flow diminishes linearly with time during the
initial phases of the stop release. At the indicated rate, the time to
deplete the air charge would be
_ CB (p 2Pc)*
==

31 (3.60)
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As the flow velocity becomes small, however, the tender}cy is toward
laminar streaming, and the resistance becomes less velocity dependent
|sec first term in Eq. (3.46)]. The flow decay then becomes more nearly
exponential®.

R This can be seen exactly by letting R, include a constaqt (vi_scous) term as well
us a flow-dependent term. Although the differential equation is sgmewhat more
complicated, the variables separate, and the solution can be written in terms of U,
und In U,,.

Let
Rc=ruA‘3(t)+rkA‘2(t)|Um| ,
where r, and r; are constants involving air densit)f and viscosity [as desgrlbed in
V. (3.4%)]. If the constriction area is changed stepwise frqm zero to A at time zero,
the resulting flow will again be unipolar and now will satisfy

t
(14D Up+(r )45 U, +1/Cp of U, dt=Pg.

The variables in this equation are separable and the solution can be obtained by
differentiating both sides with respect to time. This yields

r, (dUm)_'_zr_kU dUy Un _,

A\ dr AZm T T ey
and C /'dU . C
OB (Cm) 4o B gy, = —ar.
A3\ Um)+2 42 "
Integrating termwise gives
r, Cg t r. Cg ‘__
UA3 anmL+2 e U, o= t.

At t=0, U, =U,, where U, is the positive real root of the quadratic
» ~“m 3

,
(%) Ui+ 5 Up—Pe=0.

Then .
U\ 2r A 14
_ U —-Upy+ ——=0.
ln(UO>+ Te R 1 Ch
Note P
for A large: Umz UO— (m)til
()
- (=)
for Asmall: U,xUje ‘™52 .
1t also follows that
AUp -0,
dt —r CB ZrkCB
R
42
=~ ,forl A
27, Cp or large
_ 3
2 —Un A , for small A.

r,Cg

v
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To fix some typical values, consider the production of a voiceless
stop such as /t/. According to FANT (1960), realistic parameters for
articulation of this sound are P,=6 cm H,0, Vy=pc?Cp=4 liters (in-
cluding lungs) and A=0.1 cm®. Assuming the area changes abruptly,
substitution of these values into (3.59) and (3.60) gives U,,(0) =320 cm?/
sec and t; =130 msec. The particle velocity at the beginning of the
linear decay is u,(0)=3200 cm/sec. After 50 msec it has fallen to the
value 1300 cm/sec which is about the lower limit suggested by MEYER-
EppLER for noise generation. As FANT points out, the amount of air
consumed during this time is quite small, on the order of 10 cm?3.

Both STEVENs (1956) and FanT (1960) emphasize the importance
of the open glottis in the production of a strong stop consonant. A
closed glottis reduces ¥ to something less than 100 cm?, and the excess
pressure which can be produced behind the constriction is typically on
the order of 3cm H,O. For such conditions is it difficult to produce
flows sufficient for noise generation. The turbulent noise produced
during the stop release is essentially a secondary effect of the excitation.
The primary excitation is the impact of the suddenly applied pressure
upon the vocal system. As mentioned earlier, this excitation for an
abrupt area change is analogous to a step function of voltage applied
to an electrical circuit. Such a source is characterized by a spectrum
which is proportional to 1/w, or diminishes in amplitude at—6 dbjoct.

3.7. Some Characteristics of Vocal Tract Transmission

Some of the fundamental relations developed in the foregoing sec-
tions can now be used to put in evidence certain properties of vocal
transmission. These characteristics are easiest demonstrated analytically
by highly simplifying the tract geometry. Calculations on detailed ap-
proximations are more conveniently done with computers. Although our
examples generally will be oversimplified, the extensions to more exact
descriptions will in most cases be obvious.

As a first step, consider the transmission from glottis to mouth for
nonnasal sounds. Further, as an ultimate simplification, consider that
the tract is uniform in cross section over its whole length /, is terminated
in a radiation load whose magnitude is negligible compared with the
characteristic impedance of the tract, and is driven at the glottis from a
volume-velocity source whose internal impedance is large compared to
the tract input impedance. The simple diagram in Fig. 3.22 represents
this situation. The transmission function relating the mouth and glottal
volume currents is then

Um Zp 1

U, Zp+ 2, - coshy! (3.61)

g
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z,:ZOTANH%l'

zb=2gcscH 7L

7 =%+
al and mouth volume currents for the unconstricted tract.

lig. 3.22. Relation between glott I nts for t
i The glottal impedance is assumed infinite and the radiation impedance is zero

‘I'ne normal modes (poles) of the transmission are the values of 7/ whlf:h
make the denominator zero. These resonances produce spectral varia-
tions in the sound radiated from the mouth. They are

[=0
coshy 56

7
yl=ij(2n+1)—2—, n=0,1,2,....

The poles therefore occur at complex values of' frequency. Letting
jw=c+jw=s, the complex frequency, and recalling from (3.?) that
'y=a+ 7B and = w/c for small losses, the complex pole frequencies may

be approximated as

—acijg%ll)”i, n=0,1,2,..". (3.63)

IR

S"

The transmission (3.61) can be represented in factored form in terms
of the roots of the denominator, namely
F
Um(s) _ SpSn (364)
HO=7,6 "W G=s 6=

where s* is the complex conjugate of s,, and the numerator is set to

satisfy the condition
M B /l__ ~ 1’
U (jo) |jw-=0 coshal
refore characterized by an infinite

The manifestations of these normal
und are called formants. The

for small «. The transmission I8 tl;e
number of complex conjugate poles®.
modes as spectral peaks In the output so

[see Eq.(3.33)]. However, since its
the approxima-

1 Actually « is an implicit function of o
frequency dependence is relatively small, and since usually 0,< 0,
tion (3.63) is a convenient one.

2 Rigorous justification o
(TITCHMARSH; AHLFORS). See Chapte

f the form (3.64) has its basis in function. thef)ry
r VI, Sec. 6.22 for further discussion of this point.
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transmission (3.64) exhibits no zeros at finite frequencies. Maxima occur
in

c

T,

and the resonances have half-power cps bandwidths approximately
equal to Af= o/n=oc/n. For an adult male vocal tract, approximately
I7 cm in length, the unconstricted resonant frequencies therefore fal] at
about f; =500 cps, S2=1500 cps, f,=2500 ¢ps, and continue in ¢/27/
increments.

In the present illustration the only losses taken into account are the
classical heat conduction and viscous losses discussed earlier. A calcula-
tion of formant bandwidth on this basis alone will consequently be
abnormally low. It is nevertheless instructive to note this contribution
to the formant damping. Recall from Eq. (3.8) that for small losses

aNRa C‘a_l_Ga L_a
"2 )L, "2 )¢,

where R,, G,, L, and C, have been given previously in Section (3.25).
At the first-formant frequency for the unconstricted tract (i.e., 500 cps),
and assuming a circular cross-section with typical area 5 cm?, « is com-
puted to be approximately 5.2 x 1074, giving a first-formant bandwidth
4f;=6cps. At the second formant frequency (i.e., 1500 cps) the same
computation gives Af, =10 cps. The losses increase as f*, and at the
third formant (2500 cps) give Af, =13 cps.

It is also apparent from (3.64) that H(s) is a minimum phase func-
tion (that is, it has all of its zeros, namely none, in the left half of the
s-plane) so that jts amplitude and phase responses are uniquely linked
(that is, they are Hilbert transforms). Further, the function is completely
specified by the s,’s, so that the frequency and amplitude of a formant

[H(jw)|  for a)=4_—(2n+1).§

then the amplitudes of the resonant peaks of |H(jw)| are implicit in the
imaginary parts of the formant frequencies @y, Wy, ..., (FANT, 1956;
FLANAGAN, 1957¢). In fact, it follows from (3.61) that

1
Teosh(@+7A)I, -
_ 1
~ [Jsinhad]

,H(jw),w'—-m":

(3.65)

I

1
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IYig. 3.23. Magnitude and phase of the glottls-to-rpout'h transmission for the vocal trac
A approximation shown in Fig. 3.22

where f=w/c and w,=2n+1) nc/21: Notice, too, that the phaseszntgliz
of H(jw) advances n radians in passing a formant f‘req;f:ncgf 2a;,, so the
amplitude and phase response of H(jw) appear as in Fig. 3.23.

same connection, note that for the completely lossless case

1
COST

3.71. Effect of Radiation Load upon Mode Pattern

If the radiation load on the open end of the tube is tak_enFl‘nt(;’ ;Z-
count, the equivalent circuit for the tube becomes thgt ;ho‘wri 111n rélfi.iat.ing.
A, ] i f the tract and A4, is the
Here A, is the cross-sectional area of ' he radiating
i i dius a,,. The thickness of the m
area of the mouth with equivalent ra ' . of th
constriction is assumed negligible, the glottal impedance is high, and

i i i t the
Fig. 3.24. Equivalent circuit for the unconstricted vqcal tract t?kllng into accoun
e radiation load. The glottal impedance is assumed infinite
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cross dimensions are small com i
0s8 . pared with a wavelength. Th -
mission from glottis to mouth is therefore : s

U, 1

U Z >
®  coshyl+—"sinhy!
ZO

or, more conveniently,

U, coshy, !

U, ~ cosh(y+7)1" (3.66)

where y,I=tanh™'Z,Z . Note that for Z
e 7 Laspeld. o r<Zy, cosh y,1=1 and for

By the transformation (3.66), th iation i
‘ . -60), the radiation impedance is carrj
mto the propagation constant, so that ’ aried

(y+7v,)= [a+jﬂ+}—tan_lz£]
=@+jf+o,+jp)=(+jf)=y.

If the radiation load is taken as that o i i
in Sec. 3.3] then D a piston in a wall [see Eq. (3.36)

~Pc¢ [(ka)*  8ka
722 [ o], kas, (3.67)

m

where a equals the mouth radius g E i -
' ' m- Expanding tanh~!Z /z
series and taking only the first term (i.e., assuming Z,<2Z) giéeso =

1 4, [(ka)2 8ka
WEG o =
I a4, 2 v/ 3n] (3.68)
=ar+jﬁr‘
For low loss f~w/c=k, so that
'y i A (Ba)’ A
(a +J,3)=[zx+—'— j r Sa_
A2l +jp 1+Z 3a7 | (3.69)
Again the poles of (3.66) occur for
e r1=0
or
., .@n+D)n
y —ijz\l, n=0,1,2,.... (3.70)
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| ctting jo—s=(o0+jw), and remembering that in general o,<®,, the
poles are approximately

2 .
sﬂ,;__l‘[_(m+ 4,0 )ij (2n+1)nc],
l+ Alsa 27CIC 2] (3 71)
" A3l .
n=0,1,2,... (Z,<Z,).

The general effect of the radiation, therefore, is to decrease the magni-
tude of the imaginary parts of the pole frequencies and to make their
real parts more negative.

For the special case A,,=A4,, the modes are

3nl a?o®\ . @2n+nc
sﬂr=(m)[‘(““+ zzc)if 2 ] (3.72)

Using the values of the example in the previous section, 4,=5 cm?,
/=17 c¢m, the spectral resonances (formants) are lowered in frequency
by the multiplying factor 37!/(37!+8a)=0.94. The original 500 cps first
formant is lowered to 470 cps, and the 1500 cps second formant is
lowered to 1410 cps. The first formant bandwidth is increased to about
Af,=0.94(6+4)=9 cps, and the second formant bandwidth to about
A41,=0.94(10+32)=40 cps. The same computation for the third for-
mant gives 4/f;=2100 cps. The latter figures begin to be representative of
formant bandwidths measured on real vocal tracts with the glottis closed
(House and STEVENS, 1958; DuUNN, 1961; vaN DEN BERG, 1955). The
contributions of the radiation, viscous and heat losses to 4f; are seen
to be relatively small. Glottal loss and cavity wall vibration generally
are more important contributors to the first formant damping.

As (3.72) indicates, the contribution of the radiation resistance to the
formant damping increases as the square of frequency, while the classical
heat conduction and viscous loss cause o to grow as w*. The radiation
reactance is inertive and causes the formant frequencies to be lowered.
For A,,= A,, Eq. (3.71) shows that the radiation reactance has the same
cffect as lengthening the vocal tract by an amount (8a/3 ).

3.72. Effect of Glottal Impedance upon Mode Pattern

The effect of the equivalent glottal impedance can be considered in
much the same manner as the radiation load. To keep the illustration
simple, again assume the radiation load to be negligible compared with
the characteristic impedance of the uniform tract, but take the glottal
impedance as finite. This situation is depicted by Fig. 3.25. Similar to
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e
E E 2p=0

Fig. 3.25. Equivalent circui? fpr the unconstricted vocal tract assuming the glottal impedance
to be finite and the radiation impedance to be zero

the preyious instance, the volume velocity transmission function can
be put in the form

YUn _ 1
Ug - Z (Z V4 z
2 —g+—“+1) 1428
Z, \z, "z * -I-Zg
1 3
= — 73)
Z,
coshyl+ ZO sinhy!/
_ coshy,
cosh(y+y) !’

where y, /= tgnh“lZo/Zg, and the glottal impedance is transformed into

the Propagation constant. Again taking the first term of the series ex-
pansion for tanh™'Z,/Z, (i.e., assumming Z,> Z,) gives

1 Z

+ 7, ip+— =%

(7 +7) (a+_1ﬁ+ ] Zg) :

)The equivalent glottal impedance may be approximated as Z,=
(Rg +jwlL,), where R, is the ac equivalent resistance determined pgre-
viously in Eq. (3.51), and L, is the effective inductance of the glottal
pqrt.. The zeros of the denominator of (3.73) are the poles of the trans-
mission, and an argument similar to that used in the preceding section

for low losses (Z,2p ¢/A,, f=w/c) leads to

1 R;Z,¢ Cn+1)re
Spg —— g“~0 .
g 1_(ngoc) { (otc+ IIZgIZ)i] 2] } (3.74)
l]ZgI2

‘ According to (3.74), the effect of the finite glottal impedance is to
increase the damping of the formant resonances (owing to the glottal
losg R,) and to increase the formant frequencies by the factor multi-
plying the bracketed term (owing to the glottal inductance). A sample
calcu}ation of the effect can be made. As typical values, take a sub-
glottic pressure (P,) of 8 cm H,0, a mean glottal area (4,) of 5 mm?, a
glottal orifice thickness (d) of 3 mm, a vocal tract area (4,) of 5cm? and
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a tract length (1) of 17 cm. For these conditions the glottal resistance,
computed according to Eq. (3.51), is R,=~91 cgs acoustic ohms. The
plottal inductance is L;=0d/4,=6.8x1073 cgs units. At about the
frequency of the first formant, that is, w=nc/2/=2n (500 cps), the
multiplying factor has a value 1/(1—0.014), so that the first formant
resonance is increased from its value for the infinite glottal impedance
condition by about 1.4%,. The effect of the glottal inductance upon for-
mant tuning is greatest for the lowest formant because [Z,| increases with
frequency. The same computation for the second formant (& 1500 cps)
shows the multiplying factor to be 1/(1—0.010). One notices also that
the effect of the multiplying term is to shorten the apparent length of

the tract to
(l— LgZoc)'
1Z,|*

The resonant bandwidth for the first formant is computed to be

Af, [6 cps+ 56 cps]=63 cps,

1
~ (1-0.014)

E which is reasonably representative of first formant bandwidths measured
L in real speech. The contribution of the glottal loss R, to formant damping
t is greatest for the lowest formant. 1t diminishes with increasing frequency
~ because |Z,| grows with frequency. At the second formant frequency,
the same calculation gives Af,=(1/1—0.010) (10 cps+ 40 cps)=51 cps.
b One recalls, too, that the heat conduction and viscous losses (which
- specify o) increase as w?*, while the radiation loss increases as w? (for
' ka<1). The lower-formant damping is therefore influenced more by
- glottal loss, and the higher-formant damping is influenced more by
i radiation loss.

In this same connection, one is reminded that the glottal resistance

' and inductance (used here as equivalent constant quantities) are actually
i time varying. There is consequently a pitch-synchronous modulation of
| the pole frequencies s, , given in (3.74). That is, as the vocal cords open,
t the damping and resonant frequency of a formant increase, so that with

each glottal period the pole frequency traverses a small locus in the

- complex-frequency plane. This pitch-synchronous change in formant
. damping and tuning can often be observed experimentally, particularly

in inverse filtering of formants. It is most pronounced for the first

formant.

3.73. Effect of Cavity Wall Vibration
The previous discussion has assumed the walls of the vocal tract to

. be smooth and rigid. The dissipative elements of concern are then the

radiation resistance, the glottal resistance, and the viscous and heat
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conduction losses at the cavity walls. The human vocal tract is of course
not hard-walled, and its surface impedance is not infinite. The yielding
walls can consequently contribute to the energy loss in the tract and can
influence the mode tuning. We would like to estimate this effect.

The finite impedance of the tract wall constitutes an additional
shunt path in the equivalent “7™ (or n1) section for the pipe (see Fig. 3.3).
Because the flesh surrounding the tract is relatively massive and ex-
hibits viscous loss, the additional shunt admittance for the frequency
range of interest (i.e., speech frequencies) can be approximated as a
per-unit-length reciprocal inductance or inertance (I,=1/L,) and a
per-unit-length conductance (G,,=1/R,) in parallel'. The modified equiv-
alent “T” section is shown in Fig. 3.26.

Ra/2  La/2 La/z  Rg/2

1
“«-CAVITY WALL

Gy Tw | ADMITTANCE

Fig. 3.26. Representation of wall impedance in the equivalent T-section for a length ! of
uniform pipe

Let us note the effect of the additional shunt admittance upon the
propagation constant for the tube. As before, the basic assumption is
that a plane wave is propagating in the pipe and that the sound pressure
at any cross section is uniform and cophasic. Recall that

y=a+jp=1yz,
where y and z are the per-unit-length shunt admittance and series im-
pedance, respectively. The latter quantities are now

z= (Ra +j w La)
. I,
y=(G,+G,)+j (w C““F) . (3.75)

Again, most conditions of interest will be relatively small-loss situations
for which

R,<wl,

1 For describing the behavior at very low frequencies, a compliance element must
also be considered.
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and
L,
(G¢1-|-Gw)< LOC“—-— .
w
Also, in general, the susceptance of the air volume will exceed that of the

walls and  C,> [,/o. Following the earlier discussion [see Eq. (3.8)] the
attenuation constant for this situation can be approximated by

1 c, 1 L
&~ 24+ <. 3.76
= Ra\/La+2 (Ga+Gw)\/Ca (3.76)
In a like manner, the phase constant is given approximately by
I (0]
>~ — ¥ )==. 3.77
B——w VLa (Ca ZJ—Z) CI ( )

The effective sound velocity ¢’ in a pipe with “massive” walls—that is,
with negative susceptance—is therefore faster than for free space. The
pipe appears shorter and the resonant frequencies are shifted upward.
The effect is greatest for the lower frequencies. The same result can be
obtained more elegantly in terms of specific wall admittance by writing
the wave equation for the cylindrical pipe, noting the radial symmetry
and fitting the boundary impedance conditions at the walls (MORSE).
In addition to the plane-wave solution, the latter formulation also gives
the higher cylindrical modes.

Results (3.76) and (3.77) therefore show that vibration of the cavity
wall contributes an additive component to the attenuation constant, and
when the wall is predominantly mass-reactive, its effect is to diminish
the phase constant or increase the speed of sound propagation. Follow-
ing the previous technique [see Eq. (3.63)], the natural modes for a
uniform tube of this sort are given by

B ETE0LEY

=(anw+jwnw); n=0, 1, 2,....

Suw

(3.78)

To calculate the shunting effect of the walls in the real vocal tract,
it is necessary to have some knowledge of the mechanical impedance of
the cavity walls. Such measurements are obviously difficult and appar-
ently have not been made. An order-of-magnitude estimate can be made,
however, by using mechanical impedance values obtajned for other
surfaces of the body. At best, such measurements are variable, and the
impedance can change appreciably with place. The data do, however,
permit us to make some very rough calculations.
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One set of measurements (FRANKE) has been made for chest thigh
and stomach tissues, and these have been applied previously to es’timate
the wall effect (House and STEVENS, 1958). For frequencies above about
100 cps, the fleshy areas exhibit resistive and mass reactive components
The specific impedances fall roughly in the range 40007000 dyne-sec/cm"':
A typical measurement on the stomach surface gives a specific impedance
that is approximately

Zs=(rs+jxs)=(rs +-Ia) ls)
 =(6500+jw 0.4),
for (27-200) < w < (27-1000).

(3.79)

This specific series impedance can be put in terms of equivalent
parallel resistance and inductance by

2 2

ri+x 21x2
s s . L tXx

I‘P—‘ and pr:jg‘

s s

These specific values (per-unit-area) can be put in terms of per-unit-
lfzngth of tube by dividing by S, the inner circumference, to give

2, .2
_ rS + xs
bt r.S

2 2
and jX,=jltt5
X,

s

R

Therefore,
rS y
G,=—"—— and —ji=_j oLS
s w i'sz + xs2 ’
where,

I,=—
r

7 : (3.80)

Assurr}ing the vocal tract to be unconstricted and to have a uniform
cross-sectional area of 5 cm? (j.e., S=7.9 cm), we can compute the effect
of the wall admittance upon the propagation constant, the formant
bandwidth and formant frequency. According to (3.76) and (3.77), the
wall’s contribution to « and B is ,

o Gul/Le
w=2 C—aa

ﬁwgwl/La (Ca__ zlsS )
rs +xs2

SLY T ] |
ol ey B (3.81)

and
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where the radius of the tube is a=]/A4/n, and the bracketed expression

is the first two terms in the binomial expansion of the radical.
Substituting the measured values of r, and /; and computing «,,, B,

and formant bandwidths at approximately the first three formant fre-

quencies gives'

Frequency %y, By 4af,=

®

500 cps 47%1073  —(1—0011) 50cps
®

1500 cps 3.6x 1073 - (1—0.008) 40 cps

2500 cps 2.5% 1073 % (1—0.006) 30 cps

1 Using ¢=3.5% 10% cm/sec and p=1.14 X 1073 gm/cm?3.

The contribution of wall loss to the formant bandwidth is therefore
greatest at the lowest formant frequency and diminishes with increasing
formant frequency. These computed values, however, when combined
with the previous loss contributions actually seem somewhat large. They
suggest that the walls of the vocal tract are more rigid than the stomach
tissue from which the mechanical impedance estimates were made.

The increase in formant tuning, occasioned by the mass reactance of
the cavity walls, is seen to be rather slight. It is of the order of one per
cent for the lower formants and, like the damping, diminishes with

increasing frequency.

3.74. Two-Tube Approximation of the Vocal Tract

The previous sections utilized a uniform-tube approximation of the
vocal tract to put in evidence certain properties. The uniform tube,
which displays modes equally spaced in frequency, comes close to a
realistic vocal configuration only for the unconstricted schwa sound /s/.
Better insight into the interaction of vocal cavities can be gained by
complicating the approximation one step further; namely, by approxi-
mating the tract as two uniform, cascaded tubes of different cross
section. To keep the discussion tractable and focused mainly upon the
transmission properties of the tubes, we again assume the glottal im-
pedance to be high compared with the input impedance of the tract, and
the radiation load to be negligible compared with the impedance level
at the mouth. This situation is represented in Fig. 3.27.
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Um

Zpsd

Fig. 3.27. Two-tube approximation to the vocal tract. The glottal impedance is assumed
infinite and the radiation impedance zero

For the circuit shown in Fig. 3.27, the mouth-to-glottis volume
current ratio is

Unm _ 1
PR R
Zp2 Zp1 Zp1 Zp1
which reduces to
U, 1

T 1 . (3.82)
® (coshy,ly)(coshy, ;) (1 -f—A—1 tanh yp, I, tanhy, 12)
2

The poles of (3.82) occur for
A,
R tanhy, I, = —cothy, I, . (3.83)
2

If the tubes are lossless, the hyperbolic functions reduce to circular

functions and all impedances are pure reactances. The normal modes
then satisfy
élutan/ilzzcotﬁll. (3.84)
A4,
Because the vocal tract is relatively low loss, Eq. (3.84) provides a simple
means for examining the mode pattern of the two-tube approximation.
For example, consider the approximations shown in Fig. 3.28 to the
articulatory configurations for four different vowels. The reactance func-
tions of (3.84) are plotted for each case, and the pole frequencies are
indicated.

One notices that the high front vowel /i/ exhibits the most disparate
first and second formants, while the low back vowel /a/ gives rise to the
most proximate first and second formants. The neutral vowel /s/, cor-
responding to the unconstricted tract, yields formants uniformly spaced
1000 cps apart. The reactance plots also show that increasing the area
ratio (4,/A4,) of the back-to-front cavities results in a decrease of the
first formant frequency. On the classical F'1 vs F2 plot, the first two
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Fig. 3.29. First formant (¥ 1) versus second formant (¥ 2) for several vowels. Solid points
are averages from PETERSON and BARNEY’S data for real speech uttered by adult males.
Circles are for the two-tube approximation to the vowels shown in Fig. 3.28

vowel plot, the area appropriate to the vowel ju/, has been indicated
for completeness. Because of lip rounding, however, the vowel ju/ can-
not be approximated in terms of only two tubes.

Eq. (3.84) also makes salient an aspect of compensatory articulation.
The mode pattern for I, =a, I,=5b, is exactly the same as for /;=b,
I, =a. In other words, so long as the area ratio for the back and front
cavities is maintained the same, their lengths may be interchanged
without altering the formant frquencies. This is exactly true for the
idealized lossless tubes, and is approximately so for practical values of
loss. This interchangeability is one freedom available to the ventrilo-
quist. It is also clear from (3.84) that if /; =2/,, the infinite values of
cot B/; and tan B/, are coincident (at f/,=mn/2) and indicate the second
mode. The second formant frequency can therefore be maintained con-
stant by keeping the tube lengths in the ratio of 2:1. The same constancy
applies to the third formant if the length ratio is maintained at 3:2.

3.75. Excitation by Source Forward in Tract

As pointed out earlier, fricative sounds (except for /h/) are excited
by a series pressure source applied at a point forward in the tract. It
is pertinent to consider the mouth volume velocity which such an ex-
citation produces.

A previous section showed that for glottal excitation the maxima of
glottis-to-mouth transmission occurred at the natural (pole) frequencies
of the vocal system, and the transmission exhibited no zeros. If excitation
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is applied at some other point in the system, w.ithout altering the net-
work, the normal modes of the response remain t}}e sarne. T.he trans-
mission can, however, exhibit zeros. For thc? series excnatlgn these
seros must occur at frequencies wheref the impedance looking back
[ ree (toward the glottis) is infinite.

homB;hvi:)? L;f ill(ustration fet us retain the simgle two-tube n.lodel gsad
previously. Because the turbulent source foT vo.1cc?1ess souqd is spatlauy
distributed, its exact point of application is fhfflcult to fix. Generally
il can be thought to be applied either at or just forward of the point
ol greatest constriction. The former seems to be more nea.rly the case
for sounds like /[, f, p, k/; the latter for /s, t/. Consider {first the' case
where the source is forward of the constriction. The two-tube mrgmt
is shown in Fig. 3.30. The back cavity 1s ghown closedZ and the 1mé
pedance of the glottis and larynx tube is considered to be high (compare

Fig. 3.30, Two-tube approximation to the vocal tract with excitation applied forward of
s the constriction

to the impedance level of the back cavity) even though the glottis may
be open. The radiation impedance is again considered sm.all compared
with the impedance level at the mouth, and the inherent impedance of
the source per se is considered small. o

The complex frequency (LAPLACE) transform of the transmission
(U,/p,) can be written in the form

M:H(s)G(s), (3.85)

p.(s)
where H(s) is a given in (3.64) and contains all the poles of the system,
and G(s) is a function which includes all Fhe zeros and constants ap-
propriate to nonglottal excitation. In this particular case, U,/p; 18

simply the driving point admittance at the lips. It is
Uy (Zp2 +Zp1+ Za1 +2,2)

Pe Za2(Zp2tZm +zal+za2)+zb2(zb1+za1+za2)

which can be put into the form

. A,
U, 7oy sinhy, [; sinhy, {, (cothyzlz—!——gcothylll)

A
P coshy, I, coshy, [ [1+74itemhyllltanhy2 1,
2

. (3.86)
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The zeros of transmission occur at frequencies which make the numera-
tor zero, and therefore satisfy

A
cothy, l,=—"2 cothy, I,
A4,
or

A
tanhy; ;= —=2 tanhy, I,
A4,
which for lossless conditions reduces to
A,
tanﬂll-—A—ltan/}lz. (3.87)

. As ar(l1 exalmph;, lljet/ us use (3.87) and (3.84) to determine the (lossless)

€ros anc poles of U, /p, for an articulatory shape crud i

of o) Tk . y shape crudely representative
Ay =Tcm?, A,=0.2 cm?

LL=12.5¢cm, [,=25cm.

The pertinent reactance functions are plotted in Fig. 3.31, and the poles
and zeros so determined are listed.

The lower poles and zeros lie relatively close and essentially nullify
one another. The first significant uncompensated zero lies in the vicinity
of 3400 cps, with the first uncompensated pole in the neighborhood of

//&2= 0.2CM 2EROS  POLES
Ar=7cm2y 0CPs 160CPS
N0 1350 1375
28758 2728
\\ 3400 -
Li=12scm~1la=2.5¢m 4100 4080

Is| 5440 5440
—=-- 8650
6800 6950

TANAL, OR COT 31,

TANSL, %
2

Az
A,

-2

TANAL, OR

1000 2000 3000 4000 5000 8000 7000 8000
FREQUENCY IN CYCLES PER SECOND

Fig. 3.31a and b. Two-tut{e approximation to the fricative /s/. The undamped pole-zero
locations are obtained from the reactance plots
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6650 cps. These two features, as well as the near-cancelling pole-zero
pairs, can often be seen in the spectra of real /s/ sounds. For example,
IYig. 3.32 shows two measurements of the natural speech fricative /s/
(Huches and HALLE). For this speaker, the peak in the vicinity of
6000-7000 cps would appear to correspond with the uncompensated
pole, the dip in the vicinity of 3000 cps with the zero. The peak and
valley alternations at the lower frequencies reflect roughly the effect of

RELATIVE ENERGY
N DECIBELS

FREQUENCY IN KILOCYCLES PER SECOND

Fig. 3.32. Measured spectra for the fricative /s/ in real speech. (After HuGHES and HALLE)

pole-zero pairs such as indicated in the reactance diagrams. The meas-
ured spectra presumably include the transformation from mouth volume
current to pressure at a fixed point in space, as described in Eq. (3.40).
The spectra therefore include a zero at zero frequency owing to the
radiation.

To further examine the influence of source position upon the trans-
mission, suppose the turbulent source is applied more nearly at the
junction between the two tubes rather than at the outlet. This situation
is crudely representative of sounds like /f/, /k/ or possibly /[/. In [f/,
for example, the turbulent flow is produced at the constriction formed
by the upper teeth and lower lip. The cavities behind the teeth are large,
and the lips forward of the constriction form a short, small-area tube.
The circuit for such an arrangement is shown in Fig. 3.33. The trans-
mission from source to mouth is

Un Zp2

Pr Z62(Za1+ Zan + Zp1) + Zaz (Zba + Zay + Zaz + Zpy)

A, » Ay —»Um
Py

b Ll—*l"‘-z—

Fig. 3.33. Two-tube approximation to the vocal tract with the source of excitation applied
at the tube junction
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or

U, sinhy, I,

- 01

A i (3.88)
-coshy,l;coshy, I, [1+j‘gtanhyllltanhy2 lz]

The system poles are the same as before, but the zeros now occur at

1
sinhy,1; =0
Zox Y1h s
or
. mnc
sm=(—alcij ] ); m=0,1,2,.... (3.89)
1

Agaxg for the lossless case, the zeros occur for sin $/;,=0, or for
frequencies ,

f,,,=mchs (m=0,1,2,..)
2]1 El 2 R

where the length of the back cavity is an integral number of half wave-
lengths. The zeros therefore occur in complex-conjugate pairs except
for.m=0. The real-axis zero arises from the impedance of the bafk
cavity volume at zero frequency. Specifically, for the lossless situation
at low frequencies, the numerator of (3.88) approaches

wl Al /.
L-"11 w—wC,, where Cl=—LL
0

w-0 Zo1 Zoc  pe ¢t

is the acoustic compliance of the back cavity.

The result (3.89) makes clear the reason that a labio-dental fricative
such as /f/ exhibits a relatively uniform spectrum (devoid of large maxima
and .mlmma) over most of the audible frequency range. A crude approxi-
mation to the articulatory configuration for /f/ might be obtained if the
parameters of Fig. 3.33 are taken as follows: 4, =7 cm?, 4,=0.1 cm?
/;=14 cm,l,=1cm. As before the poles occur for cot B/, = A/A t‘an Bl ’
Because of the large value of 4,/4, and the small value of /, :he polés.
occur very nearly at the frequencies which make cotf/, infini‘;e; namely

[+
fn=n-2—l;—, n=0,1,2,....
(The first infinite value of tanf/ i
[he , occurs at the frequency ¢/4/,, in the
vicinity of 8500 cps.) The zeros, according to (3.89), occur prezcisely at

the frequencies

fmzm > m=0,1,2,»..,

Effects of the Nasal Tract 77

so that each pole is very nearly cancelled by a zero. The transmission
U,,/P, is therefore relatively constant until frequencies are reached where
the value of A4,/A, tan B, has its second zero. This relative flatness is
generally exhibited in the measured spectra of real /f/ sounds such as
shown in Fig. 3.34 (HucHes and HALLE).

If| “rFussy”
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Fig. 3.34. Measured spectra for the fricative /ff in real speech. (After Hugres and HALLE)

3.76. Effects of the Nasal Tract

This highly simplified and approximate discussion of vocal trans-
mission has so far neglected the properties of the nasal tract. The nasal
tract is called into play for the production of nasal consonants and for
nasalizing certain sounds primarily radiated from the mouth. Both of
these classes of sounds are voiced. For the nasal consonants, an oral
closure is made, the velum is opened and the sound is radiated chiefly
from the nostrils. The blocked oral cavity acts as a side branch resonator.
In producing a nasalized vowel, on the other hand, coupling to the nasal
tract is introduced by opening the velum while the major radiation of
sound continues from the mouth. Some radiation, usually lower in
intensity, takes place from the nostrils.

The functioning of the combined vocal and nasal tracts is difficult
to treat analytically. The coupled cavities represent a relatively complex
system. Precise calculation of their interactions can best be done by
analog or digital computer simulation. Nevertheless, it is possible to
illustrate computationally certain gross features of the system by making
simplifying approximations. More specifically, suppose the pharynx cav-
ity, mouth cavity and nasal cavity are each approximated as uniform
tubes. The equivalent network is shown in Fig. 3.35.

Notice that, in general, the parallel branching of the system at the
velum causes zeros of nasal output at frequencies where the driving
point impedance (Z,,) of the mouth cavity is zero, and vice versa. At
such frequencies, one branch traps all the velar volume flow. In particu-
lar for nasal consonants, /m, n, y/, Z,n=co and U,=0. Zeros then
occur in the nasal output at frequencies for which Z,,=0 for the closed
oral cavity. Nasal consonants and nasalized vowels are generally char-
acterized by resonances which appear somewhat broader, or more
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1
S %=0=

k=p,m,n Om

1
tan Bl + tan 1l — c
Z,, P Zon " (3.90)

=Antanfl,+4,tanpl,— 4, cot g1, .

—.~lp=125cm
—————————— +,
“o —=Up

Effects of the Nasal Tract 79

I'he zeros of transmission occur for

zm:0=%cotﬂlm
or
Blu=Qn+l)=, n=0,12,..

or
f=(2n+1)%- (351)

The mode pattern determined by relations (3.90) and (3.91) is shown
in Fig. 3.37. One sees that the first pole of the coupled systems is fairly
low, owing to the substantial length of the pharynx and nasal tract and
the mouth volume. A pole and zero, additional to the poles of the pure
vowel articulation, are introduced in the region of 1000 cps. This mode
pattern is roughly representative of all the nasal consonants in that the
pharynx and nasal tract have roughly the same shape for all. The first
zero falls at approximately 1300 cps in the present example. For the
consonants /n and n/, the oral cavity is progressively shorter, and the
zero would be expected to move somewhat higher in frquency. By way
of comparison, the measured spectrum of a real /m/ is shown in Fig. 3.38
(FANT, 1960). In this measured spectrum, the nasal zero appears to be
reflected by the relatively broad spectral minimum near 1200 cps. The
larger damping and appreciable diminution of spectral amplitude at the
higher frequencies is characteristic of the nasal consonants.
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Fig. 3.37. Reactance functions and undamped mode pattern for the articulatory approxima-
tion to /m/ shown in Fig. 3.36
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Fig. 3.38. Measured spectrum for the nasal coansonant /m/ in real speech. (After FaNT, 1960)

3.77. Four-Tube, Three-Parameter Approximation
of Vowel Production

' To illustrate fundamental relations, the preceding sections have dealt
with very simple approximations to the vocal system. Clearly these
crude repfesentations are not adequate to describe the gamut of articula-
tor){ configurations employed in a language. The approximations can
obviously be made better by quantizing the vocal system into more and
short'er tube sections. For vowel production in particular, one generally
can 1dentjfy four main features in the tract geometry. These are the
bac}( pharynx cavity, the tongue hump constriction, the forward mouth
cavity and the lip constriction (see Fig. 3.1). Approximation of these
features by four abutting tubes gives a description of vocal transmission
substantially more precise than the two-tube approximation., The first
several‘ normal modes of the four-tube model are reasonably good
approximations to the lower formants of real vowels. Such a four-
tube model is illustrated in Fig. 3.39a (adapted from FaNT 1960).

If the glottal impedance is taken as large and the re;diation load
small, the glottal-to-mouth transmission is

U, 1

U, 4 ’
Ul (coshy, l)(ab+cd)

where

=1 Al

a=(1+5" tanhy, I, tanh, lz)
A3

b= 1+A—tanhy3 l3tanhy4l4)
4

4, A (3.92)

C—A—3 (tanh ')’3 l3 +7:*tanh Ya 14)

A
d=7:— (tanh Y1 ll +tanh Y2 lz) .
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Iig. 3.39a and b. Nomogram for the first three undamped modes (F 1, F 2, F 3) of a four-

tube approximation to the vocal tract. (Data adapted from FaANT, 1960.) The parameter

Is the mouth area, 44. Curves 1, 2, 3 and 4 represent mouth areas of 4, 2, 0.65 and 0.16 cm2,

respectively. Constant quantities are 4; = 43 =8 cm2, /4 = 1 cm and 42 = 0.65 cm2. Abscissa
lengths are in cm

'k One notices that if /;=1,=0, Eq. (3.92) reduces to the two-tube relations
- given by Eq. (3.82).

To demonstrate how the first several normal modes of such a cavity
arrangement depend upon configuration, FanT (1960) has worked out
detailed nomograms for several combinations of 4’s and /’s. One of
these is particularly relevant and essentially depicts the scheme followed
by DUNN (1950) in his development of an electrical vocal tract analog.
It is reproduced in adapted form in Fig. 3.39b. The constraints are as
follows: I+, +/;=15cm; I,=1 cm; A;=A,=8 cm?; 4,=0.65 cm?;
and ,=35 cm, provided tube 2 is terminated by cavities on both sides.
The parameters are the distance from the glottis to the center of the
tongue constriction, x, and the mouth area, A,. For very large and very
small values of x, /; and /, are zero, respectively, and the length /, is
varied to satisfy the total length condition. The variation of the first
three normal modes for a range of values of the parameters and for one
value of the tongue constriction (4, =0.65 cm?) are shown in Fig. 3.39b.

These data show that a shift of the tongue constriction from a back
{(x=~3 cm) to a front position (x~9 cm) is generally associated with a
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transition from high F 1-low F2 to low F I-high F 2. (This general ten-
dency was also evident in the two-tube models discussed in Section 3.74.)
Increasing the lip rounding, that is decreasing 4, (as well as increasing I,),

generally reduces the frequencies of all formants. Although not shown ‘4,

here, decreasing the tongue constriction reduces the frequency variations

of the formants with place of constriction. In terms of absolute cps, |
the variations in F1 are generally smaller than those of the higher }

formants. Perceptually, however, the percentage change in formant fre-
quency is more nearly the important quantity. This point will be dis-
cussed further in Chapter VII.

Owing to the substantial coupling between the connecting tubes, a
particular formant cannot be strictly associated with a particular reso-

nance of a particular vocal cavity. The normal mode pattern is a char-

acteristic of the whole coupled system. Numerous efforts have been |
made in the literature to relate specific formants to specific vocal cay-
ities, but this can be done exactly only when the constrictions are so

small in size that the cavities are, in effect, uncoupled. In instances where

the coupling is small, it is possible to loosely associate a given formant
with a particular resonator. The treachery of the association, however,
can be simply illustrated. If a forward motion of the tongue hump
causes a resonant frequency to rise —for example, F2 for 3<x<9cm
in Fig. 3.39 —the suggestion is that the resonance is mainly influenced by
a cavity of diminishing length, in this case the mouth cavity. On the
other hand, the same resonance might be caused to rise in frequency by
a tongue retraction and a consequent shortening of the pharynx cavity —
for example, F 2 for 16> x> 13 cm. It is therefore clear that a given for-
mant may be principally dependent upon different cavities at different
times. It can change its cavity-mode affiliation with changes in vocal
configuration. In fact, its dependence upon the mode of vibration of a
particular cavity may vary.

The four-tube approximation to vowel production implies that vowel
articulation might be grossly described in terms of three parameters,
namely, the distance from the glottis to the tongue-hump constriction, x;
the size of the tongue constriction, 4,; and a measure of lip rounding
such as the area-to-length ratio for the lip tube, 4,/1,. This basis notion
has long been used qualitatively by phoneticians to describe vowel pro-
duction. It has been cast into quantitative frameworks by DUNN (1950),
STEVENS and HOUSE (1955), FANT (1960) and Coker (1968), in connection
with work on models of the vocal mechanism.

As pointed out earlier, DUNN has used the scheme much as repre-
sented in Fig. 3.39, that is, with constant-area tubes approximating the
tract adjacent to the constriction. STEVENS and House and FANT have
extended the scheme by specifying constraints on the taper of the vocal
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tract in the vicinity of the constriction. STEVENS and HOUSE use a para-
bolic function for the area variation, and FANT uses a se?ctlon _ of a
calenoidal horn (i.e., a hyperbolic area variation). Both use fixed dlmer%-
vions for the larynx tube and the lower pharynx. In perceptual experi-
ments with synthetic vowels, STEVENS and HoOUSE find that a reasonably
unique relation exists between the allowed values of x, 4, and 4,/, a.nd
the first three vowel formants. Although these three parameters pr.ov1de
an adequate description of most nonnasal, nonre.troflex, vowe} grtlcula-
tions, it is clear that they are not generally sufficient for describing con-

| monant and nasal configurations.

Later work by CokEer has aimed at a more detailed and physiologi-

j ¢ally meaningful description of the vocal area function. COKER’S artlct
b ulatory model is specified by seven, relatively-orthogonal parameters:
i thc x—y position coordinates of the tongue body; the d§gree and‘thef
place of the tongue tip constriction; the mouth area; the lip protrusion;
. and the degree of velar (nasal) coupling. Each parameter has an asso-
 ciated time constant representative of its vocal feature. This art‘1culatory
model has been used as the synthesis element in an automatic system
E for converting printed text into synthetic speech (CokgR, UMEDA and

. Broman)!.

3.78. Multitube Approximations and Electrical Analogs
of the Vocal Tract

As the number of elemental tubes used to approximate the vocal

i shape becomes large, the computational complexities increase. One gen-

erally resorts to analog or digital aids in solving the network when the
number of approximating sections exceeds about fouF. In egrly work ana-
log electrical circuitry has proven a useful tool for simulating both vocal
and nasal tracts. It has been used extensively by DuNN (1950); STEVENS,
FANT and Kasowski; FANT (1960); STEVENS and HOUSE (195'5, 1956);
and RoseN. The idea is first to approximate the linear propertlf:s of the
vocal mechanism by a sufficiently large number of tube‘ sections and
then to approximate, in terms of lumped-constant electrical element‘s,
the hyperbolic impedances of the equivalent 7 or = ‘netv‘vorks shown in
Fig. 3.3. At low frequencies the lumped-constant circuit .behaves as a
distributed transmission line and simulates the one-dimensional gcouspc
wave propagation in the vocal tract. The number of approximating
tube sections used, the approximation of the hyperbollc.elements., and
the effect of cross modes in the actual vocal tract determine the highest
frequency for which the electrical transmission line is an adequate analog.

1 See further discussion of this system in Chapters V and VI.
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_As §hown previously, the elements of the 7-section equivalent of the
cylindrical tube are

l
z,=Z,tanh yT and z,=Z cschyl.

Taking first-order approximations to these quantities gives
- pl 1

Za=Zo (T) and Zbgzo (W)

1

(a+jpl”
From the relations developed earlier, Z =[(R+) ]

. ' I » Zo=[(R+joL)/(G+jwC)]* and

?P=[(R+jwL)(G+jwC)]*, where R, G, L and C have been given in

(3.93)
Z,ZZo % (a+jp)! =7,

terms of per-unit-length acoustical quantities in Eq. (3.33). The T-ele-

ments are therefore approximately
1
G+joO)l"
In general, the acoustical quantities R,,L,, G,and C, [in Eq. (3.33)]

will not corresponq to practical electrical values. It is usually convenient
to scale the acoustical and electrical impedance levels so that

ZOeszOa

Z,=}(R+joL)l and z,=

or

[Re+ije ¥ kR, +jwkL,|*
G.+joC,| W : (3.94)
k k

By way of inqicating the size of a practical scale constant k, consider
the low-loss situation where

L, L,
Z = € = = a = pc
0 1/ o =kZo, kV Ca]_k (7) , (3.95)

where A is the cross-sectional area of the acoustic tube. A practical
value for Z,, is 600 electrical ohms, and a typical value of A is 8 cm?2.
Therefore k=600/5.3=113, and the mks impedances of the per-unit-
length electrical elements are scaled up by 113 times the cgs impedances
of the per-unit-length acoustic elements,

 Note, too, that Blzolle=ol)/L,C,=wl,)/L,C,. Since the veloc-
ity .of spgnd and the air density in a given length of tube are constant
mamtgmn‘lg‘ the L, C, product constant in the electrical line is equivalen';
tq man‘lta‘mmg constant velocity of sound propagation in the simulated
pipe. Similarly, changes in the pipe area A are represented by propor-
tional changes in the C,/L, ratio.
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The electrical simulation is of course applicable to both vocal and
nasal tracts. Choice of the elemental cylinder length /, the electrical
scile constant k, and a knowledge of the cross-sectional area A along
the tract are the only parameters needed to determine the lossless ele-
ments of the transmission line. An estimate of tract circumference along
its length is needed to compute the viscous and heat conduction losses
(R and G). The radiation loads at the mouth and nostrils are obtained
hy applying the electrical scale constant to the acoustic radiation im-
pedances obtained earlier in the chapter. It is likewise possible to apply
these techniques to the subglottal system and to incorporate it into
the electrical simulation. At least four designs of electrical vocal tracts
have been developed for studying vocal transmission and for synthe-
sizing speech (DUNN, 1950; STEVENS, FANT and Kasowskr; FANT, 1960;
ROSEN). At least one design has been described for the subglottal system
(VAN DEN BERG, 1960).

The digital computer is also an exceedingly effective tool for analyzing
multi-tube approximations to the vocal tract. Its ability to carry out
complex calculations at high speed makes the solution of 20 or 30-sec-
tion approximations to the tract almost elementary. At least two com-
puter programs for calculating transfer functions and normal modes for
multitube approximations have been used (FANT, 1960; MATHEWS and
WALKER).

Another approach has been to represent the cylindrical sections in
terms of the reflection coefficients at their junctions (KELLY and LocH-
BAUM ; MERMELSTEIN ; STRONG). This simulation also produces a response
which, after digital-to-analog conversion, represents the speech waveform.
It therefore can be used effectively as a synthesizer.

In another study of speech synthesis a computer program has been
derived that is the difference equation equivalent of the multi-section,
bilateral transmission line (FLANAGAN and LANDGRAF). This formulation
allows computation of instantaneous pressure and velocity along the
transmission line, including the sound pressure radiated from the mouth.
When supplied a time-varying area function representative of realistic
articulation, its calculated output represents samples of the synthesized
speech waveform. Both analog and digital representations of the vocal
system will be considered further in a later discussion on speech syn-

thesis.

3.8. Fundamentals of Speech and Hearing
in Analysis-Synthesis Telephony
The preceding sections have set forth certain basic acoustic principles
for the vocal mechanism. Not only do these relations concisely describe
the physical behavior of the source of speech signals, but they imply a
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good deal about efficient communication. They suggest possibilities for
coding speech information in forms other than merely the transduced
pressure wave. The normal mode and excitation relations, for example,
indicate a schema on which an analysis-synthesis transmission system
might be based. The same can be said for describing the vocal tract by
articulatory parameters. Both results reflect constraints peculiar to the
speech-producing mechanism,

As yet, however, the properties of hearing and the constraints ex-
hibited by the ear have not entered the discussion. The next chapter
Proposes to establish certain fundamental properties of the mechanism
of hearing—so far as they are known. The exposition will follow a pat-
tern similar to that of the present chapter. The results of both funda-
mental discussions will then be useful in subsequent consideration of
speech analysis and speech synthesis,

IV. The Ear and Hearing

The ultimate recipient of information in a speech communication
link usually is man. His perceptual abilities dictate the precision with
which speech data must be processed and transmitted. These abilities
essentially prescribe fidelity criteria for reception and, in effect, deter-
mine the channel capacity necessary for the transmission of voice mes-
sages. It consequently is pertinent to inquire into the fundamental mecha-
nism of hearing and to attempt to establish capabilities and limitations
of human perception.

As suggested earlier, speech information — originating from a speaker,
traversing a transmission medium and arriving at a listener — might be
considered at a number of stages of coding. On the transmitter side, the
stages might include the acoustic wave, the muscular forces manipulating
the vocal mechanism, or the physical shape and excitation of the tract.
On the receiver side, the information might be considered in terms of
the acoustic-mechanical motions of the hearing transducer, or in terms
of the electrical pulses transmitted to the brain over the auditory nerve.
Characteristics of one or more of these codings might have application
in practicable transmission systems.,

The previous chapter set forth fundamental relations between the
acoustics and the physiology of the vocal mechanism. We will sub-
sequently have occasion to apply the results to analysis-synthesis tele-
phony. In the present chapter we wish to establish similar relations for
the ear. Later we will utilize these in discussions of auditory discrimina-
tion and speech perception.
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4.1. Mechanism of the Ear

The acousto-mechanical operation of. the periphera} ear has b;:grﬁ .pu:
on a rather firm base. This knowledge is <'iue primarily to 'Fhﬁ hn 1:11;1S
cxperiments carried out by G.voN BEkESy, and for wlinc 1 g :vis
awarded the Nobel Prize in 1961. In contrast, present <DOW. ecﬁani-
relatively incomplete about inner-ear processes for conve}:lrtlng me hank
cal motion into neural activity. Still less is kno“{n about the tr‘ansmf on
of neural information to the brain and the ultimate mechanism of p
ception. ' .

pDespite these difficulties, it is possiple to qyan‘ufy certa{n ?gfef};[:
of perception without knowing in Qeta11 what is going 9bn d1ns1 P
“black box”. Subjective behavior, in response to prescri det au Se}:
stimuli, can of course be observed and measureq, apd such data IanreS gme
ful guideposts in the design of speech communlcatlo.n systznz;. Some
instances the correlations between perceptual behav1o§ an1 evli)dgnce
logical operation of the peripherall.eart car&ri):ni)lsﬁz(irlsrzafl fiifgeof aUdi;
iscussion aims to indicate ¢ :
Z)Ig I;)I:;:inotl(;i; and psychoacoustic bt?havior, and to illustrate the ex-
tent to which the two can be brought into harmon)f. .
The primary acoustic transducer 9f the human is shfowlil sc?e;rlllagfé
ally in Fig. 4.1. The acousto-mechanical corpponents of t ; (o} gt n ar
conventionally divided according to three regions, namely, the oute ,
the middle ear, and the inner ear.

OUTER MIDDLE INNER
EAR EAR EAR

VESTIBULAR APPARATUS
“WITH SEMICIRCULAR CANALS

HAMMER
MALLEUS)

- MEMBRANE) . -
.7 OVAL wINDOW
© - 'ROUND WINDOW °
" EUSTAGHIAN TUBE *

NASAL CAVITY

i i i ions.

Fig. 4.1. Schematic diagram of the human ear showing ot}ter, mxddle'zrc\ﬁie 1:;e;t:3§tures
T;lge. d.ra.wing is not to scale. For illustrative purposes the inner and mi

are shown enlarged



