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secpons, lend further support to the link. Psychological and physio-
logical experimentation continue to serve jointly in expanding knowi-
edge about the processes involved in converting the mechanical motions
of the inner ear into intelligence-preserving neural activity,

The physiological-psychoacoustic correlations which have been put
fprward here have involved only the simplest of signals— generally
signals that are temporally punctuate or spectrally discrete, or both,
Furthermore, the correlations have considered only gross a,nd salien£
fegtures of. these signals, such as periodicity or time of occurrence. The
primary aim has been to outline the peripheral mechanism of th.e ear
and to ‘connect it with several phenomena in perception. Little has
been said about classical psychoacoustics or about speech perception
As the st.imuli are made increasingly complex—in the ultimate speecli
mgna!s—lt seems clear that more elaborate processing is calfed into
play in perception. Much of the additional processing probably occurs
centrally in the nervous system. For such perception, the correlations
that presently can be made between the physiological and perceptual
domains are relatively rudimentary. As research goes forward, however
these links will be strengthened. , ,
. The literature on hearing contains a large corpus of data on sub-
Jective response to speech and speech-like stimuli. There are, for ex-
ample, detgrminations of the ear’s ability to discriminate featlires such
as vgwel pitch, loudness, formant frequency, spectral irregularity and
the hke_. Such data are particularly important in establishing criteria for
the dgsrgn of speech transmission systems and in estimating the channel
capacity necessary to transmit speech data. Instead of appearing in this
chapter, comments on these researches have been reserved for a later,

more gpplied discussion where they have more direct application to
transmission systems.

V. Techniques for Speech Analysis

The earlier discussion suggested that the encoding of speech infor-
mat'lon might be considered at several stages in the communication
chain. On the transmitter side, the configuration and excitation of the
vocal tract constitute one description. In the transmission channel, the
transduced acoustic waveform is a signal representation comm’only
encountered. At the receiver, the mechanical motion of the basilar
membrane is still another portrayal of the information. Some of these

dpscriptions exhibit properties which might be exploited in communica-
tion.
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Efforts in speech analysis and synthesis frequently aim at the effi-
cient encoding and transmission of speech information®!. Here the goal
is the transmission of speech information over the smallest channel
capacity adequate to satisfy specified perceptual criteria. Acoustical and
physiological analyses of the vocal mechanism suggest certain possibil-
ities for efficient description of the signal. Psychological and physio-
logical experiments 1n hearing also outline certain bounds on perception.
Although such analyses may not necessarily lead to totally optimum
methods for encoding and transmission, they do bring to focus impor-
tant physical constraints. Transmission economies beyond this level
generally must be sought in linguistic and semantic dependencies.

The discussions in Chapters II and III set forth certain fundamental
relations for the vocal mechanism. Most of the analyses presumed
detailed physical knowledge of the tract. In actual communication prac-
tice, however, one generally has knowledge only of some transduced
version of the acoustic signal. (That is, the speaker does not submit to
measurements on his vocal tract.) The acoustic and articulatory para-
meters of the preceding chapters must therefore be determined from the
speech signal if they are to be exploited.

This chapter proposes to discuss certain speech analysis techniques
which have been found useful for deriving so-called ““information-bearing
elements” of speech. Subsequent chapters will consider synthesis of
speech from these low information-rate parameters, perceptual criteria
appropriate to the processing of such parameters, and application of
analysis, synthesis and perceptual results in complete transmission

systems.

5.1. Spectral Analysis of Speech

Frequency-domain representation of speech information appears
advantageous from two standpoints. First, acoustic analysis of the vocal
mechanism shows that the normal mode or natural frequency concept
permits concise description of speech sounds. Second, clear evidence
exists that the ear makes a crude frequency analysis at an early stage in
its processing. Presumably, then, features salient in frequency analysis
are important in production and perception, and consequently hold
promise for efficient coding. Experience supports this notion.

Further, the vocal mechanism is a quasi-stationary source of sound.
[ts excitation and normal modes change with time. Any spectral measure
applicable to the speech signal should therefore reflect temporal fea-
tures of perceptual significance as well as spectral features. Something
other then a conventional frequency transform is indicated.

1 Other motivating objectives are: basic understanding of speech communica-
tion, voice control of machines, and voice response from computers.
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5.11. Short-Time Frequency Analysis

The conventional mathematical link between an aperiodic time func-
tion f(¢) and its complex amplitude-density spectrum F(w) is the Fou-
rier transform-pair

F(w)= }cf(t)e‘““‘dz

1 @ . 5.1
.I'(t)=ﬁ_j Fw)e'*'do.

o

For the transform to exist, ||f(¢)| ¢ must be finite. Generally, a con-

tinuous speech signal neither satisflies the existence condition nor is
known over all time. The signal must conscquently be modified so that
its transform exists for integration over known (past) values. Further,
to reflect significant temporal changes, the integration should extend
only over times appropriate to the quasi-steady clements of the speech
signal. Essentially what is desired is a rumning spectrum, with real-time
as an independent variable, and in which the spectral computation is
made on weighted past values of the signal.

Such a result can be obtained by analyzing a portion of the signal
“seen” through a specified time window, or weighting function. The
window is chosen to insure that the product of signal and window is
Fourier transformable. For practical purposes, the weighting function
A(¢) usually is the impulse response of a physically-realizable linear
system. Then, 4(#)=0; for t<0. Generally /(r) is desired to be unipolar
and is essentially the response of a low-pass filter. The Fourier transform
(5.1) can therefore be modified by transforming that part of the signal
seen through the window at a given instant of time. The desired opera-
tion is

3
Flo,)= | f)h(t—=2)e i°*da,
— 0
or,

F(o, t):e‘f‘“}of(t—z)h(/l)emdx. (5.2)
0

The signal, with its past values weighted by #(z), is illustrated for a
given instant, 7, in Fig. 5.1.

The short-time transform, so defined, is the convolution
[f(H)e ' xh(t)], or alternatively, e~ I®'[f(t)xh(t) e *1].
If the weighting function A(f) is considered to have the dimension sec™’
(i.e., the Fourier transform of 4(¢) is dimensionless), then |F(w, t){ is a
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chosen so that 4(0)=1 and
1 ¢ ;
l — Jwot
f@ Tﬁ_{OF(w,t)e dw

X:;Z?oliirs a pleasing parallel to the conventional infinite-time Fourjer
. The inversion implies that /1 (#) can be determined for the same points
in tm.le that F(w, 1) is known, provided F(w, t) is known as a contifluo

function of frequency. However, in cases where the product funct'us
[f(i) h(t—2)] is of finite duration in A (say owing to a finite durat¥0r1
window) then .samples of the waveform J(t) may be recovered exaéan
from §amples In o of Flw, 1) (WEINSTEIN). Discrete-frequency continy
uous-time values of the short-time transform, F(w,, 1), are of ;rti | .
Interest and will find applications in later discussi'(l;ns.’ P

5.12. Measurement of Short-Time Spectra
We notice that (5.2) can be rewritten

F(w, t)=_j;of(}t)cosw,lh(t—i)dl~j ft SA)sinwAh(t—2)d i (5.3)

=[a(w, )—jb(w, nj.
Further,
[F(w, )| =[F(w, t) F*(w, H]*

=(£12+b2)% (54)
and

Ho, ty=tan" " bja,
yvhere F*(w, t) is the complex conjugate of F(w, ). Note that [F(w, t)|
18 a scalar, whereas F(w, t) F*(w, t) is formally complex, and t,hat

2 ;
[F(w, 1)|? is the short-tlme power spectrum. The measurement of | F. (w, 1))
can therefore be implemented by the operations shown in Fig. 5.2. ’

cos wt

FILTER |a(wnt)
hit) SQUARER

2
r/'
" i
ROOT
[Flwt)]
| FILTER |blad)|

hit) SQUARER

— _

Fig. 5.2. A method for measuring the short-time amplitude spectrum |F(w, )

sinwt
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The frequency-domain interpretation of these operations is apparent.
The heterodyning (or multiplication by cos w? and sin wt) shifts (or
translates) the spectrum of f{¢) across the pass-band of filter /(¢). The
latter is normally a low-pass structure. Frequency components of f(z)
lying close to @ produce difference-frequency components inside the
low-pass band and yield large outputs from the /(z) filter. Quadrature
versions of the shifted signals are squared and added to give the short-
time power spectrum |F(w, t)|?.

Alternatively, Eq. (5.2) can be written

F(w, t):e_j“”{}of(t—i)h(/l)coswldﬁ+j_o[of(t—i)h(,l)sina)id}t}
0 0

=[a'(w, )+ jb'(w, e 7" (5.5)

The alternative measurement of |F(w, t)|=[a’?+ b'?]? can therefore be
effected by the operations in Fig. 5.3.

B a'lwt)
2 s

[ [I— ]F((U,T-)‘z
/ -

SQUARE
ROOT

f(t)
L |F (w,t)]

FiLrer | Blat)

hit) sinwt [

Fig. 5.3. Alternative implementation for measuring the short-time amplitude spectrum
|F(w, 9

Again, in terms of a frequency-domain interpretation, the measure-
ment involves filtering by phase-complementary band-pass filters cen-
tered at w and having bandwidths twice that of the low-pass /(¢) func-
tion. The outputs are squared and added to produce the short-time
power spectrum |F(w, t)|°. Both filters have impulse responses whose
envelopes are the time window, /(¢). As many pairs of filters are required
as the number of frequency values for which the spectrum is desired.
Notice, too, that for both methods of measurement (i.e., Figs. 5.2 and
5.3) if the input signal f(¢) is a unit impulse the short-time amplitude
spectrum is simply /(?), the weighting function.

It is common, in experimental practice, to minimize equipment com-
plexity by making an approximation to the measurements indicated in
Figs. 5.2 and 5.3. The desired measurement |F(w,?)|=[a'*(w, )+
b'?(w, 1)]? is essentially the time envelope of either @’(w, 1) or b'(w, t).
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The time envelope of a Fourier-transformable function u(t) can be
defined as

eM=[u*(+a*(H)]}, where & (t)=[u(t) * %]

is the Hilbert transform of u(t). One can show that u@v\(t):u(t) ()=
u(t) v(r), provided the spectra of u(r) and v(¢) do not overlap.

Making use of these relations, and the possibilities for interchanging
orders of integration in the convolutions, one notices that

a'(w, )=[f(#) x h(f)cos w]
d (o, 1)=|:a’(a), t)* ;1?]
—f(5)s [h(z) cost }17] (5.6)

=f(®)*[h()sinwt]
=b'(w, 1),

provided the spectrum of A(¢) does not overlap . The quantity |F(w, 1)|
is therefore essentially the time envelope of either a'(w, 1) or b'(w, 1).
The envelope can be approximated electrically by developing the enve-
lope of either filter branch in Fig. 5.3. This is conventionally done by
the linear rectification and low-pass filtering indicated in Fig. 5.4. If the
impulse response of the low-pass filter is appropriately chosen, the out-
put [ f(r)*p(#)|*q(r) approximates |F(w, nl.

The measurement method of Fig. 5.4 is precisely the one used in the
well-known Sound Spectrograph and in most filter-bank spectrum ana-
lyzers. In particular, it is usually the method used to develop the short-
time spectrum in vocoders and in several techniques for automatic
formant analysis. All of these applications will be discussed in further
detail subsequently. As a present example, however, Fig. 5.5 shows
successive short-time spectra of a voiced speech sample as produced by
a bank of 24 filters. The filters are approximately 150 cps wide, and
cover the frequency range 150 to 4000 cps. Each filter is followed by
a rectifier and an R-C network. The filter bank is scanned every 10 msec
and the short-time spectrum plotted. High-frequency emphasis is used
on the input signal to boost its level in the high-frequency end of the

ale,t) o .
v ilten [ Dlat) RECTIFIER FiTeR o [ (e t)]
pt) alt)

Fig. 5.4. Practical measurement of the short-time spectrum |F(w, f)] by means of a band-
pass filter, a rectifier and a smoothing network
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Fig. 5.5. Short-time amplitude spectra of speech measured. by.a bank of 24 barid-pass

filters. A single filter channel has the configuration shown in Fig. 5.4. The spectra S((:laltls

are spaced by 10 msec in time. A digital computer was used to plot the spectra and to
automatically mark the formant frequencies. (After FLANAGAN, COKER and BIRD)

spectrum. The filter-bank output is fed into a digital computer through
an analog-to-digital converter, and the spectral scans are plotted agto-
matically by the computer (FLANAGAN, COKER, and BI.RD). jhe lines
connecting the peaks represent speech formant frequenmes which were
automatically determined by computer processing of the short-time
spectrum.

5.13. Choice of the Weighting Function, h(f)

In speech applications, it usually is desirable t:or the short—t.ime
analysis to discriminate vocal properties such as voiced and unv01c.ed
excitation, fundamental frequency, and formant structure. The choice
of the analyzing time window A(#) determines the compromise maQe
between temporal and frequency resolution. A time w1n}jow short in
duration corresponds to a broad band-pass filter. It may yield a spectrz}l
analysis in which the temporal structure of indiviqual vocgl periods is
resolved. A window with a duration of several pitch periods, on the
other hand, corresponds to a narrower bandpass filter. It may produce
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=1; _(wo+w1)§w§—(wo‘w1) (5.7
=0; elsewhere.

The impulse response of the filter is therefore

5 .
p(t)=( wl) (smcolt) cos @y t

T Wt

(5.8)
=h(t)cosw, ¢,

lfmd tlhe time window for ~this ideal filter is the sin x/x envelope of the
mé).u S¢ response. If the time between initial zeros of the envelope is
j)r 1t2rar11y taken as the effective duration, D, of the time window I'Zhen
= njw, =4n,{A @, where Aw=2w, is the bandwidth of the filter'. Th
D’s corresponding to several Aw’s are e

_ O
Condition dof2n D
(cps) (msec)
03] 50 40
) 100 20
3) 250 8
-_

th Eondltiqn (1) is an analyzing bandwidth commonly used to resolve
€ harmonic spectral components in voiced portions of speech. For this

bandwidth, the duration i i
. , of the time window s i
pitch periods of a man’s voice. puns about four or five

Filter conditions analogous to both (1) and (3) are employed in the well-

known Sound Spect : . ) !
section. pectrograph which will be discussed in the following

e ) . .
Sometimes one-half this value is taken as the effective window duration
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The middle condition (2) is a sort of time-frequency compromise for
speech. It is a filter width which has been found useful in devices such
as vocoders and formant trackers. The short-time spectra already shown
in Fig. 5.5 are representative of this resolution.

In passing, it is relevant to estimate the effective time window for the
mechanical short-time analysis made by the basilar membrane in the
human ear. From the earlier discussion in Chapter IV', a reasonably
good approximation to the displacement impulse response of the basilar
membrane, at a point maximally responsive to radian frequency f, is

p(=(B1)* e #"%sin ft
=h,,()sinft.

The time window for the basilar membrane, according to this model-
ing?, is the “*surge” function plotted in Fig. 5.6. One notices that the

-

(5.9)

le MAX
! | L
E) 10 12

o L
° 2 4

6
e=pt

Fig. 5.6. The effective time window for short-time frequency analysis by the basilar mem-
brane in the human ear. The weighting function is deduced from the ear model discussed
in Chapter IV

time window has a duration inversely related to f. It has its maximum
at t,.,=4/B. If, as a crude estimate, 2¢,,, 1s taken as the effective dura-
tion D of the window, theun for several membrane places:

ﬁ/ZTL' D=2 tmax

(cps) (msec)
100 12.0

1000 1.2

5000 0.2

For most speech signals, therefore, the mechanical analysis of the
ear apparently provides better temporal resolution than spectral resolu-

I See also the ““third” model described in FLANAGAN (1962a).
2 Eq. (5.9) does not include the effects of the middle ear. See Chapter IV for

these details.
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frequency of the carrier. The carrier frequency control is mechanically
geared to the magnetic disc so the signal spectrum is progressively
analyzed upon repeated rotations of the disc.

With SW2 in the spectrogram position, the output current of the
bandpass filter is amplified and passed to a stylus whose vertical motion
1s geared to the magnetic disc and the carrier control (or to the effective
requency position of the bandpass filter). The stylus is in contact with
an electrically sensitive facsimile paper which is fixed to a drum mounted
on the same shaft as the magnetic disc. Electrical current from the
stylus burns the paper in proportion to the current magnitude. The
paper therefore acts as the full-wave rectifier of Fig. 5.4, and the finite
size and spreading of the burned trace perform the low-pass filtering.
The density of the burned mark is roughly proportional to the logarithm
of the current magnitude. Because of the mechanical linkage, the stylus
and carrier move slowly across the frequency range of the signal as the
magnetic disc rotates, and a time-intensity-frequency plot of the signal
is “painted” on the paper.

Two widths of the bandpass filter are conventionally used with the
instrument, 300 cps and 45cps. The time-frequency resolution of the
analysis is essentially determined by these widths. As discussed in the
preceding section, the wide pass-band provides better temporal resolu-
tion of speech events, while the narrow band yields a frequency resolu-
tion adequate to resolve harmonic lines in voiced utterances. A typical
spectrogram made with the 300 cps wide analyzing filter is shown in the
upper diagram of Fig. 5.8. As previously indicated, the abscissa is time,
the ordinate is frequency, and darkness of the pattern represents in-
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Fig. 5.8a and b. (a) Broadband sound spectrogram of the utterance ‘‘ That you may see”’.
(b) Amplitade vs frequency plots (amplitude sections) taken in the vowel portion of “that”
and in the fricative portion of ““see”. (After BARNEY and DUNN)
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tensity. Several speech features are indicated. Note that the time reso-
lytion is such that vertical striations in the voiced portions show the
fundamental period of the vocal cords.

The facsimile paper is capable of depicting an intensity range (from
lightest gray to darkest black) of only about 12 db (PRESTIGIACOMO,
1957). 1t often is desirable to examine amplitude spectra over a greater
intensity range. A means is therefore provided for making a frequency-
versus-amplitude portrayal at any given instant along the time scale.
For this operation, SW 2 in Fig. 5.7 is put to the section position. A cam
is placed on the drum periphery at the time of occurrence of the sound
whose amplitude section is desired. The functions of the carrier and
stylus are as previously described.

The sectioner contains a full-wave rectifier, an R-C integrator and a
biased multivibrator. In one version of the apparatus, as the magnetic
disc and drum rotate, the cam closes the section switch at the desired
instant in the utterance. The value of the short-time spectrum at this
instant is effectively “read” and stored on a capacitor in the input
circuit of a biased multivibrator. The multivibrator is held on (i.e., free
runs) until the capacitor charge decays to a thresheld value, The multi-
vibrator then turns off. During its on-time, it delivers a marking current
to the stylus and (because of the exponential decay) the length of the
marked trace is proportional to the logarithm of the smoothed output
of the analyzing filter. Because the stylus is scanning the frequency
scale with the filter, an amplitude (db)-versus-frequency plot is painted
for the prescribed instant.

Amplitude sections are usually made with the 45 cps (narrow band)
filter. Typical sections taken in a vowel and in a fricative are shown in
the lower half of Fig. 5.8.

Because the speech sample must be played repeatedly as the analyzing
filter scans its band, the time to produce the complete spectrogram is
appreciable. Common practice is to shorten the analyzing time by play-
ing back at several times the recording speed. A typical value, for ex-
ample, is a speed-up of three-to-one. A recorded bandwidth of 100 to
4000 cps is therefore multiplied to 300 to 12000 cps. If the analyzing
bandpass filter is centered at, say, 15000 cps, then the carrier oscillator
may scan from 15000 to 27000 cps. Depending upon frequency range
and technique, one to several minutes may be required to analyze a
2.5 sec speech sample. In the course of the analysis the sample may be
played back several hundred times. A common figure for the filter
advance is of the order of 20 cps/playback.

The manner in which broadband spectrograms highlight vocal modes,
or formants, for various articulatory configurations is illustrated in
Fig. 5.9. Articulatory diagrams for four vowels, /i, ®, a, u/ and their cor-
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responding broadband (300 cps) spectrograms are shown. The dark
bands indicate the spectral energy concentrations and reflect the vocal
modes for a given configuration. (These spectrograms can be compared

with the calculated mode patterns for similar vowels in Figs. 3.28 and ‘

3.29 of Chapter I11.)

Typical of the research uses to which this type of spectrographic

display has been put is a large-scale study of vowel formant frequencies,
amplitudes, and pitches for a number of different speakers (PETERSON
and BARNEY). The results of this study for 33 men give the mean for-

mant frequencies for the English vowels as plotted in Fig. 5.10. The |

vowels were uttered in an /h—d/ environment.
Numerous “relatives” of the sound spectrograph — both predecessors

and successors—have been designed and used, each usually with a ¢
specific purpose in mind. These devices range from scanned filter banks §
to correlation instruments. In a short space it is not possible to mention

many of them. One variation in the spectrographic technique is the so-
called ““resonagraph” (HUGGINS, 1952). This device is designed to de-

lineate formant frequencies and to suppress nonformant energy. Another

modification displays the time derivative of the spectral amplitude,
rather than simply the amplitude (MEYER-EPPLER, 1951; Kock and
MILLER). The effect is to emphasize dynamic time changes in the spec-
trum and to suppress quasi-steady portions. Features such as stop con-
sonants or formant transitions are therefore more sharply delineated.

An even closer relative is the so-called visible speech translator
(DupLEy and GRUENZ; RiEsz and ScHOTT) in which the conventional
sound spectrogram is painted electronically in real time, either on a
moving belt coated with luminescent phosphor, or on a rotating cathode
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Fig. 5.10. Mean formant frequencies and relative amplitudes for 33 men uttering the
English vowels in an /h—d/ environment. Relative formant amplitudes are given in db re
the first formant of /o/. (After PETERSON and BARNEY as plotted by Haskins Laboratories)
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ray tube. A still different variation is the correlz;ltograph (BElt\INETrTr,e 11219»[153 r,l
: : i itude of the short-time autoco :
RippuLPH) which plots the magnitu !
function o)f the signal in trace density, the delay parameter on the ordi
ate, and time along the abscissa. . . . _ ]
" Several schemes for quantizing the intensity dl(nléensmn olf9;1§<.e ;c;r::
i been described ERSTA, : -
ventional spectrogram have also . 1 ST, 1 the
is to yield a “topological map

sTigitAcomo, 1957). The result 1s eld

:iTgnal in which intensity gradients are sndicated by the closeness of the

contour lines.

5.15. Short-Time Correlation Functions and Power Spectra

If x(f) is an on-going stationary random signal, its autocgrrlzzlztlzn
function () and its power density spectrum @ (w) are linked Dy

Fourier transforms (WIENER; LEE).
[
— lim — § x(yx(t+0)dt
¢(0) lim 57 _]T

=21/' { D) do

T

and }
o(w)= | p(rye i dr. (5.10)

[Note that @(0) is the mean square value, or average power, of the

ignal. . .
SIgn12:101 an aperiodic Fourier-transformable signal, y(), parallel relations

i i trum
link the autocorrelation function iy () and the energy density spectr

¥{(w). )
Y= | yOytt+ndt
=§1;jn‘1’(w)e"“”dw (5.11)
@)= | p@eTds,
where ) B
P(w)=Y(w)Y*(»), and Y(w)z_jwy(t)e jotgy.
[Note that

0= | Ve)do

is the total energy of the signal.]
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In both cases the correlation functions are real and even functions
of the delay parameter 7, and the spectra are real and even functions
of the frequency w. All of the transforms can therefore be written as

cosine transforms. These transform-pairs suggest the possibility of deter- i
mining short-time spectral information by means of correlation techni- ;

ques, provided the latter can be extended to the short-time case.
In the preceding discussion on short-time spectral analysis, the
approach was to analyze a Fourier-transformable “piece’ of the signal

obtained by suitably weighting the past values. The correlation relations |
for aperiodic functions can be similarly extended to this description of

the speech signal. According to the earlier derivations, at any instant 7

the following transforms are presumed to hold for the speech signal f(¢),

Flo,n= | [ h(~2e " ds

L Dhi=D]=5= [ Flw,ne* do,

where A(t) is the weighting function. Then, formally,
Yo = | fIYRG@-DfA+Dh(t—A—-1)dA

w(t, t)=?]n— [ Y, e dw (5.13)

Y(w, t)=[F(w, ) F*(w,)]= | ¥(r,Ne 7 “"dz.
Practically, for real time measurement at time ¢, f(r+1) for >0 is
not known. [For a fixed over-all delay (comparable to the window
duration) t may be considered to be a differential delay.] However,
W (7, 1) is formally an even function of 7. It can therefore be defined in
terms of negative 7 so that

0 (4]
Yo, )= [ Y(r,0)e 7" dr=2 | Y(r,)coswtdr, (5.14)

where ¥ (w, t) is also an even function of w.

Thus a short-time autocorrelation measure, related to the short-
time power spectrum |F(w, t)|? by the aperiodic transform, can be made.
Techniques for the measurement of |F(w, f)|*> have already been de-
scribed in Section 5.12. Measurement of (z, #) for negative 7 can be
effected by the arrangement shown in Fig. 5.11. The individual output
taps from the delay lines are weighted according to 4(¢). Corresponding
points (in the running variable 1) are multiplied, and the integration is

(5.12)

i 7
Short-Time Correlation Functions and Power Spectra 15

h(t) winpow
i\__,;:t
1A
DELAY LINE >26

>

Ft) o

DELAY LINE }Zo
7h(t) WINDOW
[/\__'—-t

. . . ;
Fig. 5.11. Method for the measurement of the short-time correlation function y (7, 1)

approximated as a finite sum®. Y (7, 1) is therefore a running correlation

which is related to |F(w, H? or ¥(w, t) by a Fourier Fransfforril_.o N
It is also possible to define a short-time correlation Tunction p

duced by weighting the product of the original signal and the signal
delayed (FaNo). The defining relation s

t
ot h= | fAYfG+TIK(E=2)d2, (5.15)
s the weighting function. The measure is ee}sily
the circuit shown in Fig. 5.12. This technique
lly to measure correlation functions for speech

where k(1)=0, <0 i
implemented for 70 by
has been used experimenta
sounds (STEVENS, 1950; KRAFT; BIDDUL?H).

In general, no simple transform relation

measurable short-time power spectrum. U

exists between @ (7, 1) apq a
nder the special condition

DELAY

LOW~PASS)
FILTER #(nt)
f(t) k) |

. . . . 1
Fig. 5.12. Circuit for measuring the running short-time correlation function ¢(7, 1)

1 The operations of Fig. 5.11 compute

Y Oy= | ft— D) W ft— 3= 7) A+ i,
Q

for negative 7, instead of the form given in Eq. (5.13).
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k(’)=206 —2at__ 2
Flo, t)]"-,e [2(1)1*, however, ¢(t, 1) can be related to Y(w, t)=

v(r, t)=__Lf(/l)h(t—/"t)f(/1+r)h(t—}t—r)d/1

t
=e”__]. 2“/‘(/{)]"(,{-’—1)e-za('_i)d/l (5.16) v

="o(1,1); 1<0.

But as previously argued, Y (z, f) is an even function of 7, and if ¢(z £) |

is defined i -
as an even function, then y (r, f)=e¢ o (z, 1) for al

o, )=y (c, 1)
ea[r] ©

=57 | ¥o,ne  do,

and

o, )= [ el o(r, fhe it g,

. (5.17a
=_j e o1, Heoswrdr. )
It also follows that -

1
Hlo, )= [F (eI}« # (o1, )]

I

2n

1 20

2n m) * O (o, t)] (5.17b)
1.

=5 UH()* + d(w, 1],

where #denotes the Fourier transform.

o tll"]hus the short-time power spectrum Y(w, ¢t) is the real convolution
(2a/a2e+1;§)2\;fe; (spect;rltlgl Qfﬁ(a), ) with the low-pass energy spectrum
. Y(o, erefore has poorer spectral resolution
: . than th
(I;c;t)lilzr_attrar}iform of o(r, t)' [ie., ®(w,1)]. Note also that for h(t)=e
e jmplju Sle (w, 1)| is essentially measured by single-resonant circuits
response temt ~at g
B ponses [(2a)* e™* cos w1] and [2e)* e~ sin w1]. (See
i r\l’&::l%hténf fl{nctl'lons different from the exponential just discussed
cad to simple transform relations between (
spectrum. Other definitions however, ¢ o e Bover
: , , ¢can be made of mea bl
relations and short-time - linked 1y
: . power spectra, and these can be linked b
specially defined transforms (SCHROEDER and ATAL). For exampl:a3 onZ

1, or |
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can define a short-time spectrum
Qo, 0= | o, )m(|t])coswtdr, (5.18a)

in which ¢(z, t), as given in Eq. (5.15), is defined as an even function
ol 7 (but is measured for delays only) so that,

o= [ ) fO=lz)n(t-2)d2, (5.18b)

where m(t) and n(t) are physically realizable weighting functions and
are zero for t<0%, Q(w, t) and ¢(r, t) are then linked by the definitions
(5.18). ¢ (1, t) can be measured according to Fig. 5.12, and a straight-
[orward measure of Q(w, t) can also be made. Substituting for ¢(z, t)

in the definition of Q(w, t) gives
t =9}
Qw, =2 | fAyn(@—A)di{ f(A—t)m(r)coswrdr (5.19)
e o .

=2{n(y = fO[f () *x m(t)coswt]}.

The operations indicated in (5.19) are a filtering of the signal f(¢) by a
(normally bandpass) filter whose impulse response is [m(z) cos w?]; a
multiplication of this output by the original signal; and a (normally
low pass) filtering by a filter whose impulse response is n(¢). The meas-
urement is schematized in Fig. 5.13.

f(t) F lrl;.(rtE)R ’ (w't)

Fig. 5.13. Arrangement for measuring the short-time spectrum £(w, ).
(After SCHROEDER and ATAL)

For the case m(t)=n(t)=e¢" %, Q(w, t) reduces to ¥(w, t). From the
definition of Q(w, t), the inverse relation follows

1 o
(p(T, t):Tm(mi_jw Q(a), t) coswtdw. (520)

The defining relations of Eq. (5.18) also imply that
Q(w, =M (w) * d(w, 1), (5.21)

LIf Q(w, t) is to be a positive quantity, some further restrictions must be placed
on n(t).
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where
a0

M(@)= [ m(t))ye 7o gr,

and
P(w, )= [ o(r,e i g
This result can be compared with Eq. (5.17), where

lH(a))lzz_I e_alrle_jwrdr

H(w):é’.(z(x)é‘e‘are—jwrdl_= jh(f)e_'iwrd‘f.
0

Since Q(w, 1) is obtained fro
pass) spectrum M(w), it has poorer spectral definition than D(w, 1)

N T e
Thjg ﬁ_j; Flo, ) F*(w, ) di=|F(w, N*=¥(w, 1

(5.22)

. i T t
=] — - , e t
Jlim 2T_det_wa(/1)h(t—A)e "] foph(t—pyeionay.
Changing variables and rearranging
[F(o,n)[?
=fdih(i)efw‘md hime-ijony 1 T .
o Jdnhine Jlim 3T S a-ndr. (523

According to Egs. (5.10), the latter inte

the Fourier transform of &(w). That is gral is simply ¢ (2—7), which is

1 < ,
PU=m=5— [ &(5)e/*G=m 45

m P(w, t) by convolution with the (low
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hecause @(w) is real and even. Then

IF(w, t)|2=21_n j q)(é)d(;jhu)ejl(m—a)dij h(n)e_j,,(m—a)dn
o o 4

=%_}; () H(w—8)H* (w—0)dd (5.24)

[Flo, 0T =5 [#(@) » | H(@)[*].

Therefore, the long-time average value of the power spectrum
|I'(w, t)|* is the real convolution of the power density spectrum &(w)
and the energy density spectrum of the time window /4(¢). The narrower
the |H(w)|* spectrum, the more nearly |F(w, t)|? represents the power
density spectrum ®(w). A narrow H(w) corresponds to a long time
window and to narrow bandpass filters in the circuits of Figs. 5.3 and
5.4. In the limit H(w) is an impulse at w=0, the time window is a unit
step function and |[F(w, t)|*> has the same spectral characteristics as
& (w). For any value of w, |F(w, t)|* is the integral of the power density
spectrum ““seen’ through the aperture |H(w)|?> positioned at w. It is
therefore the average power of the signal in the pass band of the filter

in Fig. 5.4.
It was previously demonstrated [Eq. (5.17)] that for the special con-

dition h(1)=[(2a)* e~ ],
W, =5 [ H@)]* » B, ],

Notice that for this situation, the long-time average 1s

T o
Y(w, f)= lim ZI—T [ J e o, eoswrdrdt
e e (5.25)

= [ eIl o(r, tycoswrdr.
Substituting for ¢(z, t) from (5.15) and interchanging variables leads to
P(w, t)= fe *Ilg(r)coswrdt [k(B)df. (5.26)
0 0

Since

fk(di=jh*(dt=1,

0 0
then

W, D=5 [1H@) 5 )],

which corresponds to the result (5.24).
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5.17. Measurement of Average Power Spectra for Speech

A number of experimental measurements of the average power
spectrum of speech have been made (for example, SiviaN; DunN and

WHITE). The technique frequently used is essentially the bandpass filter
arrangement shown previously in Fig. 5.4, with the exception that a |

squarc-law rectifier and a long-time integrator (averager) are used. This

arrangement is shown is Fig. 5.14. If the switch closes at time 1=0 and |

e | ) soUARE- | w
P |alwt)| SQUARE- |ar2(,4) T
f(t)(—__{i&m RECTIFIER = I 2 A—off )]

I

<

‘J}——’

Fig. 5.14. Circuit for measuring the long-time average power spectrum of a signal

remains closed for T sec, the accumulated capacitor voltage is an ap-
proximation to |F(w, H)J* and is,

T T
VAT):I“'Z(“””%‘? s, (5.27) |
0

If RC>T, then the expounential is essentially unity for 0<J <7, and f

17,
VC(T);?C—Oja X, A)dA 5,28

~[F(o, )%

The measurement described by (5.28) has been used in one investi-
gation of speech spectra. Bandpass filters with bandwidths one-half
octave wide below 500 cps and one octave wide above 500 cps were
used. The integration time was 4 sec (DunN and WHITE). Distributions
of the absolute root-mean-square speech pressure in these bands — meas-
ured 30 cm from the mouth of a talker producing continuous conver-
sational speech —are shown in Fig. 5.15. The data are averages for six
men. The distribution for the unfiltered speech is shown by the marks
on the left ordinate.

If the integration time is made very long, say for more than a minute
of continuous specch (all natural pauses between syllables and sentences
being included), or if many short-time measurements are averaged, one
obtains a long-time power spectrum in which syllabic length variations
are completely smoothed out. Assuming that the speech power is uni-

formly distributed in the octave and half-octave filter bands the meas-
ured longtime power density spectrum, @(w), for speech is shown m

Formant Analysis

I'ig. 5.16. The ordinate here i§ given
pressure per cycle. In both Figs. 5.15
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in terms of mean-square sound
and 5.16, the detailed formant

ructure of individual sound is averaged out.
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Fig. 5.16. Long-time power density spectrum for continuous speech measured 30 cm fro
e the mouth. (After DUNN and WHITE)

5.2. Formant Analysis of Speech

Formant analysis of speech can be

considered a special case of spec-

tral analysis. The objective is 10 determine the complex natural fre-

quencies of the vocal mechanism as the

y change temporaily. The changes
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are, of course, conditioned by the articulatory deformations of the vocal ]
alysis is to consider how the modes are ]

tract. One approach to such an
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Fig. 5. ing i i
ig. 5.17. Sound spectrogram showing idealized tracks for the first three speech formants |

As certain of the results jn Chapter I1T imply
patlc?n characteristics of the vocal system are r,e
predictable, especially over the frequency range
Generally, therefore, more interest attaches to the
of the imaginary parts of the complex formant freq i
real parts. Nevertheless, an adequate knowledge of the real parts f
the for.mant bandwidths, is important both perceptuall dp' eotrs
analysis procedures. y Anem spectral
ChaTI::r Ifilste_rn funct(lon” gp_progch to speech analysis, as discussed in

hap » aimms at a specification of the signal in terms of a trans-
mussion function and an excitation function. Tf the vocal confj urati
is knqwn, the. mode pattern can be computed, and the output fes aoilon
to a given e).(01.tation can be obtained. In automatic analysis for encgd' .
and trapsmls510n purposes, the reverse situation generally exists Olng
has available only the acoustic signal and desires to analyze it in t o
of the properties of the source and the modes of the systefn One Iilr;?;

y 1
dl“]Cl,llt S 1n not k]l()Wlll hOW y
g tO Separate lllllquel tlle source and

The normal modes of the vocal s
bpt they may not, for example, al
time spectrum of the signal. A

the damping or dissj-

of a given formant.

ystem move continuously with time,
ways be clearly manifest in a short-
particular pole may be momentarily

latively constant and .

temporal variations |
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abscured or suppressed by a source zero or by a system zero arising from
i side-branch element (such as the nasal cavity). The short-time spec-
trum generally exhibits the prominent modes, but it is often difficult to
say with assurance where the low-amplitude poles or significant pole-
zcro pairs might lie.

Further complicating the situation is the fact that the output speech
signal is generally not a minimum-phase function (that is, it may not
have all its zeros in the left half of the complex frequency plane). If it
were, its phase spectrum would be implied by its amplitude spectrum.
'I'he vocal-tract transmission is, of course, minimum phase for all con-
ditions where radiation takes place from only one point, i.e., mouth or
nostril. For simultaneous radiation from these points it is not. It can
he shown that the glottal source, provided the volume velocity wave
is zero at some time during its period, possesses only finite-frequency
scros and no poles (MATHEWS, MILLER and DAvID, 1961b). Further, it
can be shown that the zeros can lie in either the right or left half planes,
or in both (DUNN, FLANAGAN and GESTRIN). These factors conspire to
make accurate automatic formant analysis a difficult problem. The
present section outlines a number techniques for the automatic measure-
ment of formant frequency and formant bandwidth, and indicates the
performance they achieve.

5.21. Formant-Frequency Extraction

In its simplest visualization, the voiced excitation of a vocal reso-
nance is analogous to the excitation of a single-tuned circuit by brief,
periodic pulses. The output is a damped sinusoid repeated at the pulse
rate. The envelope of the amplitude spectrum has a maximum at a
frequency equal essentially to the imaginary part of the complex pole
frequency. The formant frequency might be measured either by meas-
uring the axis-crossing rate of the time waveform, or by measuring the
frequency of the peak in the spectral envelope. If the bandwidth of the
resonance is relatively small, the first moment of the amplitude spec-
trum,

F_L1Awpdrs
fA(Hdf
might also be a reasonable estimate of the imaginary part of the pole

[requency.

The resonances of the vocal tract are, of course, multiple. The out-
put time waveform is therefore a superposition of damped sinusoids
and the amplitude spectrum generally exhibits multiple peaks. If the
individual resonances can be suitably isolated, say by appropriate filter-
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ing, the axis-crossing measures, the spectral maxima and the moments
might all be useful indications of formant frequency. If, on the other
hand, the more subtle properties of the source and the system are to be j

accounted for—say the spectral zeros produced by the glottal source or
by a sidebranch resonator—a more sophisticated measure of the normal
modes generally is necessary. One such approach is the detailed fitting
of an hypothesized spectral model to the real speech spectrum. For
analyses of this type, it is often advantageous to employ the storage and |
rapid logical operations of a digital computer.

5.211. Axis-Crossing Measures of Formant Frequency. One of the!
earliest attempts at automatic tracking of formant frequencies was an
average zero-crossing count (E. PETERSON). The idea was to take the:
average density of zero-crossings of the speech wave and of its time
derivative as approximations to the first and second formants, respec-
tively. The reasoning was that in the unfiltered, voiced speech the first {
formant is the most prominent spectral component. It consequently is ]
expected to have the strongest influence upon the axis-crossing rate. In |
the differentiated signal, on the other hand, the first formant is de-
emphasized and the second formant is dominant. The results of these
measures, however, were found to be poor, and the conclusion was j
that the method did not give acceptable precision.

A number of refinements of the zero-crossing technique have been |
made. In one (MunsoN and MONTGOMERY; DavIs, BIDDULPH, and 1
BarasHek), the speech signal is pre-filtered into frequency ranges ap- |
propriate to individual formants. The axis-crossing rate and the ampli- |
tude are measured for the signal in each of the bands. A remaining !

disadvantage, however, is that the method is still subject to the over-

lapping of the formant frequency ranges.

A more elaborate implementation of the same basic idea, but with
a feature designed to minimize deleterious overlap, has also been made
(CHANG). The notion is to employ an iterative measure of the average
rate of zero-crossing in a given frequency range and to successively
narrow the frequency range on the basis of the measured rate. The
expectation is for rapid convergence. Fig. 5.18 illustrates the method.
The signal is pre-filtered by fixed filters into ranges roughly appropriate
to the first two formants. An axis-crossing measure, p,, of the lower
band is made and its value is used to tune automatically a narrower,
variable band-pass filter. The axis-crossing output of this filter is, in
turn, taken as an indication of the first formant frequency (F1). Its
value is used to adjust the cut-off frequency of a variable HP filter. The
average axis-crossing output of the latter is taken as an estimate of the
second formant frequency (F 2).
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VARJABLE
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FILTER

Fl

300-1200
CPS

SPEECH
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HIGH ~ PASS
FILTER

700-2400
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i'ig. 5.18. Automatic formant measurement by zero-crossing count and adjustable pre-
. filtering. (After CHANG)

If the spectral distribution of the signal .is continuous, as in the ctasei
of unvoiced sounds, the average axis-crossing rate for a given sll)ec. ra
clement is approximately twice the first moment of the spectr}? dpn;ge
(CHANG, PrHL and EssiGMAN). However, othgr more direct methods for
measuring spectral moments have been considered.

- t of an amplitude spec-
212. Spectral Moments. The 7 th momen :
1ru1§1 A(w) 1l; M,=]o"4(w) do, where @ is the radian frequency. If a
n
suitable pre-filtering or partitioning of the spectrum can be made, then
a formant frequency can be approximated by

A number of formant measures based upon this principle h‘a\g been
examined (POTTER and STEINBERG; GABOR; SCH.ROEDER, 19_5d6, b?éwiz:
NELLA). The spectral partitioning problem remains of consi Jera le im-
portance in the accuracy of these meth(?ds. However, certain mom t
ratios have been found useful in separating the frequency rang(igifpcilcl?
pied by formants (SUZUKI, KADOKAWA and NAKATA). Anothehr i 1ct a};
in moment techniques is the asymmetry or skewness of t edspec rd
resonances. The measured formant frequency may be weighte towilrl
the “heavier” side of the spectrum, rather than placed at the spectra

peak.

5.213. Spectrum Scanning and Peak-Picking Me.thods. An(()ithert'%)-
proach to real-time automatic formant trackmg I s1mply the etetc i n?
and measurement of prominences in the short-tlrpe amphtufie slpec rute(i
At least two methods of this type have been Qes1gn§d and 1mp erlnen .
(FLANAGAN, 1956a). One is based upon locating p(?mts of zer(; s ope; ml
the spectral envelope, and the other is th_e detf:ctlon of I'Oc;' slgeclzgri
maxima by magnitude comparison. In the first —illustrated in Fig. 3.
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Fig. 5.19. Spectrum scanning method for automatic extra

ction of formant frequencies.
(After FLANAGAN, 1956 a)

a short-time amplitude spectrum is first produced by a set of bandpass
filters, rectifiers and integrators. The analysis is precisely as described
earlier in Section 5.12. The outputs of the filter channels are scanned
rapidly (on the order of 100 times per second) by a sample-and-hold
IrCui a time function which is a step-wise representa-
tion of the short-time Spectrum at a number (36 in this instance) of fre-
quency values. For each scan, the time function is differentiated and
binary-scaled to produce pulses marking the maxima of the spectrum.
The marking pulses are directed into separate channels by a counter
where they sample a sweep voltage produced at the scanning rate. The
sampled voltages are proportional to the frequencies of the respective
spectral maxima and are held during the remainder of the scan. The
resulting stepwise voltages are subsequently smoothed by low-pass
filtering.

The second method segments the short-time spectrum into frequency
ranges that ideally contain a single formant. The frequency of the spec-
tral maximum within each segment is then measured. The operation is
illustrated in Fig. 5.20. In the simplest form the segment boundaries
are fixed. However, additional control circuitry can automatically
adjust the boundaries so that the frequency range of a given segment
Is contingent upon the frequency of the next lower formant. The nor-
malizing circuit “clamps™ the spectral segment either in terms of its
peak value or its mean value. This common-mode rejection enables the

§
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Fig. 5.20. Peak-picking method for automatic tracking of speech formants.
& (After FLANAGAN, 1956 a)

following peak-selecting circuitry to operate over a wide rql(ligeat(:?f_afrg;
plitudes. The maxima of each segment are selected at 2 rapll : ¢ e for
cxample, 100 times per second—and' a voltage pI‘OpOI‘thI:lrah o the e
quency of the selected channel is delivered to t.he output. f &131 se ons
can be time-phased so that the boundary adJustments 0 ht e szsured
segments are made sequentially and are set accor@mg to the Itneon red
position of the next lower formant. A numper of improvements " the
basic method have been made by prov1'dmg frequeqcy 1r;1terpo on
(SHEARME, 1959), more sophisticated logic for adjust{ng the ssg;nthe
boundaries (HoLmes and KELLY), and gr'eatf:r Qynamlc rarllge' oS he
peak selectors (STEAD and Jones). The gbjectlve in all thesg ef51gndi s
been the realization of a real-time, practicable hardware device for dir

application in a transmission system. o .

dppkc?;;cal output from the device of Fig. 5.20, using flxe(; boundeerlfréii,
is shown in Fig. 5.21. It is clear that the operation is far from p .
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Fig. 5.21. Formant outputs from the tracking device shown in F{g. 5.20. In this instan
R the boundaries of the spectral segments are fixed
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In this example a large third formant error occurs in the /r/ of ““rain.”
Automatic control of the F2-F 3 boundary, however, eliminates this
error. As a rough indication of the performance, one evaluation shows
that its output follows F 1 of vowels within + 150 cps greater than 939

of the time, and F2 within 4200 cps greater than 919 of the time :
(FLANAGAN, 1956a). Although one desires greater precision, this method

—because of its simplicity and facility for real-time analysis —has proved
useful in several investigations of complete formant-vocoder systems
(FLANAGAN and HoOUSE; STEAD and JONES; SHEARME, SMITH and KELLY).

5.214. Digital Computer Methods for Formant Extraction. The devel-

opment of digital computers has enabled application of more sophisti- ]

cated strategies to speech processing. The more esoteric processings are
made possible by the ability of the computer to store and rapidly mani-
pulate large quantities of numerical data. A given data sample can be
held in the machine while complex tests and measures are applied to
analyze a particular feature and make a decision. This advantage ex-
tends not only to formant tracking, but to all phases of speech processing.
The relations between sampled-data systems and continuous systems
(see, for example, RAGAZZINT and FRANKLIN) permit simulation of com-
plete transmission systems within the digital computer. This is a topic
in itself, and we will return to it in a later chapter.

The digital analyses which have been made for speech formants have
been primarily in terms of operations on the spectrum. The spectrum
either is sampled and read into the computer from an external filter
bank, or is computed from a sampled and quantized version of the speech
waveform. One approach along the latter line has been a pitch-syn-
chronous analysis of voiced sounds (MATHEWS, MILLER and DAVID,
1961b). Individual pitch periods are determined by visual inspection of
the speech oscillogram. The computer then calculates the Fourier series
for each pitch period as though that period were one of an exactly
periodic signal. The envelope of the calculated spectrum is then fitted
by a synthetic spectrum in successive approximations and according to
a weighted least-square error criterion. A pole-zero model for the vocal
tract and the glottal source, based upon acoustic relations for the vocal
tract (see Chapter II1), produces the synthetic spectrum.

The fitting procedure is initiated by guessing a set of poles and zeros
appropriate to the calculated real spectrum. The computer then suc-
cessively increments the frequency and damping of each individual pole
and zero to minimize the weighted mean-square error (in log-amplitude
measure). After about 10 to 20 complete cycles, a close fit to the speech
spectrum can be obtained. Typical rms log-amplitude errors range from
about 1.5 to 2.5 db. A typical result of the fitting procedure is shown in
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IYig. 5.22. The measured formant frequencies and bandwi.dt.hs are theri
laken as the frequencies and bandwidths of the best fitting spectra
I"Oij:il'computer system for non-pitch-synchronous formant analy?ls, ;,n
which spectral data are produced external to the computer, can also be
summarized (HUGHES; FORGIE and HUGHES)_ A bank of 35 COhntlgliF)us
bandpass filters with rectifiers and 1nt§grators produces a s ogt— 1?12
spectrum of the running speech. The filter putputs are scaqn}clz a
rapid rate (180 sec” 1) to produce a frarped time function whic repre-
sents successive spectral sections (essentially the same as that shov&;p 13
Iig. 5.5). This time function is sampled every 154 usec and quanflztc}:1
{o 11 bits by an analog-to-digital converter. A certgm amount of the
data is then held in the computer storage for processing. .
One analysis procedure for which the comp.u.ter is p?'ograimm::
(1) locates the fricative sounds in a word and classifies them; (2% ocat gs
the first and second formants in voiced segments; anfl (3) c_:alcu ates ke
overall sound level. The formant tracking ‘procec.lurells basically a peak-
picking scheme similar to that shown prev1qusly in F{g. 5.20. Howeve;', i
number of detailed, programmed constramts.ar.e included to exp f01
vocal tract characteristics and limitations. In prmaple, tl}e procedure for
a given spectral scan is as follows. Find the peak filter in the fr:quuem]:i}:
lange appropriate to the first formant. Store the frequency and amp
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Fig. 5.22. Spectral fit computed for one pitch period of a voiced sound.
(After MATHEWS, MiLLER and Davip, 1961b)
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tude values of this channel. On the basis of the F 1 location adjust the
frequency range for locating 2. Locate the peak filter in tfle adjusted
F 2' range and store its frequency and amplitude values. Finally, ex-
amine t.he next spectral scan and find F | and F 2, subject to COIltlyl,luit

constraints with previously determined values. Large, abrupt chan e)s/
In 1 and F2 of small time duration are ignored. T):pical results, ge-

scribed as “good” and « »s >
Fig. 5.23. g average” from this procedure are shown in

“Hawaii”

(2)

Fig. 5.23a and b. Tracks for the fi
. irst and second formant fre uencies obtai
- i i t
computer-analysis of real-time spectra. The speech samplesq are (a)o“Iillzl\:rgiif’fom g
(b) “Yowie” uttered by a man. (After HuGHEs) o

A rea?-tl.me spectral input to a computer has also been applied in a
spectral-fitting technique for formant location (BELL et al.) l')I"he ro-
f:edu.re—terrned ““analysis-by-synthesis *’ by its originators —1s illustrsted
in .Flg: 5.24. As before, a fiiter bank produces a short-time spectrum
Wh!Ch 1s read into the digital computer via an analog-to-digital converter
Inside the computer, speech-like spectra are generated from a pole-zero‘
mgdel of the vocal tract and its excitation. (The filter bank character
1stics are also applied to the synthetic spectra.) As in the pitch-s n:
chronous gnalysis, the model is based upon the acoustical princi )ie
discussed in Chapter I1I. The real and synthetic spectra at a givenpin'f
stant are compared, and a weighted square error is computed. Th
nature of the comparison is illustrated in Fig. 5.25. The effect of an. :
in formant frequency is indicated by Fig. 5.25a. An error in f mant
bandwidth is illustrated in Fig. 5.25b. i ommant
‘ On the basis of error computations for the immediate and for ad-
Jacent spectral samples, a programmed automatic control strategy deter-
mines the procedure for adjusting the pole-zero positions of the fitting
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Fig. 5.24. Computer procedure for formant location by  Fig. 5.25a and b. Idealized illus-

the * analysis-by-synthesis’” method. (After BELL ef al.)  tration of formant location by
the ‘ analysis-by-synthesis”
method shown in Fig. 5.24

synthetic spectrum to reduce the weighted error. When a minimum-
error fit is obtained, the computer automatically stores the pole-zero
locations of the vocal tract model and the source characteristics chosen
for that spectrum. Five operations are carried out by the computer:
(1) storage of 1eal input speech spectra; (2) generation of synthetic
spectra; (3) control and adjustment of the synthetic spectra; (4) calculation
of spectral difference according to a prescribed error criterion; and (5)
storage and display of the parameters which yield minimum error.
Provisions are made so that, if desired, the comparison and control func-
tions can be performed by an human operator instead of by the auto-
matic procedure.

In principle the programmed matching procedure is applicable both
to vowel and consonant spectra, but the matching model for consonants
is generally more complex. A typical result of the procedure is shown for
the first three formants in Fig. 5.26. The (a) part of the figure shows a sound
spectrogram of the utterance /h o b1 b/ with sample intervals laid off
along the top time axis. The (b) part of the figure shows the computer-
determined formant tracks for essentially the vowel portion of the second
syllable (i.e., /I/). The sample numbers on the abscissa of the (b) part
correspond with those at the top of (a). The top diagram in part (b) is
the square error for the spectral fit. The ‘“analysis-by-synthesis’’ tech-
nique has also been implemented using a gradient-climbing calculation
for matching the short-time spectrum (OLIVE). Other implementations
have used sequential algorithms for fitting the spectrum (FuJssaky).
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Fig. 5.26a and b. Computer-determined formant tracks obtained by the ‘‘ analysis-by-syn-
thesis” method. (2) Spectrogram of original speech. (b) Extracted formant tracks and
square error measure. (After BELL er al.)

Another computer formant tracker uses a principle related to the pole-
zero model of speech (CokER). The analyzing strategy is a combined peak-
picking and spectral fitting approach. A filter bank, associated rectifiers
and lowpass filters produce a short-time spectrum. The filter outputs are
scanned by an electronic commutator, and the time waveform representing
the spectral sections is led to an analog-to-digital converter. The output
digital signal describing the successive spectra is read into the computer,
and the short-time spectra are stored in the memory.

The automatic analyzing procedure, prescribed by a program, first
locates the absolute maximum of each spectrum. A single formant reso-
nance is then fitted to the peak. The single resonance is positioned at a fre-
quency corresponding to the first moment of that spectral portion lying,
say, from zero to 6 db down from the peak on both sides. The single for-
mant resonance is then inverse filtered from the real speech spectrum by
subtracting the log-amplitude spectral curves. The operation is repeated
on the remainder until the required number of formants are located. Since
the peakpicking is always accomplished on the whole spectrum, the prob-
lem of formant segmentation is obviated! Proximate formants can also be
resolved and accurate results can be obtained on running speech. The
formant selections can be displayed directly on the spectral sections in
a manner similar to that shown in Fig. 5.5. Again, the ability of the
computer to store large amounts of data and to perform relatively
complex operations at high speed permits a detailed fitting of the
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spectrum. The analysis is easily accomplished in rea.l time, and the
computer can essentially be used as the formant-tracking element of a
complete formant-vocoder system (COKER and_ CUMMISKEY).

A still different method for formant analysis (ScHAFER and RABINER)
makes use of a special digital transform—the thrp-Z transform (RA-
WINER, SCHAFER and -RADER). The method also incorporates Fast Fou-
rier Transform methods for spectral analysis (COOFEY and TQKEY). In
its complete form, the method depends upon relations prescrlbeq by a
3-pole model of voiced sounds and a single pole-zero model of voiceless
sounds.
sou%he point of departure is a short-time transform of th'e speech wave-
[orm for both voiced an voiceless sounds. The steps in the spectral
analysis are depicted in Fig. 5.27. ‘ ‘ .

The upper part of the figure shows the ana.ly51s of voiced speec 1.
‘The waveform at the top left is a segment of vou;ed_ speech of approxi-
mately 40 msec duration, which has been multiplied by a Hamming
window". Over such a short time interval, the speech waveform looks
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16 20 O 1 2
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© TIME (MSEC) TIME (MSEC)
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Fig. 5.27. Spectrum and cepstrum analysis of voiced and unvoiced speech sounds.
(After ScHAFER and RABINER)
1 The Hamming window is specified by the function
2nt T T
h(t)= {0.54+0.46 cos (—T—)} for — > <= 5

where 7 is the window duration. This data window is attractive because.: the side lobes
of its Fourier transform remain more than 40 db down at all frequencies (BLACKMAN

and TUKEY).
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li]ke a segment of a periodic waveform. The detailed time variation of
the waveform during a single period is primarily determined by the

vocal tract response, while the fundam i i
> ental period (pitch i .
flects the vocal-cord vibration rate. P (pitch period) re

The logarithm of the magnitude of the Fourier transform of thig |

segment of speech is the rapidly-varying spectrum plotted at the top

right of Fig. 5.27. This function can be thought of as consisting of an |

additive combination of a rapidly-varying periodic component, which

1s associated primarily with the vocal-cord excitation, and a slowly-

varymg component primarily due to the vocal-tract transmission func-

tion. Therefore, the excitation and vocal-tract components are mixed
and must be separated to facilitate estimation of formant values Tle':le
standard approach to the problem of separating a slowly-varying éi nal |
and a rapldl.y-varying signal is to employ linear filtering. Such anga -

proach applied to the log magnitude of the short-time Fourier tranrs)- l‘
form leads to the computation of the cepstrum (BoGERT, HEALY and ]

TUKEY).

The cepstrum is a Fourier transform of a Fourier transform To ‘
compute the cepstrum the Fourier transform of the time wavefor '
Is computed. The logarithm is taken of the magnitude of this transfornr1n ;
Inverse Fourier transformation of this log-magnitude functjon produces. ]

the cepstrum. (See also Section 5.3)

The cepstrum is plotted in the middle of the top row of Fig. 5.27. 1
Tl"le rapidly-varying component of the log-magnitude spectrum‘ c'on-' "
trlbutes the peak in the cepstrum at about 8 msec (the value of the pitch
period). The slowly-varying component corresponds to the low-time §

portion of the cepstrum. Therefore, the slowly-varying component ca

be extracted by first smoothly truncating the cepstrum values to zerz)1
abovg about 4 msec, and then computing the Fourier transform of the
1.rsesultmg truncated cepstrum. This yields the slowly-varying curve which
o ;ur;z;nﬁlp%si;c.] 5(');17.the short-time spectrum, shown at the right of the
. The formant frequencies correspond closely with the resonance peaks
in the smoo.thed spectrum. Therefore, a good estimate of the forpmant
frequencies is obtained by determining which peaks in the smoothed
spectrum are vocal tract resonances. Constraints on formant frequencies
jcmd amplitudes, derived from a three-pole model of voiced sounds are
mcorpprated into an alogrithm which locates the first three for1;1ant
peaks in the smoothed spectrum.

The apalysis of unvoiced speech segments is depicted in the bottom
row of Fig. 5.27. In this case, the input speech resembles a segment of
a randon} noise signal. As before, the logarithm of the magnitude of
the Fourier transform of the segment of speech can be thought of as
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consisting of a rapidly-varying component, due to the excitation, plus
4 slowly-varying component due to the spectral shaping of the vocal-
(ract transfer function. In this case, however, the rapidly-varying com-
ponent is not periodic but is random. Again the low-time part of the
cepstrum corresponds to the slowly-varying component of the transform,
but the high-time peak present in the cepstrum of voiced speech is
absent for unvoiced speech. Thus, the cepstrum can also be used in
deciding whether an input speech segment is voiced or unvoiced, and if
voiced, the pitch period can be estimated from the location of the
cepstral peak. Low-pass filtering of the logarithm of the transform, by
(runcation of the cepstrum and Fourier transformation, produces the
smoothed spectrum curve which is again superimposed on the short-
time transform at the lower right of Fig. 5.27. In this case, an adequate
specification of the spectrum shape can be achieved by estimating the
locations of a single wide-bandwidth resonance and a single anti-reso-
nance, i.e., a single pole and zero.

Continuous speech is analyzed by performing these operations on
short segments of speech which are selected at equally-spaced time
intervals, typically 10-20 msec apart. Fig. 5.28 illustrates this process
for a section of speech which, as evidenced by the peaks in the cepstra,
is voiced throughout. The short-time spectrum and smoothed spectrum
corresponding to each cepstrum are plotted adjacent to the cepstrum.
In going from top to bottom in Fig. 5.28, each set of curves corresponds
to the analysis of segments of speech selected at 20 msec increments in
time. The formant peaks determined automatically by the program are
connected by straight lines. Occasionally the formants come close togeth-
cr in frequency and pose a special problem in automatic extraction.

In the third and fourth spectra from the top, the second and third
formants are so close together that there are no longer two distinct
peaks. A similar situation occurs in the last four spectra where the first
and second formants are not resolved. A procedure for detecting such
situations has been devised and a technique for enhancing the resolu-
tion of the formants has been developed. An example of the technique
is shown in Fig. 5.29.

The curve shown in Fig. 5.29a is the smooth spectrum as evaluated
along the jw-axis of the complex frequency s-plane. (The lowest three
vocal tract eigen-frequencies corresponding to this spectrum are depicted
by the x’s in the s-plane at the left.) Because formants two and three
(F2 and F 3) are quite close together, only one broad peak is observed
in the conventional Fourier spectrum. However, when the spectrum is
evaluated on a contour which passes closer to the poles, two distinct
peaks are in evidence, as shown in Fig. 5.29b. The Chirp z-transform
alogrithm facilitates this additional spectral analysis by allowing a fast
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<omputation of the spectrum along an s-plane contour shown at the left
of |‘Ig 5.29b.

Once the vocal excitation and formant functions are determined,
they can be used to synthesize a waveform which resembles the original
speech signal. (Systems for speech synthesis from formant data are dis-
cussed in Section 6.2.) Comparison of the formant-synthesized signal
with the original speech signal is an effective means for evaluating the
avtomatic formant tracking. Fig. 5.30 shows a typical result of auto-
mmatic analysis and synthesis of a voiced sentence. The upper curves show
the pitch period and formant parameters as automatically estimated
from a natural utterance whose spectrogram is also shown in the figure.
‘I'he bottom of the figure shows the spectrogram of speech synthesized
f[rom the automatically estimated pitch and formant parameters. Com-
parison of the spectograms of the original and synthetic speech indicates
that the spectral properties are reasonably well preserved.

Another approach using computer processing is the analysis of real
speech spectra in terms of a model of articulation (HEINZ, 1962a, b).
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I'ig. 5.30a-d. Automatic formant analysis and synthesis of speech. (a) and (b) Pitch period
and formant frequencies analyzed from natural speech. (c) Spectrogram of the original
speech. (d) Spectrogram of synthesis speech. (After SCHAFER and RABINER)
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This approach differs from the preceding techniques essentially in the
spectrum-generation and control strategy operations. The vocal tract
poles and zeros are obtained from an articulatory or area function

specification of the tract. These are obtained by solving the Webster ;r
horn equation (see Chapter III). A spectrum corresponding to the com-

puted poles and zeros is generated and compared to the real speech

spectrum. The error in fit is used to alter the synthetic spectrum by }

adjusting, on the articulatory level, the vocal tract area function. A

modification of a three-parameter description of vocal configuration |
is used to specify the area function (Dunn, 1950; STeEVENS and Housg,

1955; FaANT, 1960).

This formulation, provided the area function can be specified accu-
rately enough, offers an important advantage over pole-zero models of 1
the vocal system. The latter have as their input parameters the locations }
in the complex plane of the poles and zeros of the vocal transmission, }
The poles of the system are independent of source location and depend §
only on the configuration (see Chapter I11). They move in a continuous }
manner during the production of connected speech, even though the §

source may change in character and location. The zeros, however,

depend upon source location as well as upon tract configuration. They j
may move, appear and disappear in a discontinuous fashion. This dis- |
continuous behavior of the zeros—and the resulting large changes in 1

the speech spectrum —makes pole-zero tracking difficult.

An articulatory description of the signal obviates these difficulties to
a considerable extent. More realistic continuity constraints can be i
applied to the articulators. The location of the unvoiced source is |
generally implied by the configuration, and the vocal zero specification
is an automatic by-product of the specification of configuration and |

excitation. In terms of articulatory parameters, the spectra of conso-
nants and consonant-vowel transitions can be matched with little more
difficulty than for vowels. A typical result of this articulatory fitting
procedure is shown in Fig. 5.31.

The left diagram shows the temporal courses of the peoles and zeros
in the /[ ¢/ portion of the bisyllabic utterance /h o’ [ € [/ (the time scale
is the sample number multiplied by 8.3 msec). The vertical line, where
the zero tracks disappear, represents the consonant-vowel boundary.
(Only the first three formants are computed in the vowel part of the
utterance.) The diagram to the right shows the corresponding temporal
courses of the four articulatory parameters that were adjusted to make
the spectral matches. They are:

ry, the effective radius at the tongue constriction,
d,, the location of the tongue constriction measured from the glottis,
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which describe the vocal tract area function. (After HENZ, 1962a)

a,, the cross-sectional area of the mouth opening, and
I, , the length of the lip tube (or mouth section).

Their trajectories are essentially continuous as the match‘pro.ceeds
across the consonant-vowel boundary. In going from the fricative /1]
to the vowel /¢/, the mouth section becomes shorter and more ope}rll.
The position of the constriction moves back towarq_the glottis, and.t e
radius of the constriction becomes larger. The position Qf the unvoiced
sound source during the fricative is taken 2..5 cm anterlor'to the_ con-
striction (i.e., do+2.5). The manner in which these relatlv.ely s;n?ple
motions describe the more complicated pole-zero pattern IS str1kn}g.
Success of the method depends directly upon the accuracy w1th.whllch
the articulatory parameters describe the Vgcal-tract shape. Derivation
of sophisticated articulatory models is an important area for research.

(See Section 54)

5.22. Measurement of Formant Bandwidth

The bandwidths of the formant resonances—or-the rea? parts of the
complex poles—are indicative of the losses associated Wlth the VOCE]I]
system. Not only are quantitative data on formant bandwidths valuab'e
in corroborating vocal tract calculations (for example, thgse made in
Chapter IIT for radiation, viscous, heat-condpchqn,_ cav1ty-wal} arllld
glottal losses), but a knowledge of the damping is important in the
proper synthesis of speech.
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A
number of measurements have been made of vocal tract damping

and idth!
and If;)rmar.lt bandw1dth . The measurements divide mainly between two
lques; either a measure of g resonance width in the frequenc

formant is considered a damped sinusoid, having amplitudes Ay and 4
2

at ti i
1mes ¢, and ¢,. The damping constant, o, for the wave and its half. |

power bandwidth, A f, are related simply as
InA,j4,
. (t—1y) -~
he results of one of the more extensive formant bandwidth studies
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g 2a and b. Measured formant bandwidths for adult males. (After Dunn 1961)

1
For a good summary and bibliogra
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curve (b) represents the same data plotted in terms of Q=f/Af. The
upper graph shows that over the frequency ranges of the first and second
l[ormants, the nominal bandwidths are generally small—on the order
ol 40 to 70 cps. Above 2000 cps the bandwidth increases appreciably.
'I'he lower plot of formant-Q vs formant frequency shows that resonant
()'s are largest in the frequency region around 2000 cps.

Formant bandwidths can also be effectively measured from a fre-
quency response of the actual vocal-tract (FUIMURA). A sine wave of
volume velocity is introduced into the vocal-tract at the glottal end by
means of a throat vibrator. The pressure output at the mouth is meas-
ured as the input source is changed in frequency. A typical vocal-tract
frequency response is shown in Fig. 5.33a. The variation in first-formant
hbandwidth, as a function of first-formant frequency, is shown in 5.33b.
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Fig. 5.33a and b. (a) Vocal-tract frequency response measured by sine-wave excitation of

an external vibrator applied to the throat. The articulatory shape is for the neutral vowel

and the glottis is closed. (After Funmura and LiNDQuisT). (b) Variation in first-formant

bandwidth as a function of formant frequency. Data for men and women are shown for
the closed-glottis condition. (After FunMUrA and LINDQUIST)



184 Techniques for Speech Analysis

These data are for a closed-glottis condition. The bandwidth is seen to

mcrease as first formant frequency diminishes, owing primarily to the

influence of cavity-wall loss. (See calculations of cavity-wall loss in
Section 3.37.)

The origins of the principal contributions to vocal-tract damping
have already been indicated by the theory derived in Chapter I11. These
are glottal loss and cavity-wall loss for the lower formants, and radja-
tion, viscous and heat-conduction loss for the higher formants.

5.3. Analysis of Voice Pitch

Fundamental frequency analysis— or “pitch extraction” —is a prob-
lem nearly as old as speech analysis itself. It is one for which a complete
solution remains to be found. The main difficulty is that voice pitch
has yet to be adequately defined. Qualitatively, pitch is that subjective
attribute that admits of rank ordering on a scale ranging from low to
high. The voiced excitation of the vocal tract is only quasi-periodic. Not
only does the exciting glottal waveform vary in period and amplitude,
but it also varies in shape. Precisely what epochs on the speech wave-
form, or even on the glottal waveform, should be chosen for interval or
period measurement is not clear, Furthermore, the relation between an
interval, so measured, and the perceived pitch is not well established.

Most pitch-extracting methods take as their objective the indication
of the epoch of each glottal puff and the measurement of the interval
between adjacent pulses. Still, exactly how this relates to the pitch per-
cept with all the random Jitter and variation of the glottal wave is a
question worthy of inquiry.

Most automatic or machine pitch extractors attempt either to de-
scribe the periodicity of the signal waveform (GRUTZMACHER and Lor-
TERMOSER ; GRUENZ and SCHOTT; Doransky, 1955; GILL) or to measure
the frequency of the fundamental component if it is present (DupLEy,
1939b). Computer efforts at pitch extraction essentially do the same,
but usually more elaborate constraints and decisions are applied (INo-
MATA; GOLD; SUGIMOTO and Hasumvoro).

One particularly useful method for machine pitch extraction utilizes
properties of the cepstrum to reveal signal periodicity (NoLL; OppEN-
HEIM, SCHAFER and STOCKHAM). As described in Section 5.214, the cepstrum
is defined as the Fourier transform of the logarithm of the amplitude
spectrum of a signal. Since it is a transform of a transform, and since
the resulting independent variable is reciprocal frequency, or time, the
terms ““cepstrum” and “quefrency” were coined by its inventors
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(BoGERT, HEALY and TUKEY) to designate the transform and its
C iable. .
md(:lPlf: (if)l;t‘;ll(ril;g operation has the desirable property of se;;laratn;i
source and system characteristic (at least to the extent thgt ;[heycgn-
spectrally multiplicative). If the output speech wave, f(t),h is e1 on
volution of the vocal tract impulse response, v(t), .and t efvoca *
citation source, s(¢), the magnitudes of their Fourier transforms a

clated
related as |F(w)|=|V(w)|-|S(w)],

where all the amplitude spectra are even functions. Taking the logarithm

ol both sides gives
In|F(w)|=In| V(w)|+In|S(w)].

Similarly, taking the Fourier transform® of both sides yields
FIn|F(w)|=F In|V(w)|+F In|S(w)].

For voiced sounds, |S(w)| is approximatil;} a ;Ille gz:z)t)rluae\r\z;:rzoemx:
ced at the pitch frequency . n

E?lﬁte: t: sstlfci)ng componfnt at the ““quefrency”, T. |I'/(a))|, on the Zgﬁr
hand, exhibits the relatively “slow” formant maxima. fConsequ y
Z In|V(w)| has its strongest component at a very low que }rlenlcy. Aol

Because of the additive property of the transforms of the ogH pa_
tude spectra, the characteristics of the source and system arei w;l sigOl
rated in the cepstrum. The cepstrum is therefore also a va uadeRABI_
for formant analysis as well as pitch measurement (SC'HAgER anc -
NER). (See Section 5.21.) Measurement .of pitch and V01ced -un:f(illtl:: o
citation is accomplished by using a suitable strategy to ete;:1 31 ©
frency components associated with % In|S(w)|. Because the Irtle noc
does not require the presence of the fundamentz.il component, "
because it is relatively insensitive to phase and ampl{tude faiitors (oxivicﬁ
to the log-magnitude operations) it performs well in v.ocg er apt};ated
tions. In one test with a complete chanpel vocode.r, it emf)nsd ated
superior performance in extracting the pitch and V010<=:d-uI}V010:essary
trol data (NoLL). Because a large amqunt of processing is n&le enta:
the method is most attractive for special purpose digital imp elrln e
tions where Fast Fourier Transform hardware can be used. t/)kn i 1}1180 e
tion of pitch determinationdby;(;:pstrum computation has been s

i in Figs. 5.28a and 5.30. -

pre‘ll’lgrlilszsma Fmgore basic measurement of voiced exc1t.at10n is tllgz_tg gf
the glottal volume-velocity wave (R. L. MILLER, 1939; FANT,‘ ation;
MATHEWS, MILLER and DAvID, 1961a; HoLMEs, 1962). Approxim

1 Formally an inverse Fourier transform.
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to this function can be obtained by so-called inverse-filtering techniques.
The idea is to pass the speech signal through a network whose trans-
mission function is the reciprocal of that of the vocal tract for the
particular sound. Zeros of the network are adjusted to nullify vocal
tract poles, and the resulting output is an approximation to the input
glottal volume current.

The inverse-filtering analysis presumes that the source and system
relations for the speech-producing mechanism do not interact and can
be uniquely separated and treated independently. This assumption is a
treacherous one if the objective is an accurate estimate of the glottal
volume velocity. In the real vocal tract they interact to a certain extent
(particularly at the first-formant frequency). Another difficulty is that
it is not always clear whether to ascribe certain properties (primarily,
zeros) to the tract or to the source. The estimate obtained for the glottal
wave obviously depends upon the vocal-tract model adopted for the
inverse filter. The criterion of adjustment of the inverse filter also in-
fluences the answer. Under certain conditions, for example, ripples on
the inverse wave which may be thought to be formant oscillations might
in fact be actual glottal variations.

One question often raised is “where in the pitch period does the
excitation occur.” Presumably if such an epoch could be determined,
the pulse excitation of a synthesizer could duplicate it and preserve
natural irregularities in the pitch period. Because the glottal wave fre-
quently changes shape, such a datum is ditficult to describe. One claim
is that this epoch commonly is at the close of the cords (R. L. MILLER,
1959), while another (HoLmes, 1962) is that it can occur at other points
in the wave. To a first approximation, such an epoch probably coincides
with the greatest change in the derivative of the glottal waveform. Often
this point can occur just about anywhere in the period. For a triangular
wave, for example, it would be at the apex.

A perceptual study has been made of the effects of the glottal wave-
form on the quality of synthetic speech. The results support the notion
that the significant vocal excitation occurs at the point of greatest slope
change in the glottal wave (ROSENBERG, 1971 b). Natural speech was ana-
lyzed pitch-synchronously. The vocal-tract transmission and the glottal
waveform were determined and separated by inverse filtering. Artificial
glottal waveforms were substituted and the speech signal was regenerated.
Listening tests showed that good quality speech can be obtained from
an excitation function fixed in analytical form. The absence of temporal
detail, period-to-period, does not degrade quality. A preferred glottal
pulse shape has but a single slope discontinuity at closing. Tt is intrinsic-
ally asymmetric, so its spectral zeros never fall on or near the Jw-axis
for any combination of opening and closing times (ROSENBERG, 1971 b).
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5.4. Articulatory Analysis of the Vocal Mechanism

The discussion of Chapter III showed that if the vocal tract 00(111-
liguration is known, the system response can be compuf[ed and Fhe mode
structure specified. The cross-sectional area as a function of distance is
sulficient to compute the lower eigenfrequencies of the tract. An accu-
rate account of losses along the tract requires knowledge of the crossi
scctional shape or the circumference. [See Eq. 3.33).] .Becagse the voca
mechanism is relatively inaccessible, the necessary dimensions are ob-
viously difficult to obtain. Even at best, pregent m.ethods of measure-
ment yield incomplete descriptions of tract.dlmenswns and fiynamlcs.

X-ray techniques for motion and still pictures have provided most
of the articulatory information available to date. The.X-ray datg gener-
ally are supplemented by other measures. Conventional moving pic-
tures can be made of the external components of the vocal system.
Palatograms, molds of the vocal cavities,. gnd 'electromyograghﬁ re};
cordings are also useful techniques for “filling in the plgture. uch
of the effort in X-ray analysis is directed toward therapeutic goals, sulc
as cleft palate repair and laryngeal treatment. Cf)nseq}len!;ly, the results
are often left in only a qualitative form. Several m\festlgatlons, however,
have aimed at measuring vocal dimensions and articulatory movements.
(FANT, 1960; CHiBA and KAJIYAMA; PERKELL; FUIIMURA e.t al.; HOUDE.)

One of the main problems in obtaining such'data is keeping the
radiation dose of the subject within safe limits, This usgally means thalt
only a very limited amount of data can be ngen on a single 1nd1v1dﬁad.
One ingenious solution to this problem utlhz.es a comquer-cqntro ed
X-ray beam which, under program control, is made to irradiate an
track only the physiological areas of interest (FUIIMURA et al.?. . .

Another problem is the detail of the X-ray photograph. Thls is pall;th;
ularly a problem in moving X-ray photography, even with dthg :;15
image-intensifier tubes. Detail which l‘ooks deceptively good in the
(visually-integrated) moving picture, dlsappears when one stop§ le
film to study a single frame. Sound recordings are usually mad;e1 simul-
taneously for analysis, but often are of poor quality because of the noise

he proximate movie camera.
o tTh: detail in still pictures is somewhat better but n‘eveﬁtheless lack-
ing. An example of a typical medical X-ray is .shown in Fig. 5.34. Thg
tongue and lips of the subject were coated w1th a be.lrlum compoun
to make them more visible. The vocal tract posmon is appropriate to
the production of a high-front vowel close to /i/. .

The typical procedure for obtaining an area function from tlfle X—r'z:y
picture can be illustrated. An axial line through the cente'rs of gravi y
of the cross sectional areas is first located, as shown in Fig. 5.35a
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T T

Fig. 5.34. Sagittal plane X-ray of adult male vocal tract

(FanT, 1960). The shape and area of the cross-sections at a number of
locations are estimated, as shown in Fig. 5.35b. The shape estimates are
deduced on the basis of all available data, including dental molds of the
vocal and pasal cavities, conventional photographs and X-ray photo-
graphs from the front. These sections provide anchor points for an
estimate of the whole area curve. Intermediate values are established
both from the sagittal plane X-ray tracing and from continuity con-
siderations to give the complete area function, as shown in Fig. 5.35c.
Typical results for several sounds produced by one man are shown in
Fig. 5.36.

Even under best conditions, some of the vocal dimensions during
natural speech are impossible to measure. For example, one often can
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often very uncertain,

Simi .
direcf[mllarfly’ the vocal source of excitation cannot be studied easily b
methods. For sustained, open vowels, however, the vocal cor?jl

o : . .
iger?élcc;?: Charactenlstlcs of the unvoiced sources, on the other hand
€., 101, spectral propertics and int Ii ’
P o I . Internal impedance, are best jn-
ysiological configuration, aj
] , air flo
spectral analysis of the output sound. v messurements and

Research interest iq better methods for physiological measurements

b .
?ntzg;aﬁhgflf}?gth of the tract. Solution of an integral equation yields the
€ cross-sectional area of an equivale
1 . : t lossless, hard-

PIpe as a function of distance Diff iati o feh funetinn
: . erentiation gives the area funct;
;}éplsila; resglts},: compared to area functions from X-ray measuremelnot:.

Wwn n Fig. 5.37. The impedance tub i ‘
! . ¢ calculations are m
hard-walled vocal-tracts having the shapes given by the X-ray dzf; for
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I'ig. 5.37a and b, Typical vocal-tract area functions (solid curves) determined from impedance
mcasurements at the mouth. The actual area functions (dashed curves) are derived from
X-ray data. (After GoPINATH and SONDHI)

A question of considered importance is the influence of wall-yielding
(as is present in the real vocal tract) upon the calculated area function.
I’resent efforts aim to include wall vibration and wall loss into the area
determination method. Further research is needed to test the method
with real speakers and real speech, and to account for real vocal-tract
conditions, including loss, yielding side walls and nasal coupling.

Vocal-tract models, electrical vocal-tract analogs and computational

analyses have all been useful in inferring articulatory data and tract
dynamics from acoustic measurements of speech sounds and from X-ray
data. One articulatory model, which has an important application in
synthesis (see Section 6.26), has also been useful in establishing physio-
logical constraints and time constants associated with major articulators
(COKER, 1968). The articulatory model describes the vocal area function in
terms of seven parameters, shown in Fig. 5.38. The coordinates are:
the position of the tongue body, X, Y; the lip protrusion, L; the lip
rounding J¥; the place and degree of tongue tip constriction, R and B;
and the degree of velar coupling, ~V. No nasal tract is incorporated in
this version of the model, and velar coupling exerts its influence solely
through the tract area function.

The area function described by the model can be used to synthesize
connected speech, which in turn can be compared in spectral detail to
real speech. Also, because of its correspondence to major vocal ele-
ments, the seven-parameter model can be used to duplicate articulatory
motions observed from X-ray motion pictures. Further, its description
of vocal-tract area can be compared with X-ray area data, as shown in
Fig. 5.39. Such comparisons have been useful in analyzing priorities
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Fig. 5.38. Seven-parameter articulatory model of the vocal tract. (After Coxker)
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anzii .tlme-congta.nts for the motions of the articulators in real speech

and i quantifying these effects for speech synthesis (COkEr, UMEDA
: ]

and BRowMaN; FLANAGAN, COKER, RABINER, SCHAFER and UMEDA).

5.5. Automatic Recognition of Speech
A human can listen to meaningful speech of a given language and
set doxyn a written equivalent of what he hears. He performs agtrans-
formation on the acoustic input signal wherein distinctive linguistic
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clements (phonemes) are recognized and re-encoded into a sequence of
Ictter symbols. Recognition of the linguistic elements is based upon a
knowledge of the contextual, grammatical and semantic constraints of
the given language. It does not take much examination of sound spectro-
grams to convince oneself that a unique relation generally does not
exist between a given segment of the acoustic signal and a linguistic
clement. Neither are phonemic boundaries necessarily apparent in the
acoustic signal.

Automatic recognition of speech implies phonemic analysis by
machine. It is possible to simulate crudely the initial operations per-
formed on the acoustic signal by the human (see the frequency analysis
und neural encoding performed at the ear’s periphery in Chapter IV)
but, to date, not even the most elaborate mechanical recognizers have
been able to apply linguistic constraints comparable in effectiveness to
the human. This latter area represents an active field of research in
theory of grammar, semantics, and mechanical translation.

The difference (or, more precisely, the gulf) between phoneme re-
cognition for a given language and a straight-forward encoding of the
acoustic signal, say in terms of vocal modes and excitation, cannot be
overemphasized. The former implies complete linguistic knowledge, the
latter only that the signal is produced by the human vocal mechanism.
The latter is within the scope of present speech analysis techniques.
The former, as yet, is not. If phoneme recognition ultimately proves
possible, the import to efficient transmission is, of course, immense.
(Recall it was suggested in Section 1.2, Chapter I, that the information
rate associated with the utterance of independent, equiprobable pho-
nemes is on the order of 50 bits/sec. A coding exists for transmitting
information at this rate over a channel of about 5 cps bandwidth and
30 db signal-to-noise ratio, with as small an error as desired.)

A number of research investigations have treated machines which
are capable of recognizing limited ensembles of speech sounds uttered by
limited numbers of speakers (often only one). Generally these devices
make decisions about either the short-time spectrum of the acoustic
signal or about features of the time waveform. The constraints usually
employed are ones more appropriate to the vocal mechanism (i.e.,
acoustical constraints) than to linguistic structure. Without attempting
to be exhaustive, the state of the art can be outlined by several
examples.

One effort toward a recognizer for a limited ensemble of sounds is
a recognizer for spoken digits, called Audrey (DAvis, BibpULPH and
BALASHEK). The principle of operation is to make a rough measure of
the first and second formant frequencies as functions of time, and to
compare the measured temporal patterns (in the F 1-F 2 plane) with a
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set of stored reference patterns. The stored pattern affording the best
correlation is then chosen as the uttered digit.

The procedure is illustrated in Fig. 5.40. The speech signal is filtered

into two bands, 900 cps low pass and 1000 cps high pass. Limiting §
amplifiers in both channels peak clip the signals. Axis-crossing meas- |
ures approximate the frequencies of the first and second formants as
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AMPLIFIER
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‘ CORRELATION

I
1
|
1
o6 csKcl
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(800 COUNTER
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AMPLIFIER
Fig. 5.40. Principle of operation of a spoken digit recognizer.
(After DAvis, BIDDULPH and BALASHEK)

functions of time. The first-formant frequency range (from 200 to

800 cps) is quantized into six 100-cps segments. The second-formant ‘;
range (from 500 to 2500 cps) is quantized into five 500-cps steps. An

F 1-F 2 plane with 30 matrix elements is thereby produced. For a given
digit utterance, the time that the F 1-F 2 trajectory occupies each ele-
mental square is determined.

A reference “time-occupancy” pattern for each digit is stored in the

machine. The storage mechanism is 10 weighting resistors associated
with each square. Through these resistors, charges are accumulated on
10 separate condensers during the time the square is occupied. A cross
correlation of the stored and incoming patterns is effected by weighting
the 10 conductances associated with each square according to the aver-
age time-occupancy of that square by the respective digits. That is, for
each of the 30 squares, there are 10 relays which close charging paths
to the 10 fixed condensers. The conductance of a given path is weighted
proportional to the time occupancy of that square by a given digit. The
condenser left with the greatest charge at the end of the utterance
indicates the pattern affording the highest correlation, and hence the
spoken digit.

The machine does not have provisions for automatically adjusting
its stored patterns to a given speaker’s voice. This must be done manually.
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When it is done, however, the accuracy in recognizing telephone quality
witerances of the digits ranges between 97 and 99, correct. '

An extension of this technique is to correlate—on an 1pstant-by-
instant basis—a measured short-time amplitude spectrum with store(;
spectral patterns (DUDLEY and BAL.ASHE'K). Instead of the F.l—F‘
(rackers, a set of bandpass filters (10 in this case, each 300 cps W1de).1s
used to produce a short-time spectrum. St'ored spectral pgtterns (again,
10) are continuously cross-correlated with tvhe .short-tlme spt.:ctlr'um
produced by the filters. The maximum correlation is taken as an in 1c§-
tion of the particular speech sound being produced_. The pattern'-rnatc -
ing procedure is illustrated in Fig. 5.41.. If Fy(w,) is the shoTt—tlme amt-l
plitude spectrum produced by the n filter chanr}cls .for. a given Tpeec
input, and F;(w,) the J-th stored‘ pattern, the circuit, in principle, ap-
proximates the correlation quantity

2
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Fig. 5.41. Scheme for automatic recognition of spectral patterns and spoken digits.
. (After DUDLEY and BALASHEK)



196 Techniques for Speech Analysis

1 , ,
0O T F@)Fs(@)  j=1,2.3,..,

and selects the j that produces a maximum ¢, ;(0). The 10 sound patterns '
stored in this particular development are all continuants and are /i, I, &, §
a,o,un,r,f,s.

A word recognizing device follows the spectral pattern recognizer to §
recognize the 10 digits. Similar to the Audrey device, each selected
spectral pattern is weighted according to its duration in a given digit §
(see the lower part of Fig. 5.41). Again a maximum selection is made to §
recognize the uttered digit. The word indication is developed as follows. 1
When a particular spectral pattern is energized, 10 charge paths are |
set up to 10 fixed condensers. The conductance of a given path is §
proportional to the average time for which that spectral pattern appears
in a given digit. The 10 condensers therefore accumulate charges pro- §
protional to the correlation between the 10 stored word patterns and the ;
measured pattern. At the end of the utterance, a maximum selection §
indicates the best-fitting word. This device —designed as an elaboration §
upon the previous one—provides digit recognition with good accuracy }
when set for a particular voice. In both devices the sequence of spectral |
patterns and the recognized digits are displayed on electrical panel j
lights. Despite its early date of conception and implementation, this §
device and the previously-described digit recognizer, Audrey, still reflect
present limitations in automatic speech recognition; namely, one can
achieve success if the vocabulary is isolated words, sufficiently small in §
number, and if the number of speakers is sufficiently constrained. ‘

Another speech recognizing device also compares spectral patterns
with stored patterns representative of specific speech phonemes (Fry 4
and DENES). The comparison however, is made in a different way, and
the machine types out the identification in terms of special symbols. ]
Selection of a match is asynchronous and is initiated by the rate of
change of the spectral patterns. More important, however, an attempt
is made to exploit elementary linguistic constraints. A block diagram
of the device is shown in Fig. 5.42.

A filter-bank analyzer (20 channels) produces a short-time amplitude
spectrum. Spectral patterns appropriate to a given sound are produced
by multiplying the outputs of two channels. The products are scanned
by a selector, and the maximum is chosen. The choice is typed out by
the machine and is remembered by a storage circuit. On the basis of the
choice, the ensemble of stored patterns is biased according to digram
statistics for the language. Selection of the next phoneme is biased in
favor of its being the most probable one to follow the previous choice.
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Fig. 5.42. Block diagram of speech sound recognizer employing elementary linguistic con-
straints. (After Fry and DENES)

In the present machine 14 phonemes are recfognized; four vowels,
nine consonants and silence. A new selection is made 'whenever the
product voltages have a rate of change greater than a given threshold
value. With the machine adjusted for a given speaker, ‘the spoken mput
and printed output have been compared. When the filfgram constraints
are not used, the percentage correct response on 1nd1v.1dua1 sounds ?.nd
on words is 60% and 247, respectively. When the digram constr?unts
are connected, these same scores rise to 72% and 44%., foF the single
speaker. For a second and third speaker, without readjusting the ma-
chine, the sound articulation scores fall to about 45%,. -

The linguistic information clearly improves the recognition wh.en
scored to give all phonemes equal weigI}t. If scored on the basis of in-
formation per phoneme, however, the digram constraints could, unde_r
certain conditions, be detrimental. The most probable. phoneme is
favored, but it is also the conveyor of the least information. The con-
straints also raise the question of sequential errors and hqw they n?l'ght
be propagated. A certain level of accuracy 1n the af:ous'.uc recognition
is certainly necessary if the use of linguistic constraints 18 'fo lead to a
decrease, rather than to an increase, in error rate. Sequential errors of
course occur in the human listener. A listener, once embarked upon the
wrong set of constraints in a particular sequence, may add one'er'ror t(}
another for quite a long stretch. In the machine, severe restriction o

reduces this possibility. N
VOC;P ltlilac;r)l,inguistic conslt)raints to be incorporated. into the' recognition
process are at all realistic, the storage and processing fu.nctlons become
complex. Also if elaborate processings are to b§ carried ou.t.on tlﬁe
acoustic signal, large storage and rapid computation are requisite. The
digital computer is adept at this, and a number of efforts have been
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made to capitalize upon its ability. One effort in this direction is the
programming of a digit recognizer (DENES and MATHEWS). Short-time
amplitude spectra are produced from a filter bank. The filter outputs
are scanned sequentially, and the spectral data are read into and stored |
in the machine. A speech spectrogram —quantized in time, frequency §
and intensity —is laid down in the storage. Amplitude values are normal- :
ized so that the sum of the squares over all time-frequency blocks is 1
unity. The measured time-frequency-intensity pattern is then cross- |
correlated with stored spectrographic patterns. The correlation is effected |
by multiplying the amplitude values of corresponding time-frequency |
elements and summing the products over all elements of the time-fre- 1
quency plane. The stored pattern yielding the maximum correlation is
chosen. |

Provisions are made to time-normalize the data if desired. The be- |
ginning and the end of the digit utterance are located, and the data 4
are, in effect, stretched to fit a standard time duration (actually 60 scans
of the filter bank at 70 sec™ ). Without time normalization only the 1
beginning of each utterance is located, and the first 60 scans are used. §

The reference pattern for each digit is obtained by averaging the #
spectral data for three utterances of that digit by five men. These pat-
terns are used to recognize different utterances by the same and by
different speakers. For different utterances by the same five speakers, 4
the error rates are found to be 6% with time normalization and 139 |
without. When the reference patterns are set for a single speaker, the |
digits uttered by that speaker are recognized essentially with no error, 4

A more linguistically-based approach, using a large on-line com- ;‘
puter facility, performs a feature analysis of segments of the speech
waveform (REDDY, 1967). The wave is first divided into minimal segments,
10-msec in duration. Minimal segments which are acoustically similar ]
are grouped to form larger segments representing either sustained parts
or transitional parts. Features such as voiced-unvoiced, pitch, intensity,
formant frequency and amplitude are used to classify each segment 1
into four phoneme groups: stop, fricative, nasal-liquid and vowel. A
very detailed algorithm is then used to assign a phoneme label to each ‘
segment of a phoneme group. The object, literally, is a speech to pho-
neme-like translation. This system, while recognizing the potential ad- |
vantages of phonetic feature classification and language element pro- '
babilities, is nevertheless faced with the same problems of linguistic
and semantic constraints that confront all recognizers. Its sophistica-
tion pays off, however, in enlarging the speaker population and vocab-
ularly which can be successfully handled. The system has been demon-
strated to yield 989 correct recognition on 500 isolated words spoken
by one individual (REpDY, 1969).
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At least one similar word-recognition experiment has been cfarrled
out for the Russian language (VELICHKO anq ZAGORUYKO). In this case
the energy-time-frequency dimensions of individually spoken word; a;e
quantized. A distance functional between the unknown word and the
stored references for a word library of 203 words is computed. For tzv(\;g
speakers, producing approximately 5000 utterances chosen fron}) thé
word library, the recognition accuracy was found to be about95%;. Com-
putation time for each utterance was 2 to 4 sec. o

The preceding discussion has attempted to 1ndlcate. l?y example
several stages of development in automatic speech }'ecogmtlon. A s1zle-
able number of related efforts have not been mentioned (for examp ez
SmitH, 1951; BAUMANN, LickLIDER and HOWLAND; OLSON and BELAR;
ForGiE and FORGIE; FRICK ; DREYFUS-GRAF; MARTIN; LINPGREN). Most
share a common point of departure, namely, the short-time spectrum.
It is clear from the discussion that none of thf: scheme?s tells us very
much about how the human processes speech information, nor about
how he recognizes linguistic elements. None of the methods works well on
an unrestricted number of voices, nor on a lgrge contextual vocabulary.,
The human, however, is proficient at handh‘ng bgth. Nevertheless, .the
investigations do indicate what can be reah‘ze.:d in the way of V(;llce-
actuated devices for special applications — spef:lflcally, appllcatloqs wI ere
vocabulary and number of voices may be §u1tab1y restricted. It is ¢ eta).r,
too, that for a given accuracy of recognition, a trade can be made be-
tween the necessary linguistic constraints, the complexity of the vocab-
ulary, and the number of speakers. ' . .

Automatic speech recognition—as the human accpmphshes 1.t—\3v111
probably be possible only through the proper ar.xalysm and apphca.tlon
of grammatical, contextual, and semantic consfrfunts. These copstramti;
as yet, are largely unknown. Perhaps nc?t s‘urpn‘smgl)", res_ea.rch in speec
synthesis seems to be providing more.ms1ght into llngulst{c' constraints
than is speech recognition work. One view of. speech regogmtlon (PIE.R.CE)
makes the point that success will be very‘hmlted un‘tll the recognizing
device understands what is being said with something of the facility
of a native speaker.

5.6. Automatic Recognition and Verification of Speakers

The previous discussion pointed up the notion that. the spectreﬁ
patterns of one speaker are not always adequate to recognize the speec
of another. This fact suggest that spectral data might be used to re-
cognize or identify different speakers. A number qf 'efforts along these
lines have been made—mainly with the use of digital computers. By
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way of illustration, one study produced i i i

' % quantized time-frequency-in-
tensity (spectrogra;ililc) patterns from a 17-channel filter bank scar)llned
at a rate of 100 sec (PrRUZANSKY). Ten key words were excerpted from

context for 10 different speakers (three women, seven men). For each ‘
talker, three utterances of the 10 key words were used to establish the '

reference patterns for that individual,

For talker identification, the spectrographic pattern of a different ‘
key-word utterance by an unknown speaker of the ten-member group
was gross-correlated with the reference patterns (again by multiplyinp ‘
amp‘htudes at each time-frequency element of the spectrogram), and thg ]
maximum correlation was taken. Because the utterances varied 1',n length, -.
alignment of patterns was done by matching them at the maximun'; ]
overall amplitude points. Results showed that among the 10 speakers 4
for whom the reference library was formed, the identification was cor- |

rect in 899 of the cases.

In the same study, the three dimensional time-frequency-intensit i
patterns were reduced to two dimensions by summing over the time o}fl 4
the utterance for each filter channel. The summation produces a graph 1
of integrated intensity—versus-frequency for each utterance. Itg WI;S

found that this operation still afforded a recognition score of 89°
4

It is of course difficult to draw conclusions about human recognition !
of spe;akers frorp such an experiment. Again, however, for a limited |
specific application, where speaker ensemble and vocabulary are re-’ i

stricted, such a technique could be effectively applied.

A few experiments have measured human recognition of speakers "

from visual inspection of speech spectrograms. In one of these (KERSTA
1948, 1962a) a group of speakers (either 5, 9 or 12) was asked to utter’
10 key words four times. Conventional bar spectrograms and contour
spectrograms were made of their utterances (see Section 5.14). For each
word a randomized matrix of Spectrograms consisting of four utter-
ances of each speaker was displayed. Subjects were asked to identif
thf: utterances of each individual speaker. The errors in grouping ch
prints according to speaker ranged from 0.35% to 1.09; for bar prints
anddfrom 0.37% to 1.5% for contour spectrograms. OWhen the test
(v)vrczlre 1.sovae;;ea ;:r):;:te:lré)::d from context, the error was still about the same
A second experiment was modeled after fingerprint identification
prf)cedures, although the analogy is a tenous one. A file of “voice
pnntg ’.’ of five key words was compiled for 12 speakers Subjects then
identified a different set of utterances by an unknown r'nember of the
group through comparisons to the reference sets. Using the groups of
five cue words, the misidentifications were less than 19, Identifical’sions
based upon two 5-word groups in tandem gave errors oof about one-half
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percent. Preliminary investigations were also made into the ability to
recognize disguised voices. The results suggest that adults have certain
invariant linguistic and physiological characteristics which the spectro-
graph may display even when an effort is made to alter the voice.

These experiments, through a combination of publicity and private
development, captured the notice of various law-enforcing organizations,
who saw in the method a new means for identifying criminals. Several
cfforts were made to introduce the technique into legal proceedings with
controversial results. Independent experiments were conducted to test
the method, and the findings were at variance with the original experi-
ments (YOUNG and CAMPBELL). Most opinion holds that more research
is needed to accurately establish the utility of human recognition of
speakers from sound spectrograms (FLANAGAN et gl.; BOLT et al.). Sub- -
sequent efforts continue in this direction (Tosi). These latter experi-
ments have treated a variety of experimental conditions (for example,
closed sets versus open sets) and the error rates in visual identification
vary from 19 to 309, depending upon the experimental constraints.
This error range, when analyzed in terms of experimental conditions,
appears consistent with previous data.

A problem perhaps more interesting and presently more tractable
than speaker recognition is automatic verification of speakers (Dob-
DINGTON ; LumMIs ; DAs and MoOHN). In the usual context of this problem
one has a restricted population of “customers” who want to be verified
(i.e., a cooperative situation), and they are willing to state a prearranged
phrase (secret if desired) chosen to be advantageous for the machine.
(The voice banking, and voice validation of credit cards are applications
in point). In the verification situation unknown caller, x, claims to be
customer, C;. The machine must decide to accept or reject x as C;.
The decision can be weighted according to the importance of the verifi-
cation (for example, whether the sum charged is large or small) and a
predetermined mix of error types (i.e., rejecting a true speaker versus
accepting a false speaker) can be specified.

The most important aspect of the verification problem, and the one
which distinguishes it from the recognition problem, is that no matter
what the size of the impostor population, the average percent correct
verification tends to be constant. The performance is determined by
the average consistencies of the known speakers and by how each of
them differs from the average of the impostor population. In a recogni-
tion situation, on the other hand, where the unknown must be identified
by successive comparisons to all members of a known set, the proba-
bility of error is monotonely related to the number of speakers in the
set, and the probability of a recognition error approaches unity as the
user population becomes large.
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One experiment on verification (DODDINGTON) has made use of
pitch, formant and intensity data to form reference patterns for the §
known speakers. Frequency data (i.e., formants and pitch) were cons §
sidered attractive because they are resistant to variations in the amplig
tude-frequency characteristics of a voice communication link. A nove
non-linear time-warping of the utterance of an unknown speaker wal
used to compare (register) it with a stored reference pattern correspon
ding to the claimed identity. The non-linear warp was achieved on
digital computer by a steepest-ascent algorithm. The algorithm warp
the pattern of the unknown speaker to maximize its correlation with
the stored reference pattern. A mean square error measure was theg
made for the registered patterns and the speaker was accepted or red
jected depending upon whether the mean square error was less than of
greater than a threshold chosen for a specified mix of errors (i.e., rcjech
true versus accept false). 4

Fig. 543 shows how the formant, pitch and intensity (gain) da
are compared for a verification phrase; namely, the voiced sentene ‘
“We were away a year ago”. In Fig. 5.43a the unknown utteranci
(solid curve) has been given a linear time stretch to make its duration
equal to the reference (dashed curve). Poor internal registration is evis
dent. In Fig. 5.44b, the non-linear warp has been applied to regist‘
the second formant tracks with maximum correlation. The registration
of the other parameters is similarly improved. The remaining differences
and the amount of non-linear warp applied are indicative of the similarities]
of the two patterns. A square error measure is formulated to indicate;
a ““distance” between the registered patterns.

Using this technique, with a population of 40 male speakers, correct|
verification was achieved 98.5%, of the time on the verification phrase
“We were away a year ago’’ used by all subjects. Identical twins included §
in the experiment were differentiated 1009, of the time.

If more sophisticated **distance measures’” are used to characterize 4
the differences between the registered patterns for the unknown and |
reference, a comparable performance can be obtained on simple meas- |
ures, easily made in real time. A subsequent experiment on the same “
population of 40 speakers, and using more elaborate distance measures

on only intensity, pitch and non-linear warp, achieved 99%, correct |
verification (LumMis). !

A natural query is “How good would human listeners do in the 1
same task ?”> To answer this, a completely parallel auditory experiment
was conducted with the same 40 speakers, but using human listeners |
instead of a computer to make the verification decision. The listeners |
performed with greater error rate than the machine and achieved ap- §
proximately 96 % correct verification (ROSENBERG, 1971 a).
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Results of these and related verification experiments suggesg tgzz
automatic machine verification may ha;:/e practlc?I }:'egure;i rﬁ}lésode‘;leive
fon i ily might accomplishe :
and further question is how easl npli .
the machine and be erroneously accepted. Continuing research is aimed
at this question.
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A number of features seem to distinguish one speaker from another,
The size and shape of the vocal tract vary considerably among persons.
Characteristic damping, mouth and glottal dimensions also vary. In-
dividual nasal coupling, size and damping of the nasal tract are other
relevant features. Temporal patterns of intensity (stress) and pitch (in-
flection) are still others. Vocal obstructions and variations in dental
work may contribute still further differences. Some or all these factors
might be used to recognize or verify a speaker. It is probable that
machine and human do not use the same features to equal effect. The
machine, for example, might make use of data the human ear cannot
assimilate.

As suggested earlier, the speech-recognition and speaker-identifica-
tion experiments described here tell us little about the perceptual pro-
cessing which the human accomplishes. They do not, for example,
suggest the temporal span of the recognition unit used by the human.
Neither do they indicate subjective techniques for measuring whether
the unit is the phoneme, word, sentence, or something larger. The auto-
matic machine methods deal mainly with advantageous processings of
essentially the acoustic signal, and not with perception as the human
practices it.

The mechanism of human perception of speech is difficult to analyze
and present understanding is meager. The discussion of Chapter IV
showed that for signals with simple temporal and spectral structure,
reasonably close correlations can be made between subjective behavior
and the known physiology of the peripheral ear. To a modest extent,
similar relations can be established for speech signals. (For example,
one can identify features such as voice pitch, formant frequency and
voiced-unvoiced excitation in terms of the basilar membrane motion.)
But how the neural data are stored and processed after leaving the
periphery is a completely open question. Continued research on the
electrophysiology of the auditory tract, and on human response to
meaningful speech signals, will hopefully provide some of the answers.

V1. Speech Synthesis

Ancient man often took his ability of speech as a symbol of divine
origin. Not unnaturally, he sometimes ascribed the same ability to his
gods. Pagan priests, eager to fulfill great expectations, frequently tried
to make their idols speak directly to the people. Talking statues, miracu-
lous voices and oracles were well known in the Greek and Roman civil-
izations —~the voice usually coming to the artificial mouth via cleverly
concealed speaking tubes. Throughout early times the capacity of
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“ artificial speech’ to amaze, amuse and influence its listeners was

y iated and exploited. -

lemzrsk?ﬁiy;v\;lllizi%pr\;zl;? entered I;he Renaissance scie1_1tific C}lri051ty
developed and expanded. Man began to inguire more senous;y.mto thtes
nature of things. Human life and physiolgglcal functions were a:ir Farie1 s
of study, and the physiological mechanism of speech belorlzge L in o ;S
sphere. Not surprisingly, the relatively complex vocal mec a;nsm e
often considered in terms of more tractable models. These early mode

were invariably mechanical contrivances, and some were exceedingly
clever in design.

6.1. Mechanical Speaking Machines; Historical Efforts

One of the earliest documented efforts at speech synthesis w;lfs bﬁ
KRATZENSTEIN in 1779. The Imperial Af:adet-ny of 'St. Petersburg o e;z
its annual prize for explaining the physiological dlfferenc_e's peﬁwe;n ih:
vowels, and for making apparatus to produce therr} artificially. As fhe
winning solution, KRATZENSTEIN constructed .acoushc resonators sxm1.th
in shape to the human vocal tract. He activated the resonatois v:zi !
vibrating reeds which, in a manner analogous to the human vocal cords,
i ir stream.
lntegmfitdyzzr:llater (1791), voN KEMPELEN 'constructcd and demoer;-
strated a more elaborate machine for generating connected utt,eranic;1 Cé
[Apparently VON KeMPELEN’s efforts antedg,te I(.RATZEI:I786'I9'EIN s111 IS( noe
voN KeMPELEN purportedly began work on his Qevwe in 1 (Yo ¢ Ko
pELEN; DUDLEY and TARNOCZY).] Although his mzfchme {(elc}ellve be(;n
siderable publicity, it was not taken as seriously as it s‘houh fave o a;
Von KeMmpELEN had earlier perpetrated a degept‘{on in the Srmf L2
mechanical chess-playing machine. The main ‘‘mechanism™ 0
machine was a concealed, legless man—an expert chess pl_ayer.t tevice

The speaking machine, however, was a qompletely legltl'ma:1 e de 1e.
It used a bellows to supply air to a reed “fhlch, in turn, excited a imgi n:
hand-varied resonator for producing voiced sounds. Cpns(ci)nan sz,1 n
cluding nasals, were simulated by four separate comnstricte ‘paSngthé
controlled by the fingers of the other hand. An 1{np_roved VeSI:SIO(I:lHARLEs
machine was built from VON KEMPELEN’S descrlpqon by_ (11r‘ IARLES

WHEeATSTONE (of the Wheatstone Brildge, ;nd wpo I;?gcrg(}ne in Bni

i :vention of the telegraph). It 1s shownin rig. ©.1. .
wmiifilt:ﬂlyn,v:he device was operated in the followling mannlfr. Tl'lg Erllti}llt
arm rested on the main bellows and expelled air throyg a \6/11r Thi
reed to produce voiced sounds. (See the 10Yver diagram in Fﬁg. fI:'c.;tiVes
fingers of the right hand controlled th@ air passages fgr t eff éontrol
/i/ and Js/, as well as the “nostril”” openings and the reed on-0 .



