Impedance and Admittance

Waves in 1-ports

Jont Allen

ECE-537

Summary from the last lecture

- The wave equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=\frac{\partial^{2} \Phi}{\partial x^{2}}
$$

describes any system that allows waves to travel at the wave speed in different directions

- It obeys linearity (superposition)
- All transmission line theory can be understood with these simple ideas that waves traveling in opposite directions:

$$
\Phi(x, t)=f(c t-x)+g(c t+x)
$$

- Note that this solution only works in 1-dimension

1-Ports networks

- The 1-port is a pair of terminals:

- The Thevenin/Norton model is almost a 1-port
http://auditorymodels.org/GEAR/PAPERS/Stuff/Johnson1-03.djvu
- A 2-port has an input and an output (i.e., two 1-ports)

Definition of the characteristic impedance

- Pressure as the sum of two waves:

$$
P(x, s) \equiv P^{+}(x, s)+P^{-}(x, s)
$$

- Velocity as the sum of two waves:

$$
U(x, s) \equiv U^{+}(x, s)-U^{-}(x, s)
$$

- The characteristic impedance for each \pm wave is:

$$
z_{0} \equiv \frac{P^{+}}{U^{+}}=\frac{P^{-}}{U^{-}}
$$

- Parity: symmetry with respect to reflection

Definition of the reflectance $R(x, s)$

- Next rearrange the terms in z_{0} :

$$
R(x, s) \equiv \frac{P^{-}}{P^{+}}=\frac{U^{-}}{U^{+}}
$$

- This shows that $R(s)$ relates the two waves, independent of the wave type, P or U
- thus:

$$
P=P^{+}+R P^{+}=(1+R) P^{+}
$$

- and:

$$
U=U^{+}-R U^{+}=(1-R) U^{+}
$$

Impedance to Reflectance II

- The impedance $Z(s)$ may be defined in terms of the reflectance as follows:
- Starting from Ohm's Law:

$$
Z \equiv \frac{P(s)}{U(s)}=\frac{P^{+}+P^{-}}{U^{+}-U^{-}}=\frac{P^{+}}{U^{+}}\left(\frac{1+P^{-} / P^{+}}{1-U^{-} / U^{+}}\right)=z_{o} \frac{1+R}{1-R}
$$

- Solving for R in terms of Z and z_{o} gives:

$$
R=\frac{Z-z_{o}}{Z+z_{o}}
$$

How to determine $R(s)$?

- The reflectance $R(s)$ may be computed from z_{o} and $Z(s)$ as

$$
R(s) \equiv \frac{Z(s)-z_{o}}{Z(s)+z_{o}}
$$

where $s=\sigma+i \omega$

- Example: Z(s) = sL

$$
R(s) \equiv \frac{s-z_{o} / L}{s+z_{o} / L} .
$$

Thus $R(s)$ is an all-pass filter with a pole and zero on either side of the s-plane origin. Since $|R(s)|=1$, the system is lossless.

1-Port Absorbed Power

- Let $\mathcal{P}(t)$ be the absorbed power, defined as

$$
\mathcal{P}(t) \equiv \int_{-\infty}^{t} p(\tau) u(\tau) d \tau
$$

- In terms of waves

$$
\begin{gathered}
\mathcal{P}(t) \equiv \int_{-\infty}^{t}\left[p^{+}+p^{-}\right]\left[u^{+}-u^{-}\right] d \tau \\
=\int_{-\infty}^{t}\left(p^{+}\right)^{2}(\tau) d \tau / z_{o}-\int_{-\infty}^{t} p_{-}^{2}(\tau) d \tau / z_{o} \\
=\mathcal{P}^{+}(t)-\mathcal{P}^{-}(t) \geq 0 .
\end{gathered}
$$

- The total power is incident - retrograde.

For a passive system absorbed power ≥ 0.

The lossless transmission line

Volume velocity $u(t)$ [current $i(t)$, particle velocity $v(t)$]

- Example: If $Z_{\text {load }}$ is and open circuit, $R(x=0)=1$,
- Then $R(\omega, x=L)=e^{-i \frac{\omega}{c} 2 L} \leftrightarrow r(t)=\delta(t-2 L / c)$
- Thus

$$
Z(\omega)=z_{o} \frac{1+e^{-i \frac{\omega_{c}}{c} 2 L}}{1-e^{-i \frac{\omega}{c} 2 L}}
$$

- or

$$
Z(\omega)=z_{o} \frac{e^{-i \frac{\omega}{c} L}+e^{-i \frac{\omega}{c} L}}{e^{-i \frac{\omega}{c} L}-e^{-i \frac{\omega}{c} L}}=i z_{o} \cot \left(\frac{\omega}{c} L\right)
$$

- $Z_{\text {load }}=0 \rightarrow R(x=0)=-1 \rightarrow Z(\omega)=i z_{o} \tan \left(\frac{\omega}{c} L\right)$

Properties of: $r(t) \leftrightarrow R(s)$

- $|R(s)| \leq 1 \quad \Rightarrow \quad\|r(t)\| \leq 1$.
- $r(t)=0$ for all $t<0$
- $r(t)=0$ for all $t \leq 0$
passive
causal
strictly causal
- In the time domain $R(s)$ defines convolution relations

$$
\begin{aligned}
& p^{-}(t)=r(t) \star p^{+}(t) \\
& u^{-}(t)=r(t) \star u^{+}(t)
\end{aligned}
$$

- If we let $p^{+}(t)=\delta(t)$ then $p^{-}(t)=r(t)$
- Likewise, if we let $u^{+}(t)=\delta(t)$, then $u^{-}(t)=r(t)$
- Thus $r(t)$ relates the two traveling waves, independent of the wave type, p or u.

1-port reflectance

- Ohm's law is great for simple functions of $s=\sigma+i \omega$
- However for systems with delay, such as the vocal tract, the middle ear, or with nonlinear systems such as the cochlear, it is simply inadequate.
- Formulating Ohm's law in the time domain, with waves, can be much more physical, and informative.

1-Port impedance via waves

- The 1-port impedance, described by wave variables:

- $p^{+}=z_{o} u^{+},, z_{o}=\frac{\rho c}{A}$ is the surge impedance, reflectance $r(t)$ is given by:

$$
u^{-}(t)=r(t) \star u^{+}(t), \quad p^{-}(t)=r(t) \star p^{+}(t),
$$

and

$$
u^{+}(t)=u(t)+u^{-}(t), \quad p(t)=p^{+}(t)+p^{-}(t) .
$$

Explicit formula for $z(t)$

- If we let $u(t)=\delta(t)$ then we recover $z(t)$

$$
z(t)=r(t) \star z(t)+z_{o}[\delta(t)+r(t)]
$$

- This justifies calling z_{o} the surge impedance since

$$
\left.z_{o}\left(t=0^{+}\right) \equiv \frac{1}{2 \pi} \int_{\omega=\infty}^{\infty} \Re z_{0}(x, s)\right|_{\sigma=0} d \omega
$$

