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Objective

Φ ΨLISTENER

PHYSICAL PERCEPTUAL

ACOUSTIC FEATURES EVENTS

Develop rigorous procedures for analyzing and
modifying speech in noise, to:

identify perceptual features, denoted events
Develop a theory of human speech recognition
(HSR) based on two basic measures:

1. AI-Gram (speech audibility measure)
2. Confusion matrix (speech discrimination measure)

Show that across-frequency timing cues are events
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Human listeners as a Shannon Channel

My approach is inspired by information theory using a
classic 3-pronged approach: Simplify, simplify, simplify
1. The Channel capacity theorem gives the maximum

information rate as:

C ≡
∫

log2

(

1 + snr2(f)
)

df (1)

2. The basic idea is to use a Maximum entropy
(MaxEnt) speech source, and reduce the maximum
information rate for by increasing the noise.

Take full advantage of Articulation Index predictions of
the average phone score s = Pc(AI)
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Model of human speech recognition (HSR)
The research goal is to identify elemental HSR events

An event is defined as a perceptual feature
Event errors are measured by band errors ek

WordsSyllablesPhonesEventCochleaOutput:

Layer Layer

???Analog objects Discrete objects

F
ilt

er
s

La
ye

r

La
ye

r

"Front−end" "Back−end"

s(t)

AIk ∝ snrk [dB] ek = 0.82AIk WScv = s2

s = 1 − e1e2...e20

Allen/ECE500 – November 28, 2007 – p.



Articulation Matrices and elemental events
Miller-Nicely’s 1955 articulation matrix A measured at
[-18, -12, -6 shown, 0, 6, 12] dB SNR
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Case of /pa/, /ta/, /ka/ with /ta/ spoken
Phone groups imply sub-phonemic units (i.e., events)
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The case of /ma/ vs. /na/
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Fletcher’s Lopass/Hipass result
The AI is based on the band error product formula

1−Pc(SNR) ≡ etotal(SNR, \fc) = elp(SNR, fc)ehp(SNR, fc) (2)
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Probabilistic measures of recognition
kth band articulation index: AIk = 10

30
log(1 + c2snr2k)

c = 2, k = 1 · · ·K with K = 20

Band (event) error: ek = e
AIk/K
min

= 20
√

0.02
AIk

= 0.822AIk

The AI ≡ 1

K

∑

k AIk, ?

MaxEnt phone score: s = 1 − e1e2 . . . eK = 1 − eAI
min
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How can we find events?

A 4-Step analysis relates confusions to an audibility
measure (???):

Modification of speech sounds
We developed a tool based on the Short-Time
Fourier Transform (STFT) (?) that allows us to
selectively:
Mask with noise specific time and frequency regions

so that this specific part of the speech becomes
inaudible
selectively amplify specific regions
to increase intelligibility
We will present audio examples of original and
modified sounds
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m117/tE/ in speech-weighted noise
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m112/tE/ in speech-weighted noise
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Correlations of /t/ events

High correlation across all /t/’s in the database
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Masking of /tA/ timing cue

(c) Original /tA/ (d) Modified /tA/

When the /t/ burst is masked by noise, the perception
morphs to /p/

DEMO 4
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Truncation of /tA/
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This represents the normal hearing responses to a
truncated /tA/, from the start of the consonant

Morphing from /tA/ to /pA/ to /bA/ at 0 and 12 dB SNR

Similar to previous studies ?, and our more extensive
results
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Truncation of f101 /sa/
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This represents the normal hearing responses to a
truncated /sA/, from the start of the consonant

Morphing from /sA/ to /zA/ to /dA/ to /DA/

Duration seems to be a fricatives event
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/mA/- /nA/ discrimination

/nA/ recognition from /mA/ relies on a ≈ 50 ms delay
formed from the F1 and F2 collision

When we edit the speech so that the onset is
simultaneous above 0.6 kHz, the /nA/ is robustly and
naturally heard as /mA/

METHODS: 9 listeners evaluated these sounds in open
response random trial experiment.
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Deletion of /nA/ timing cue

(e) Original /nA/ (f) Modified /nA/

DEMO
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Creation of /nA/ timing cue

(g) Original /mA/ (h) Modified /mA/

DEMO
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Enhancement of /tE/ event

(i) Original /tE/ (j) Modified /tE/

The sound is heard as /t/ again, we suppressed the
morph (see confusion patterns of slide 4)

METHODS: The /t/ burst is enhanced (14 dB) on the
quiet sound, then noise is added

DEMO
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Enhancement of /tA/ event

(k) Original /tA/ (l) Modified /tA/

The sound is heard as /t/ again, we increase /t/
recognition

METHODS: The /t/ burst is enhanced (14 dB) on the
quiet sound, then noise is added

DEMO
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Conclusion

We have shown that normal listeners use
across-frequency timing coincidences to discriminate
consonants in noise

We have developed a tool to modify speech sounds

Morph sounds. Ex: /mA/ - /nA/
Decrease or increase intelligibility. Ex: /tA/, /tE/

This could well lead to the design of new hearing aids
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