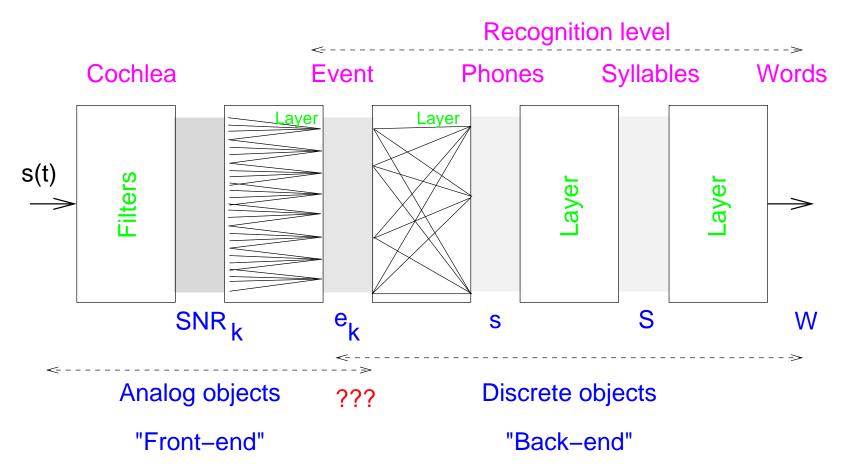
FROM LORD RAYLEIGH TO SHANNON: HOW DO WE DECODE SPEECH?

Jont B. Allen ECE Univ. of IL Beckman Inst. Urbana IL jba@auditorymodels.org


http://auditorymodels.org/CUNY/ http://auditorymodels.org/jba/PAPERS/ICASSP/

WHAT I WANT TO SHOW:

- Biological systems are the ultimate information processors
- HSR is a bottom–up, divide and conquer strategy
 - We recognize speech based on a hierarchy of context layers
 - As in vision, entropy decreases as we integrate context
- Humans have an intrinsic robustness to noise and filtering
 - Robustness is not due to semantic context effects

HOW WE RECOGNIZE SPEECH?

- Hierarchical "bottom up" analysis
- Accurate statistical models of performance at each stage

• Entropy drops (i.e., context is integrated) in stages

DEFINITIONS

-		
	phone	A consonant (C) or vowel (V) sound
	word	A meaningful phone or phone sequence (i.e., $cat \equiv CVC$)
	phoneme	The replaceable set of phones which leave a word meaning invariant
	recognition	Probability measure P_c of correct phoneme identification
	articulation	Recognition of "nonsense words"
	intelligibility	Recognition of words (i.e., meaningful speech)
	robustness	Relative recognition with filtering and noise
	confusion matrix	Table of identification frequencies $N_{sr} \equiv N_{r s}$
	articulation matrix	A confusion matrix composed of nonsense sounds
$\overline{}$	articulation event	A discrete subunit of articulation [e.g., Voicing: /ba/ vs. /pa/]
	trial	A single presentation of a set of events
	state	A values of a set of events at some instant of time
	state machine	A machine (program) that transforms from one state to another
	noiseless state machine	A deterministic state machine
	context	Coordinated combinations of events within a trial
	message	Specific information transmitted by a trial
	p_n	Probability of event n , of N possible events
	information density	I_n = log $_2(1/p_n),$ $n=1,\cdots,N$
	entropy	Average information: $H = \sum_{n=1}^{N} p_n I_n$

KEY HSR STUDIES

- The first articulation experiments date from Lord Rayleigh's 1908 and George Campbell 1910 phoneme identification experiments
- A basic probabilistic approach was developed by Stewart & Fletcher 1921
 - Detailed review of Fletcher's AI theory: Allen IEEE 1994
- French and Steinberg 1947 WWII studies
- Shannon's Information theory 1948+
- G.A. Miller, Heise and Lichten 1951; G.A. Miller & Nicely 1955
- Language and communication G.A. Miller, 1951 McGraw Hill Miller first introduces IT to language modeling, following Shannon
- Boothroyd JASA 1968; Boothroyd & Nittrouer JASA 1988
- Bronkhorst et al. JASA 1993, 2002
- Van Petten et al. 1994
- Detailed review chapter Allen 2003

MOTIVATION

• Results of Lippmann 1997, sorted by Error Ratio

			%	Error	Error
Corpus	Size in Words	Conditions	Machine	Human	Ratio
Alphabetic	26	20-talkers 8-listeners	5.0 ^{isolated}	1.6 ^{continuous}	3
Resource	1000	null grammar	17	2	8
WSJ-NAB	5000	quiet (trained)	7.2	0.9	8
Switchboard	14,000	spontaneous (tel. BW)	43	4	11
WSJ-NAB	5000	10 dB (trained)	12.8	1.1	12
WSJ-NAB	65,000	close mic	6.6	0.4	16
WSJ-NAB	65,000	omni mic	23.9	0.8	30
Resource	1000	word-pair grammar	3.6	0.1	36
WSJ-NAB	5000	quiet (not trained)	42	0.9	47
WSJ-NAB	5000	22 dB (not trained)	77.4	0.9	86
word	20	judgment errors	24	0.3	80
spotting					
TI-digit	10	connected	0.72	0.009	80
	anMail ayam				

DEMO ScanMail examples (Audio/ScanMailExample

TYPICAL ARTICULATION TEST RECORD

• Fletcher's method of nonsense phone error analysis

		Articul	LATION T	est Reco	RD		
	March 192	8					
	DATE 3-16-28]	(SYLLABLE /		<u>ر ای ا</u>	%
	TITLE OF TEST.	ACTICE TESTS			TESTER 150	o~Low Pa	SS FILTER
			(1500) Hz lowpa	ass filtering
NO.		OBSERVED	CALLED	OBSERVED	CALLED	OBSERVED	CALLED
1	THE FIRST GROUP IS	main	náv	póz.	poth	Kob .	Kōb
2	CAR YOU HEAR		poch	nēz	nezh	sheth	SIZ
3	I WILL NOW BAY	seng.	seng	jóch	jóch	füch	füch
4	AS THE FOURTH WRITE	chūd.	chūd	thám .	tham	thal	thel
5	WRITE DOWN	run	run	hab	hab	poth	poth

DATA

 $S \equiv P_c(syllable) = 0.515$ $v \equiv P_c(vowels) = 0.909$ $c \equiv P_c(consonants) = 0.74$

MODELS

 $\hat{S}=cvc=0.498~~(ext{CVC syllable model})$ $s\equiv P_c(phone)=(v+2c)/3=0.796$ $s^3=0.505~~(3 ext{ phone syllable model})$

THE METHOD

- The data bases they used were formed from
 - statistically balanced
 - nonsense
 - CVC, CV and VC syllable lists where C represents a consonant and V a vowel
- The syllable lists were spoken, and the listeners recorded what they heard
- Probabilities-correct c and v for the sound-units were computed
- The average {C,V} speech-unit articulation probability *s* was computed from the composition of {C,V} units in the data base
 - (i.e. s=(2c+v)/3 for CVC's, s=(c+v)/2 for CV's)
 - Measure s looks like a sufficient statistic

WHAT THEY FOUND

- Nonsense phones are recognized as independent units:
 - The probability of correct recognition for the average phoneme s accurately predicts the nonsense syllable score S_{cvc} , where

$$egin{array}{rcl} S_{cvc} &=& c^2 v \ &=& s^3 \end{array}$$

*This is a necessary but insufficient condition for *independence*

- These statistical models are highly accurate
- !!! Remember: This only applies to "nonsense words" !!!

QUESTIONS?

THE NEXT STEP

• Next they dissected $s \equiv P_{correct}(phone)$ into frequency bands!

SPECIFIC DEFINITIONS

SYMBOL	DEFINITION
α	gain applied to the speech
$c(\alpha) \equiv P_c(\text{consonant} \alpha)$	consonant articulation
$v(lpha)\equiv P_c(ext{vowel} lpha)$	vowel articulation
s(lpha) = [2c(lpha) + v(lpha)]/3	average phone articulation for CVC's
e(lpha)=1-s(lpha)	phone articulation error
f_c	high-and low-pass cut-off frequency
$s_{_L}(lpha, f_c)$	s for low-pass filtered speech
$s_{_{H}}^{^{}}(lpha,f_{c})$	s for high-pass filtered speech

FLETCHER'S TWO BAND FORMULATION

- \bullet Split the speech into low and high bands, having articulations $s_L(\alpha,f_c) \text{ and } s_H(\alpha,f_c)$
- Fletcher proposed a linearizing transformation of the phone articulations

$$(s_L) + (s_H) = (s)$$

- This is a nonlinear transformation of probabilities
- There was no guarantee that such a transformation exists However, Fletcher's intuition was correct

WHAT THEY FOUND

• For nonsense $\{C,V\}$ syllables the phone articulation transformation is:

$$(s) = rac{\log(1-s)}{\log(e_{min})},$$

with $e_{min} = 0.015$ (1.5% error, or 98.5% correct)

- This relationship must have taken years to discover!

• Solving for
$$e \equiv 1 - s(\mathcal{A})$$
:

$$e = e_{min}^{\mathcal{A}(s)} = e_{min}^{\mathcal{A}(s_L) + \mathcal{A}(s_H)} = e_{min}^{\mathcal{A}(s_L)} e_{min}^{\mathcal{A}(s_H)}$$

 \bullet In terms of the error probabilities $e=1-s, \, e_{_L}=1-s_{_H}$ and $e_{_L}=1-s_{_L}$:

$$e = e_L e_H$$
.

FLETCHER'S TWO BAND EXAMPLE

 If we have 100 spoken sounds, and 10 errors are made while listening to the low band, and 20 errors are made while listening to the high band, then

 $e = 0.1 \times 0.2 = 0.02,$

namely 2 errors will be made when listening to the full band, so

$$s = 1 - 0.02 = 0.98$$

 $S = s^3 = 0.941$

- This is an unexpected, simple, and amazing result
 - What does this mean? Why does it turn out this way?

THE FLETCHER-STEWART MULTI-CHANNEL MODEL

• Fletcher 1921 generalize the two-band case to K = 20 frequency bands

$$1 - s = e_1 e_2 \cdots e_k \cdots e_K \times e_{\text{visual}}$$

= $(1 - s_1)(1 - s_2) \cdots (1 - s_K) \times (1 - s_{\text{visual}})$

where

$$e_i \equiv 1 - s_i$$

-This formula forms the basis of articulation index theory

-Why K = 20 bands?

Each band equals 1mm along the basilar membrane

- I have added a visual channel, to account for the McGurk effect (Channel 21)
- Probability of error e_i models events, as in the visual example

DENSITY OF ARTICULATION PER CRITICAL BAND

• This plot is the ratio of $D(f)/\kappa(f)$, where D(f) is the articulation density

 $D(f_c) \equiv rac{\partial \mathcal{A}_L}{\partial f_c}, \hspace{0.5cm} K ext{ Al bands}$

 $\kappa(f)$ = the critical ratio [\propto cochlear filter bandwidth (ERB)]

Al band per critical band

MODEL OF BAND EVENT ERRORS

• When the SNR is varied they found that the event-error is

$$e_k = e_{min}^{\mathsf{SNR}_k/K}$$

where SNR_k is the signal to noise ratio in dB, divided by 30, such that

$$SNR_{k} \equiv \begin{cases} 0 & 20 \log_{10}(snr_{k}) < 0 \\ 20 \log_{10}(snr_{k})/30 & 0 < 20 \log_{10}(snr_{k}) < 30 \\ 1 & 30 < 20 \log_{10}(snr_{k}). \end{cases}$$

Thus

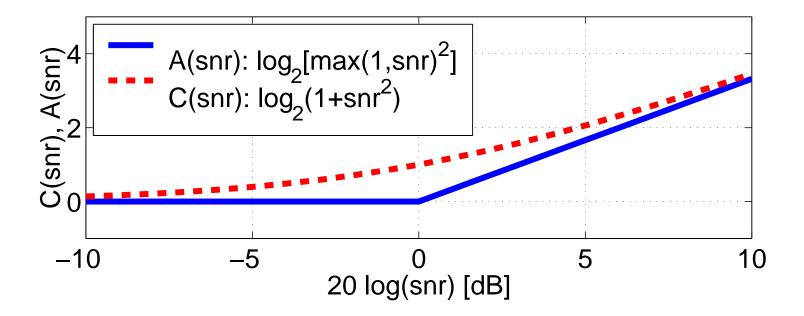
$$0 \leq SNR_k \leq 1.$$

• Total error:

$$e = e_1 e_2 \cdots e_K = e_{min}^{(\mathsf{SNR}_1 + \mathsf{SNR}_2 \cdots \mathsf{SNR}_K)/K}$$

• The speech SNR in dB (not the energy) determines the event errors e_k , and thus the phoneme articulation

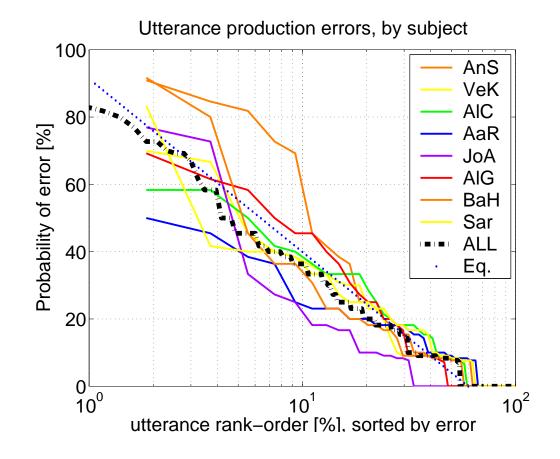
$$s = 1 - e_1 e_2 \cdots e_K$$


AI AS A CHANNEL CAPACITY

• Since
$$\Sigma_k(\log snr_k) = \log(\Pi_k snr_k)$$

$$\mathcal{A} \equiv \frac{1}{K} \sum_{k} SNR_{k} \propto \log \left(\prod_{k} snr_{k} \right)^{1/K}$$
(1)

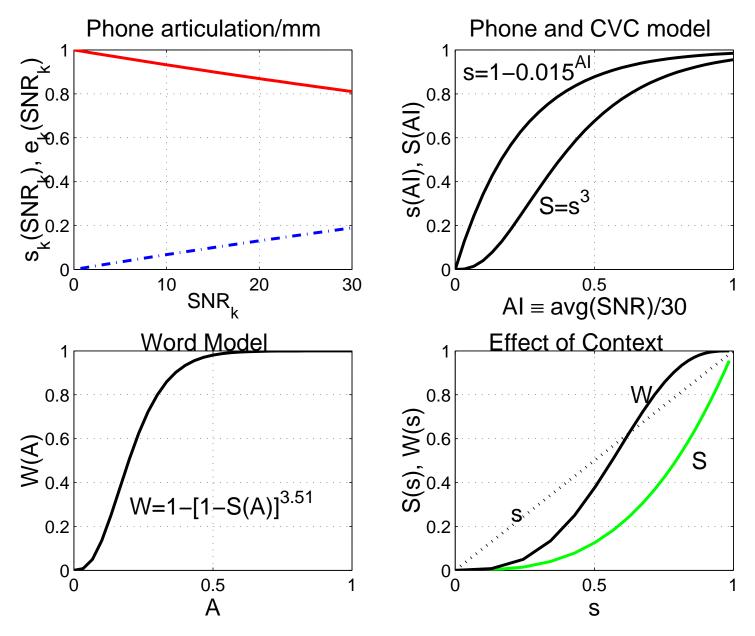
• and from Shannon (for the Gaussian channel)


$$C = \int_{-\infty}^{\infty} \log_2[1 + \operatorname{snr}^2(f)]df, \qquad (2)$$

TALKER PRODUCTION ERRORS

- What determines $s_{max} = 1 e_{min}$?
- Utterance talker mispronunciations, as defined by 32 listeners
- Errors are distributed like Zipf's Law [$\cdots N/N_T pprox 0.6e^{-4.48P_e}$]

35% of the utterances have no error 33% have > 10% error, 10% > 35% error, 5% > 50% error



SOURCES OF ERROR

- Talker production errors
 - Production errors are defined by token utterances error over listeners
 - Once poor utterances are identified, they may be selectively removed
 * This method allows us to control the gross error rate
 - With this method we can obtain a 100% score in the clear
 - * The price for this is a reduced $N_{utterances}$
- Listener errors (after selectively removing production errors)
 - Listener bias may be determined from individual confusion matrices
 - This bias can be a function of the production error threshold
 - * The main effect is on L_2 listeners

EXAMPLE CALCULATIONS

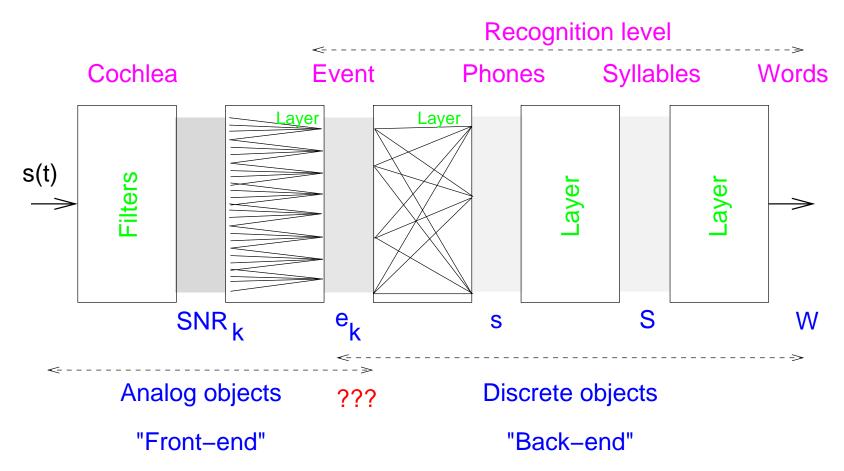
Wide-band channel vs. SNR

THE RECOGNITION CHAIN

- The cochlear critical bandwidth defines the SNR_k
- The *event-error* model: $e_k \propto e_{\min}^{SNR_k}$ (SNR in dB units)
- The *average-phone articulation* model:

 $s = 1 - e_1 e_2 \cdots e_k \cdots e_K$

- ullet The nonsense CVC syllable articulation model: $S=s^3$
- Heuristic degree of freedom *context models* Boothroyd (see discussion Allen 1994)
 - Word: $W = 1 (1 S)^j$
 - Sentence: $I = 1 (1 W)^k$
 - Sentence with context: $C = 1 (1 I)^{l}$
- Layers of context:
 - -j depends on the ratio of words to pseudo-words in the corpus,
 - -k depends on the number of salient words in a sentences,
 - *l* depends on the word salience and topic context.


COMPOSITION LAWS

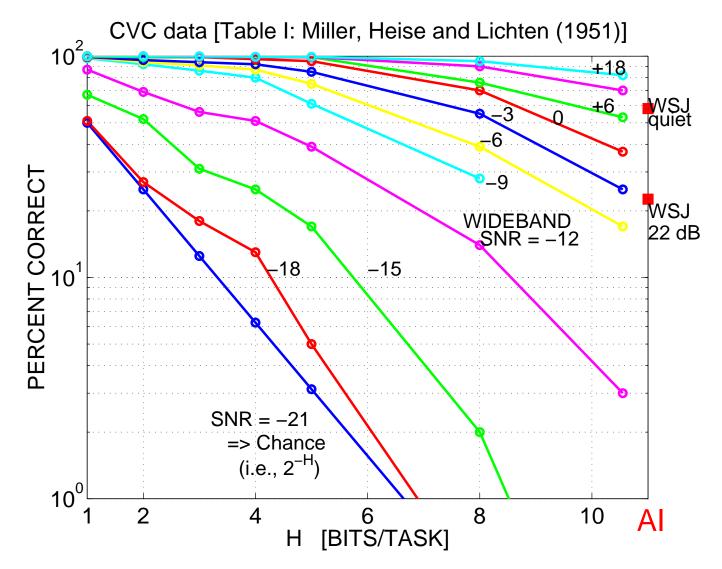
- Rules regarding $\Pi_i P_{error}^{(i)}$ versus product $\Pi_i P_{errect}^{(i)}$?
 - Parallel processing: $P_e = \Pi_k e_k$
 - * Errors in many bands have no effect
 - * One band with small error (i.e., $e_k = 0$) dominates e.g., $e = e_L e_H$; $e = e_1 e_2 \cdots e_K$; the McGurk example
 - Serial processing: $P_c = \Pi_k s_k$
 - * All items of a string must be correct for success e.g., $S_{cvc} = cvc \approx s^3$; $S_{cv} \approx s^2$
- HSR seems to be a problem in combinatorics,

of elementary pre-phonic events.

HOW WE RECOGNIZE SPEECH?

- Hierarchical "bottom up" analysis
- Accurate statistical models of performance at each stage

• Entropy drops (i.e., context is integrated) in stages


SUMMARY OF MODEL RESULTS

 Hierarchical probability relations: band SNR → band errors (events) → phoneme errors → syllable errors → nonsense word errors → true word errors, etc.

• The HSR error is established well before language is accessed! HSR error depends only on the *SNR* in bands

SPEECH ENTROPY VS. THE WIDEBAND SNR

- $P_c(\mathcal{H}, SNR)$ Miller, Heise and Lichten 1951
- Many of the results of MHL51 expand on the AI model

GRAMMATICAL CONTEXT

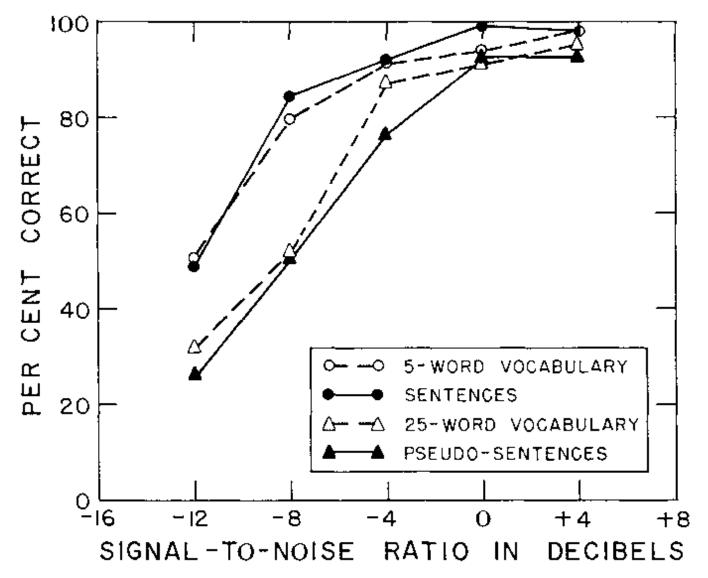
• Five groups of five words that form grammatical sentences:

Don	Brought	His	Black	Bread
He	Has	More	Cheap	Sheep
Red	Left	No	Good	Shoes
Slim	Loves	Some	Wet	Socks
Who	Took	The	Wrong	Things

• Tests:

- 5 word lists
- 25 word

25 words with grammatical context


Example: He left no black socks

25 words reverse order

Example: Socks black no left he.

GRAMMATICAL CONTEXT

• Results of tests

CONFUSION MATRIX PARTITIONING

- Miller & Nicely 1955 Confusion Matrix (Table III)
 - MN55 established a natural phone hierarchical clustering:

:		Þ	t	k	f	θ	s	S	Ь	ď	g	ข	ð	2	3	m	n
	р 1 к	80 71 66	43 84 76	64 55 107	17 5 12	14 9 8	6 3 9	2 8 4	1 1 	1		1	1 1 1	2		2 2 1	3
JLUS	f Ø S	18 19 8 1	12 17 5 6	9 16 4 3	175 104 23 4	48 64 39 6	11 32 107 29	1 7 45 195	7 5 4	2 4 2 3	1 5 3	2 6 1	2 4 1	5 3	2		1 1
STIMULUS	b d g	1			5	4 2	4	8	136 5 3	10 80 63	9 45 66	47 11 3	16 20 19	6 20 37	1 26 56	5	
	ນ ວັ 2 3				2	6 1	2 1	1	48 31 7 1	5 6 20 26	5 17 27 18	145 86 16 3	45 58 28 8	12 21 94 45	5 44 129	4 6	4 1 2
	m n	1				4			4	5	2	4	1 7	3 1	6	177 47	46 163
-		<		UNV	OICEI	D		 RESF		SE	\	VOICE	Đ		~~	> <→ NA	⇒ SAL

TABLE III. Confusion matrix for S/N = -6 db and frequency response of 200-6500 cps.

"This breakdown of the confusion matrix into five smaller matrices ... is equivalent to ... five communication channels" –Miller & Nicely 1955

MILLER'S BINARY FEATURES

• Miller & Nicely derived binary consonant features [i.e., events]

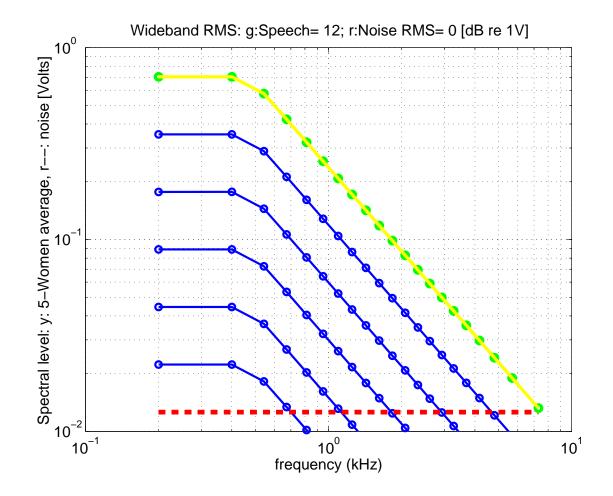
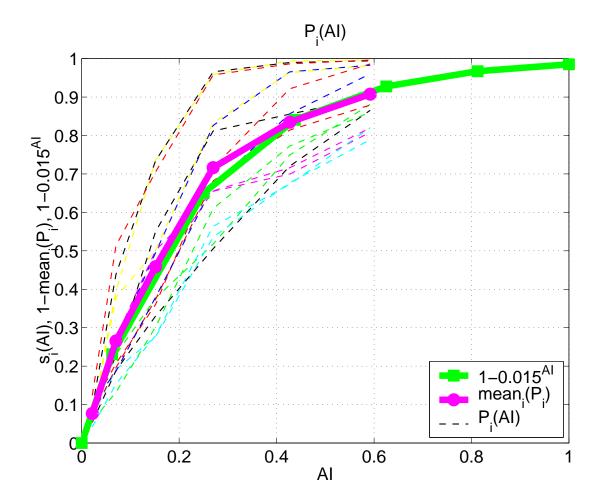
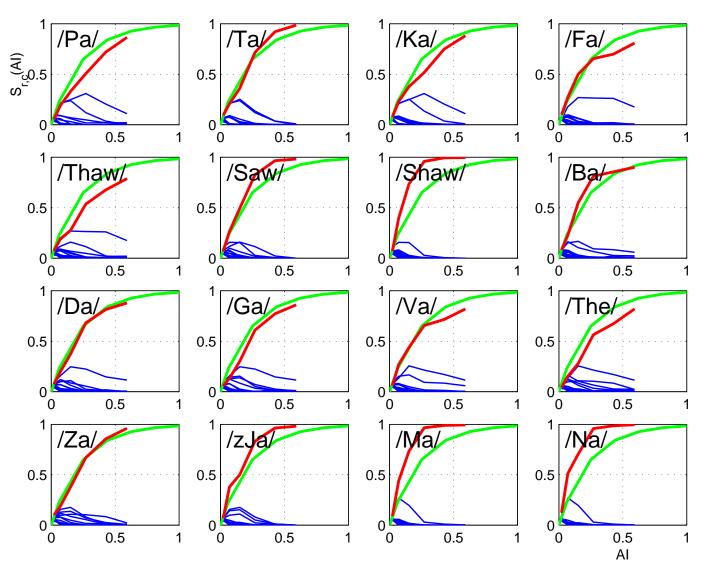

Consonant	Voicing	Nasality	Affrication	Duration	Place
Þ	0	0	0	0	0
ì	0	0	0	0	1
k	0	0	0	0	2
f	0	0	1	0	0
θ	0	0	1	0	1
\$	0	0	1	1	1
S	0	0	1	1	2
ь	t	0	0	0	0
d	1	0	0	0	1
g	1	0	0	0	2
υ	1	0	1	0	0
8	1	0	1	0	1
Z	1	0	1	1	1
3	1	0	1	1	2
т	1	1	0	0	0
n	1	1	0	0	1

TABLE XIX. Classification of consonants used to analyze confusions.

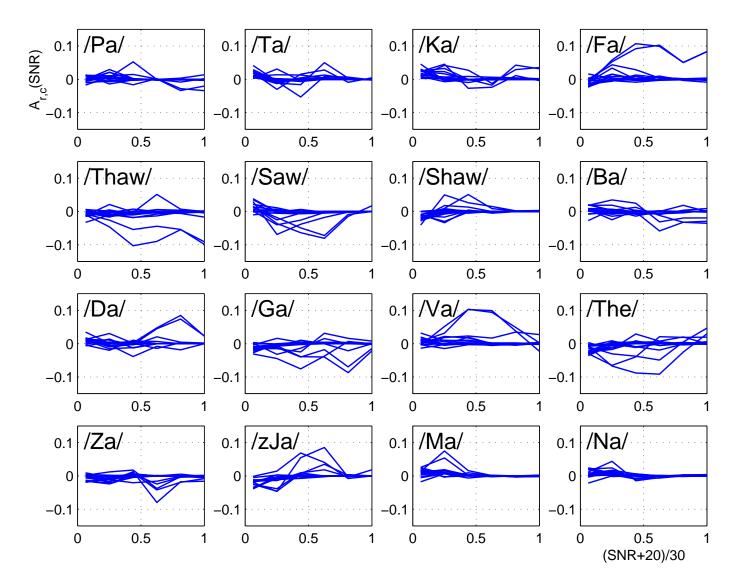
"... the impressive thing to us was that ... the [binary] features were perceived almost independently of one another." –Miller & Nicely 1955


FINDING THE AI FOR MILLER NICELY TALKERS

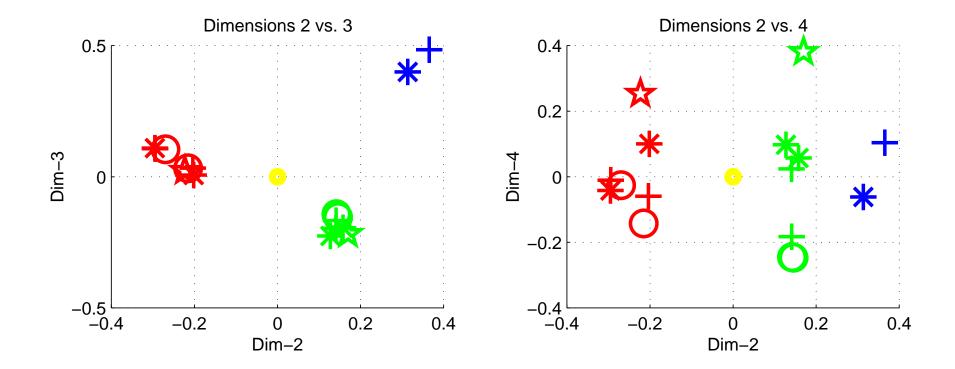
• Average spectrum for female talkers


TRACE OF MILLER NICELY AND THE AI

• Next we look at the average PI function vs. Al

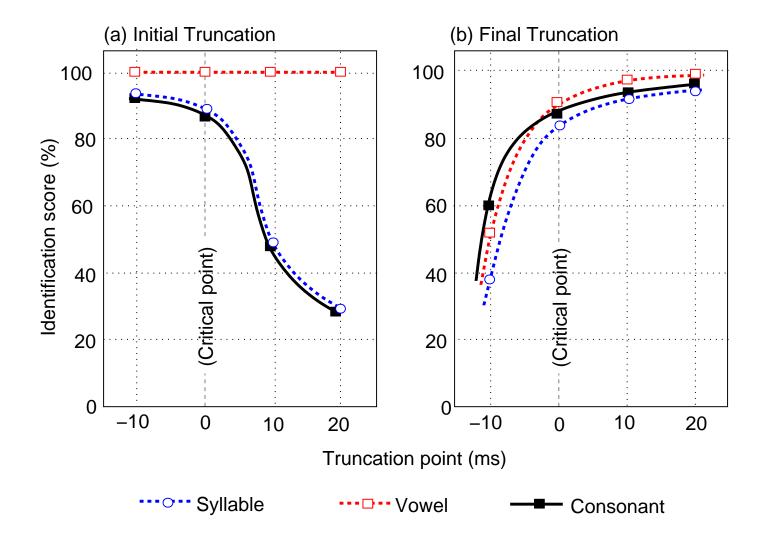

SYMMETRIC COMPONENT OF $P_C(SNR)$

• We stand to learn from linear operations on $P_{ij}(snr)$ Symmetric: $S_c(snr) \equiv [P_{ij}(snr) + P_{ji}(snr)]/2$

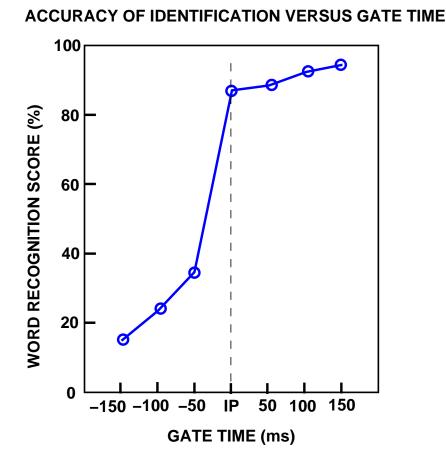

SKEW-SYMMETRIC COMPONENT OF $P_C(SNR)$

• Skew: $A_c(snr) \equiv [P_{ij}(snr) - P_{ji}(snr)]/2$

SVD REPRESENTATION OF THE PERCEPTUAL SPACE


• 4^{*dim*} SVD perceptual representation of the confusion matrix

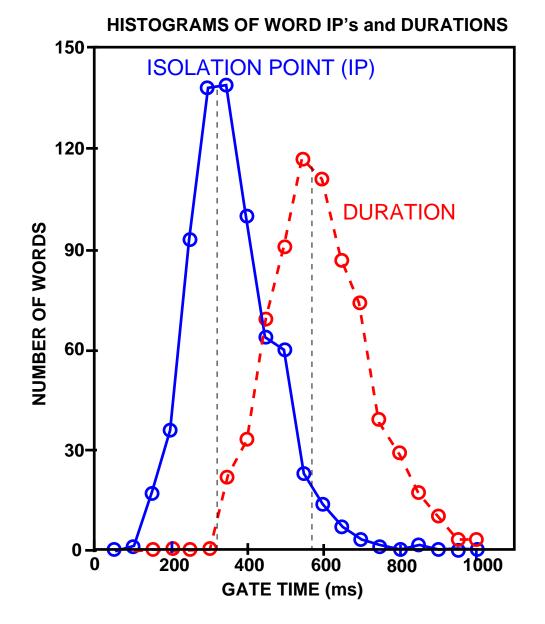
DEMO


TEMPORAL RESOLUTION OF PHONE RECOGNTION

• Phones are recognized in on a 10 ms time scale (Furui 1986)

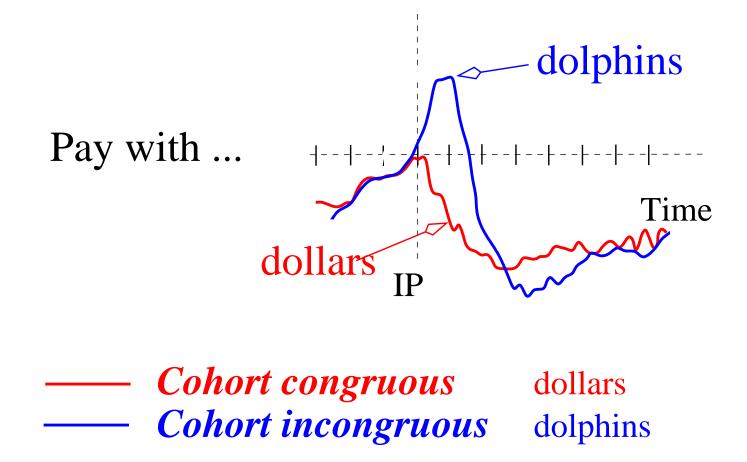
WORD SEMANTICS: IP DEFINITION

- 704 isolated words were truncated in 50 ms steps Van Petten 1999
- Isolation point is defined as the time of the discontinuity in recognition Expt. I – Neutral sentences: "The next word is test-word."



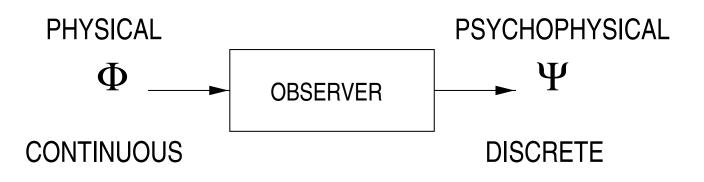
Categorical perception

WORD SEMANTICS: IP VS. DURATION


37

• Isolation point vs. word durations (real words, no sentence context)

ERP MEASURE OF CONTEXT RE IP


 Expt. II – Event related scalp potential (N-400 ERP) re IP, from Exp. I Sentence semantics effects

• Words are recognized on a syllable by syllable basis, within 50 ms

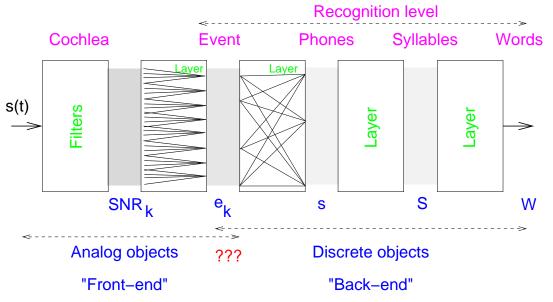
• Context is recognized on a syllable by syllable basis, within 200 ms

FROM CONTINUOUS TO DISCRETE

• Φ -domain signals

Speech signal Cochlear filter outputs Neural rate Voltage in cochlear nucleus cells

- Ψ -domain objects
 - Words Syllables Phonemes Events [Miller's features]


CATEGORIAL PERCEPTION

- Meaningful words are recognized before they end
- Syllables are recognized within 50 ms

SUMMARY

- Miller & Nicely found 5 independent channels, described by discrete events [Miller's features]
- Speech is recognized in layers:

 $SNR_k \Rightarrow events \Rightarrow phones \Rightarrow syllables \Rightarrow words \Rightarrow \dots$

- Language model performance is independent of noise robustness!
- To study HSR, entropy must be controlled
- Speech psychophysics is an important tool for studying HSR

FUTURE GOALS

- Use psychophysics to gain insight into event extraction
- The next break through:
 - More robust ASR
 - An event extracting hearing aid

This talk may be found at:

http://auditorymodels.org/jba/PAPERS/ICASSP/

References

Allen, J. B. (1994). "How do humans process and recognize speech?," IEEE Transactions on speech and audio 2(4):567–577.

Boothroyd, A. (1968). "Statistical theory of the speech discrimination score," J. Acoust. Soc. Am. 43(2):362-367.

- Boothroyd, A. and Nittrouer, S. (1988). "Mathematical treatment of context effects in phoneme and word recognition," *J. Acoust. Soc. Am.* **84**(1):101–114.
- Bronkhorst, A. W., Bosman, A. J., and Smoorenburg, G. F. (1993). "A model for context effects in speech recognition," *J. Acoust. Soc. Am.* **93**(1):499–509.
- Bronkhorst, A. W., Brand, T., and Wagener, K. (2002). "Evaluation of context effects in sentence regonition," *J. Acoust. Soc. Am.* **111**(6):2874–2886.

Campbell, G. A. (1910). "Telephonic intelligibility," Phil. Mag. 19(6):152-9.

French, N. R. and Steinberg, J. C. (1947). "Factors governing the intelligibility of speech sounds," J. Acoust. Soc. Am. 19:90–119.

- Furui, S. (1986). "On the role of spectral transition for speech perception," *Journal of the Acoustical Society of America* **80**(4):1016–1025.
- Miller, G. A. (1951). Languange and communication. McGraw Hill, New York.
- Miller, G. A., Heise, G. A., and Lichten, W. (1951). "The intelligibility of speech as a function of the context of the test material," *J. Exp. Psychol.* **41**:329–335.
- Miller, G. A. and Nicely, P. E. (1955). "An analysis of perceptual confsions among some english consonants," *J. Acoust. Soc. Am.* **27**(2):338–352.

Rayleigh, L. (1908). "Acoustical notes – viii," *Philosophical Magazine* **16**(6):235–246.

Shannon, C. E. (1948). "The mathematical theory of communication," *Bell System Tech. Jol.* 27:379–423 (parts I, II), 623–656 (part III).

Shannon, C. E. (1951). "Prediction and entropy of printed english," Bell System Tech. Jol. 30:50-64.

- Van Petten, C., Coulson, S., Rubin, S., Planten, E., and Parks, M. (1999). "Time course of word identification and semantic integration in spoken language," *J. of Exp. Psych.: Learning, Memory and Cognition* **25**(2):394–417.
- Wang, M. D. and Bilger, R. C. (1973). "Consonant confusions in noise: A study of perceptual features," *J. Acoust. Soc. Am.* **54**:1248–1266.

42