Wave Transmittance 2-port wave networks
 Jont Allen

ECE-537

Basic definitions for 2-ports

- Pressure and Velocity at an interface

$$
x_{k} \equiv x\left(k \Delta_{x}\right)
$$

$$
\begin{aligned}
& \text { At every frequency } \omega \text { and place } x \text { : } \\
& p\left(x_{k}, \omega\right)=p^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta_{x} / c}+p^{-}\left(x_{k}, \omega\right) \\
& u\left(x_{k}, \omega\right)=u^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta_{x} / c}-u^{-}\left(x_{k}, \omega\right)
\end{aligned}
$$

Solving for the out-going waves:

$$
\begin{aligned}
& p^{+}\left(x_{k+1}, \omega\right)=p^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta_{x} / c}+p^{-}\left(x_{k}, \omega\right) \\
& u^{+}\left(x_{k+1}, \omega\right)=u^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta_{x} / c}-u^{-}\left(x_{k}, \omega\right)
\end{aligned}
$$

- so at the interfact $\frac{p^{+}\left(x_{k+1}, \omega\right)}{u^{+}\left(x_{k+1}, \omega\right)}=\frac{p^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta x / c}+p^{-}\left(x_{k}, \omega\right)}{u^{+}\left(x_{k}, \omega\right) e^{-i \omega \Delta x / c}-u^{-}\left(x_{k}, \omega\right)}$
- or $\frac{z_{0}\left(x_{k+1}\right)}{z_{0}\left(x_{k}\right)}=\frac{1+R\left(x_{k}\right)}{1-R\left(x_{k}\right)}$
- finally $R_{k} \equiv R\left(x_{k}\right)=\frac{z_{0}\left(x_{k+1}\right)-z_{0}\left(x_{k}\right)}{z_{0}\left(x_{k+1}\right)+z_{0}\left(x_{k}\right)}$

2-Port Wave modeling

- Basic pressure wave section at x_{k}

- $R_{k} \equiv \frac{z_{0}(k+1)-z_{0}(k)}{z_{0}(k+1)+z_{0}(k)}$
- $p^{+}\left(x_{k+1}, t\right) \equiv\left(1+R_{k}\right) p^{+}\left(x_{k}, t-\Delta_{x} / c\right)$

2-Port Wave modeling

- Basic volume-velocity wave section at x_{k}

- $R_{k} \equiv \frac{z_{0}(k+1)-z_{0}(k)}{z_{0}(k+1)+z_{0}(k)}$
- $u^{+}\left(x_{k+1}, t\right) \equiv\left(1-R_{k}\right) u^{+}\left(x_{k}, t-\Delta_{x} / c\right)$

2-Ports Summary

- The reflected and transmitted waves are determined by
- Continuity of the pressure and velocity at each impedance discontinuity
- The forward Pressure wave is given by

$$
p_{k+1}^{+}(\omega)=\left(1+R_{k}\right) p_{k}^{+}(\omega) e^{-i \omega L_{k} / c}
$$

- The forward volume-velocity wave is given by

$$
u_{k+1}^{+}(\omega)=\left(1-R_{k}\right) u_{k}^{+}(\omega) e^{-i \omega L_{k} / c}
$$

- In practice you do not need both pressure and velocity.
- If you need u, use z_{0} to get it from p :

$$
u_{k}^{+}=p_{k}^{+} / z_{0}(k)
$$

