1-D Wave Equations Transmission lines

Jont Allen

ECE-537

The electrical case

- Series elements:
e is the electromotive force

From Ohm's Law

$$
\lim _{\delta x \rightarrow 0} \frac{e_{1}-e_{2}}{x_{1}-x_{2}}=-\frac{\partial e}{\partial x}=L \frac{\partial i}{\partial t}
$$

The electrical case, cont.

- Shunt elements:
i is the flow of charge

$$
\frac{i_{1}-i_{2}}{\delta x}=C \frac{\partial e}{\partial t}
$$

thus from Ohm's Law
(1)

$$
-\frac{\partial i}{\partial x}=C \frac{\partial e}{\partial t}
$$

The electrical case, cont.

- Remove i to obtain an expression for e
- From Eq. 1, operating with $\partial / \partial x$

$$
-\frac{\partial^{2} i}{\partial x \partial t}=\frac{1}{L} \frac{\partial^{2} e}{\partial x^{2}} .
$$

- From Eq. 2, operating with $\partial / \partial t$

$$
-\frac{\partial^{2} i}{\partial t \partial x}=C \frac{\partial^{2}}{\partial t^{2}} .
$$

- Equate the RHSs to obtain the wave equation in e :
(2) $\frac{1}{c^{2}} \frac{\partial^{2} e}{\partial t^{2}}=\frac{\partial^{2} e}{\partial x^{2}} ; \quad c=1 / \sqrt{L C}, z_{0}=\sqrt{L / C}$

The acoustic case

- Pressure $p(x, t)$ is similar to $e(x, t)$ (scaler force, Ohm's Law)

$$
-\frac{\partial p}{\partial x}=\rho_{0} \frac{\partial u}{\partial t}
$$

- Volume velocity u similar to i (vector flow, Ohm's Law)

$$
-\gamma P_{0} \frac{\partial u}{\partial x}=\frac{\partial p}{\partial t} .
$$

- thus

$$
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=\frac{\partial^{2} p}{\partial x^{2}}
$$

- Defs: $P_{0}=10^{5}[\mathrm{~Pa}], \gamma=1.4, \rho_{0}=1.18\left[\mathrm{kgm} / \mathrm{m}^{3}\right]$;
$c=\sqrt{\frac{\gamma P_{0}}{\rho_{0}}}[\mathrm{~m} / \mathrm{s}], z_{0}=\sqrt{\rho_{0} \gamma P_{0}}$ [acoustic ohms]

The mechanical case

- Force f is similar to e and p : From Newton's Law

$$
-\frac{\partial f}{\partial x}=m \frac{\partial u}{\partial t}
$$

- Particle velocity u similar to i : From Hooke's Law

$$
-k \frac{\partial u}{\partial x}=\frac{\partial f}{\partial t} .
$$

- thus, as before:

$$
\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}=\frac{\partial^{2} f}{\partial x^{2}}
$$

- where $c=\sqrt{\frac{k}{m}} \mathrm{~m} / \mathrm{s} ; z_{0}=\sqrt{k m}$, with $k\left[\mathrm{Nt} / \mathrm{m}^{2}\right] ; m[\mathrm{kgm} / \mathrm{m}]$.

Solution to the wave equation

- Assume two arbitrary functions $f(\zeta)$ and $g(\zeta)$, traveling with velocity c and $-c$, respectively:

$$
\Phi(x, t)=f(c t-x)+g(c t+x)
$$

- The proof of this is nice. Let $f^{\prime} \equiv \partial f(\zeta) / \partial \zeta$.

$$
\begin{array}{ll}
\frac{\partial \Phi(x, t)}{\partial x}=-f^{\prime}+g^{\prime} ; & \frac{\partial^{2} \Phi(x, t)}{\partial x^{2}}=(-1)^{2} f^{\prime \prime}+g^{\prime \prime} \\
\frac{\partial \Phi(x, t)}{\partial t}=c\left(f^{\prime}+g^{\prime}\right) ; & \frac{\partial^{2} \Phi(x, t)}{\partial t^{2}}=c^{2}\left(f^{\prime \prime}+g^{\prime \prime}\right)
\end{array}
$$

- Thus:

$$
\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=\frac{\partial^{2} \Phi}{\partial x^{2}}
$$

Summary

- The wave equation describes any linear system that allows waves (arbitrary functions) to travel at the wave speed, in different directions, at the same time
- It obeys linearity (superposition)
- Note that this proof applies to the 1-dimension case
- All transmission line theory can be understood with these simple ideas (i.e., two waves traveling in opposite directions)

