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1 Introduction

As discussed by George Miller in his book 1951 book Language and Communica-
tion, speech intelligibility depends on a code in that it is incredibly robust to man-
gling distortions. Can we analyze speech intelligibility using the scientific method?
Miller’s analysis shows an analysis that is both scientific and artful. His scientific
analysis critically depends on the use of statistics, information theory, and psy-
chophysical methods.

The science of intelligibility is a science of the error analysis of human speech
communication. The goal in science is always to make a mathematical model. Data
is collect, and tested against the model. This article is a review of what is known
about modeling human speech recognition (HSR).1 A model is proposed, and the
data are tested against the model.

As developed in Miller’s book, information and communication theory form the
basic underlying scientific basis for understanding the speech code. One of the
basic tools of information theory is the channel, the mathematical correlate to a pair
of wire. The channel is the fundamental building blocks of any theory of speech and
language communication.

The art of studying speech intelligibility is to restrict the problem in such a way
that progress may be made. Intelligibility depends on visual as well as auditory
cues. In this review our discussion will be limited to that subset of intelligibility
which is unique to acoustic speech, without visual input. Thus we assume that we
wish to model the auditory channel, in the absents of the visual channel.

In many of the early studies of human speech recognition, the many effects of
language context were removed, by testing with nonsense sounds. When listening
to meaningful words and sentences, people report what they understand, leaving
many errors they hear unreported. When listening to nonsense speech, having
limited context constraints, people report what they actually hear. Thus to mean-
ingfully study the decoding of speech sounds, one must carefully control for context

1See Table 1 tab:Abbreviations for each abbreviation.
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effects. One does this by removing the context channel, by the use of nonsense
sounds.

ABBREVIATIONS
ASR Automatic Speech Recognition
HSR Human Speech Recognition
CV consonant-vowel (ex. “pa, at, be, c”)
CVC consonant-vowel-consonant (ex. “cat, poz, hup”)
snr Signal to Noise Ratio (linear units) Eq. 14 eq:snr

SNR
���������	��
�

snr � [dB units]
AI Articulation Index���

Specific AI [dB/dB units] Eq. 15 eq:SNR

PI(snr) Performance Intensity function
AM Articulation Matrix
VOT Voice onset time
ZP Zero predictability
LP Low predictability
HP High predictability
ERP Event Related (scalp) Potential

Table 1: Table of abbreviations.

The complete elimination of all context channels is an impossible task, and even
undesirable. English nonsense sounds are a distinct subset of all sounds, and even
a small subset of the sounds of language. For example, tonal sounds are common
in many languages such as Chinese, but are absent in English. Thus the subset of
English nonsense sounds, while rich enough to encode English, is a distinct subset
of human vocalization. The best we can do is attempt to characterize these more
subtle context channels, not eliminate them, as we attempt to saddle this untamable
“context beast.”

Intelligibility is the identification of meaningful speech, while articulation is the
identification of nonsense speech sounds.2 Understanding intelligibility scores re-
quires models of syntax (structure), lexicality (vocabulary), grammar (form) and
semantics (meaning). To understand articulation scores, only models of phonol-
ogy are required, by design, by carefully controlling for as many of these context
channels as possible.

The word articulation is a tricky term, as it has strong meanings in both the
production (physical) and perceptual (psychophysical) domains. An articulatory
feature is a speech production concept, whereas the articulation matrix is a per-
ceptual concept. This is quite unfortunate that this word has these two very differ-
ent, yet related, meanings. We have inherited these terms from the long past, and
thus must deal with this confusion. One way to deal with this problem of terminol-
ogy would be to create new terms. However this would just obscure and confuse
the situation further, so I have avoided that approach. It is better to be aware of,

2See Table 2 tab:Definitions for important definitions.
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understand, and carefully parse the two meanings.
Is there any information left in speech after these major information channels,

visual and context, have been removed? Emphatically, yes! In fact humans do
quite well in identifying basic speech sounds well below 0 dB SNR, without these
powerful information side channels. The reasons for this natural robustness in HSR
are becoming increasingly clear, and is the topic of this review.

1.1 Problem statement

Articulation has been studied since the turn of the 20th century by teams of physi-
cists, mathematicians and engineers at Western Electric Engineering, and later
at The Bell Laboratories. A key science, information theory, has been frequently
emphasized, yet rarely applied to the field of speech recognition. As a result, the
source of robustness in HSR is poorly understood. For example, many believe that
robustness follows from context. An example of this view may be found in Flana-
gan’s classic text Speech analysis Synthesis and Perception (Flanagan, 1965, p.
238)

Items such as syllables, words, phrases, and sometimes even sen-
tences, may therefore have a perceptual unit. In such an event, efforts
to explain perception in terms of sequential identification of smaller seg-
ments would not be successful.

Discuss this quote with
Jim Flanagan.

This summary of human speech perception says that larger units such as words
and maybe even sentences, may be the perceptual units (the events), and that
attempting to work with smaller units would not work. Nothing could be further from
the truth, as we shall see. Speech is first detected in white masking noise at about
-25 dB SNR, and basic sound classes are easily discriminated at -20 dB SNR.

Only data and experiment can resolve this fundamental question “what is the
smallest unit that make up the building blocks of oral speech perception?’ The reso-
lution of this question may be found by comparing intelligibility and articulation data.
The robustness of nonsense speech has been measured with a confusion matrix
(Campbell, 1910; Miller and Nicely, 1955), which we denote the Articulation Matrix
(AM). Many important issues regarding AM data remain unstudied, as extensively
discussed in this review.

This brings us to Miller’s unsolved problem, the decoding of nonsense speech
sounds, which have been mangled by filtering and noise. What are the remaining
information channels that need to be accounted for, and how can we model them?
This review will explore this question in some detail. We begin in Section 1.2 with
some definitions and an overview of the robustness problem. We then proceed in
Section 2 with a literature review of articulation testing and the articulation index
(AI), and the work of George Miller, who first controlled for the articulation test
entropy � with the use of close set testing. This leads us to an AI analysis of Miller
and Nicely’s consonant confusion data. In Section 3 we look at the nature of the
context channel. From this higher ground we model how oral speech is coded and
processed by the auditory system.
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TERM: DEFINITION:
phone A consonant (C) or vowel (V) speech sound
syllable A sequence of C’s and V’s, denoted

�

C,V

�

word A meaningful syllable
phoneme Any equivalent set of phones which leave a word meaning invariant
allophones All the phone variants for a given phoneme
recognition Probability measure

��� of correct phone identification
articulation Recognition of nonsense syllables (

�

C,V

�

)
intelligibility Recognition of words (i.e., meaningful speech)
confusion matrix Table of identification frequencies

��� � 	 � � 
 �
articulation matrix A confusion matrix based on nonsense sounds
relative robustness Ratio of the conditional entropies for two conditions to be compared
event A perceptual feature. Multiple events define a phone.
trial A single presentation of a set of events
state A values of a set of events at some instant of time
state machine A machine (program) that transforms from one state to another
noiseless state machine A deterministic state machine�� Probability of event �, of

�

possible events
information density

��� � ��� ��� �� ��� � �

, � � �� ! ! ! "

entropy Average information:

# � $ %
�& ' � � ��

conditional entropy A measure of context: high entropy ( ) low context
context Coordinated combinations of events within a trial
message Specific information transmitted by a trial (e.g., a syllable)
AI Articulation index

* � � '+ $, � � +

AI -

Table
2:

Table
ofdefinitions.
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1.2 Basic Definitions and Abbreviations

Tables 1 and 2 provide key abbreviations and definitions use throughout the pa-
per. While it is important to carefully define all the terms, this section could be a
distraction to the flow of the discussion. Rather than bury these definitions in an
Appendix, I have placed them here, but with the warning that the reader should
not get bogged down with the definitions at first. I suggest you first skim over this
section, to familiarize yourself with its content. Then proceed with the remainder
of the material, coming back when an important idea or definition is unclear. Refer
to the Tables as a quick guide, and the text once the basic ideas of the model are
established. It is essential you understand the definition of articulation, the event,
and why the term phone is used rather than the more popular term phoneme. A
qualitative understand of entropy is also required. All of the required terms are now
carefully defined.

The phone vs. phoneme: The phone is any basic speech sound, such as a con-
sonant or vowel, or a cluster of these units. It must be carefully distinguished from
the phoneme which is notoriously difficult to define because all of these definitions
incorporate minimal meaning. A definition (see Table 2) has been carefully chosen
to be common, if not widely accepted, but perhaps not agreed upon by everyone.

We shall argue that meaning is irrelevant to the speech robustness problem.
During WW-II, people were trained to transcribe languages that they did not under-
stand, and they did this with agility and fidelity. Fletcher AI theory (1921–1950) was
based on nonsense CV, VC and CVC syllables. Miller and Nicely’s classic study
(1955) used isolated consonants, which by themselves have no meaning.

Thus one may proceed with the study of human speech recognition, without
the concept of meaning, and therefore the phoneme. This view has a nice parallel
with Shannon’s (1948) theory of information, which specifically rejected meaning
as relevant.

It is difficult to argue strongly for the importance of the phoneme, whose defini-
tion depends on meaning, if meaning plays little or no role in peripheral language
processing (the robust identification of unit phones).

A Syllables is one or more phones. A word is a syllable with meaning (it is found
in a dictionary).

Recognition is the probability for correct average identification, denoted ��� .
Recognition error is given by

�����	��
�
������� �������
is typically quoted in percent,3 and is the sum over all the individual sound confu-
sions defined by AM ����� � , where � �!#" . The recognition ( ��� ) (and thus the corre-
sponding recognition error

� �
) is a function of the signal to noise ratio snr. When

the recognition is measured as a function of the signal to noise ratio, it is frequently
called a performance-intensity (PI) function, defined by �$� � snr � .

3The symbol % is read “equivalence” and means that the quantity on the left is defined by the
quantity on the right.
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Intelligibility is the recognition of meaningful sounds (typically words), while ar-
ticulation is the recognition of meaningless speech sounds (e.g., nonsense phones)
(Fletcher, 1929, Page 255).

Robustness: An important, but again difficult concept to define, is that of robust-
ness, the main subject of this review. The first property of robustness must be that
it is a relative measure. Second we would like a measure that is defined in terms of
bits. Specific examples of the use of the relative robustness can help us to further
nail down the full definition: An important example is the robustness of one sound
versus another (i.e., /pa/ vs. /ma/). A second is the robustness of one group of
sounds, say the nasals, against another group of sounds, say the fricatives.

In each example there are two cases we wish to compare, and we would like
a measure that tells us which is more robust. The candidate measure for the first
example of two sounds is the conditional entropy, defined as

� � ��� " � ! ���
� � �����	��


� � ��� � ���

which is just the entropy of row " of the articulation matrix � �� � .
This measure is in bits, as required, for each spoken sound " . This measure

has the unfortunate property that it becomes smaller as the sound becomes more
certain, which is backward from a robustness measure. If we define the relative
robustness as the ratio of two conditional entropies, for the two different sounds,
then we have a measure that increases as the score increases. For example, the
robustness of spoken sound " 
 relative to that of "�� would be

� � " 
�� " � � !�� � � �����	��
 � ����� �� �
� � � �����	� 
 � ����� ��� ���

This measure would increase if " 
 is more robust (has a smaller conditional entropy)
than "�� .

As a second example lets take the relative robustness of intelligibility vs. artic-
ulation (i.e., the effect of context). In this case the robustness due to intelligibility
would be taken to be

� ��� � � � ! � ��� � � ��� � � � � ���	��
 � � ��� � � � � �
� �� � � �� � ��� � ���	��
 � � � � � ��� � ���

where � ��� � is with context (intelligibility) and � � � � is with no context (articulation).
If we wish to compare the relative robustness of ASR and HSR, the robustness

would then be

� �
HSR � ASR � ! � �� � � �� � � ASR � ���	��
 � � � � � � ASR � �

� �� � � �� � � HSR � ���	��
 � � � � � � HSR � � �
For these last examples it makes sense to restrict comparisons to cases which
have the same maximum entropy, namely for which the corpus is the same size.
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Φ ΨOBSERVER

PHYSICAL PSYCHOPHYSICAL

CONTINUOUS DISCRETE

Figure 1: The basic model of an observer with the physical variables � on the left and the
psychophysical variables � on the right. As an example of a pair of variables is acoustic
intensity as the � or physical intensity and and loudness, the � or psychoacoustic corre-
late of intensity. In the case of speech perception we treat physical variables as analog
(continuous) and psychophysical variables as discrete, as in the case of events.

Events: In the speech perception literature the terms articulatory feature percep-
tual feature and distinctive feature are commonly used, even interchangeably. For
example, voicing, nasality, and the place of a constriction in the vocal tract, that oc-
cur when forming a speech sound, constitute typical articulatory features. The term
voicing is frequently spoken of as a perceptual feature. It seems wise to choose a
new word to represent the perceptual correlates of speech features. We use the
word event to deal with such meaning.

The basic model of psychophysics and the observer is shown in Fig. 1 fig:PhiPsi

. As for the case of intensity and loudness, we need a language for relating percep-
tual features ( � variables) to articulatory features ( � variables). Thus we speak of
the event when referring to the � correlate of an speech � feature. For example, it
might turn out that the � -event corresponding to the � -feature voicing is determined
by quantizing the so-called � voice onset time (VOT) to some fixed time range of
values. For example, a � -VOT between 0 and 30 ms would be � -VOICED, while

� -VOTs greater than 30 ms would be � -UNVOICED. This may not a particularly
good example of an event, since we have yet to isolate one. Make the point that

the event is a binary
random variable, mea-
sured in the real world
as a probability.

The event must be measured by experimental outcomes, expressed as a prob-
ability, rather than assumed a priori, as in the case of distinctive features. The
articulation matrix

� �
snr � is the measure of these experimental outcomes. We do

an experiment where we repeat the presentation of the stimulus many times, and
we then define a probability measure of the underlying binary event, in terms of
the frequency of its observation, based on a large number of subjects and a large
number of talkers.

Each presentation and reception is called a trial. This idea is a formal one,
as described by books on communication theory (Wozencraft and Jacobs, 1965,
Chapter 2) and probability theory (Papoulis, 1965, Section 2-2). The definitions, of
a trial and an event, as defined in this mathematical literature, are ideally suited to
our purpose.

When groups of events are mathematically bound together at an instant of time,
the group is called the state of the system. As an example, think of the events that
define the states of a phone. A machine (think computer program) is typically pic-
tured as a box that transforms an input state into an output state. Such a program
is call a state machine. When the state machine is deterministic, it is called a
noiseless state machine. During training (the learning phase), the state is not de-
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terministic, but the learning mode is considered to be an exception, for the purpose
of modeling the state machine. We view the auditory brain as a state machine
decoding the events coming out of many event processors, having inputs from the
cochlea. This model structure represents the “front end” of the HSR system. This
model is based on experimental observations, not fanciful dreams. Any model can
be wrong, but it must be rejected based on experimental outcomes, and a better
model.

SNR: The snr plays a very important role in the theory of HSR because it is the
underlying variable in the articulation index measure. The detection of any signal
is ultimately limited by detector noise. This leads to the concept of an internal
noise, specified as a function of frequency. It is the internal signal to noise ratio
snr
��� � , a � variable, that ultimately determines our perceptual performance (French

and Steinberg, 1947; Allen and Neely, 1997). This quantity must be inferred from
external measurements.

An example is instructive: The external snr of a pure tone, in wide band noise, is
not perceptually meaningful since a relevant noise bandwidth must be used when
calculating the detection threshold. This bandwidth, called the critical bandwidth.4

is cochlear in origin, since the internal snr
��� � depends on cochlear filtering. The

discovery of the cochlear critical bandwidth marked the recognition of this fact
(Fletcher and Munson, 1937; Fletcher, 1938; French and Steinberg, 1947; Allen,
2001).

Exactly the same principle applies to the detection of speech. The detection
threshold for speech sounds are determined by the same cochlear critical band-
width. In the case of speech however, unlike the tonal case, the peak to RMS
ratio of the speech in the band becomes a key factor, when estimating the speech
detection threshold. These basic issues of speech detection and articulation were
well understood by Fletcher and his colleagues Wegel, Steinberg and Munson, and
were repeatedly described in their many early papers. These points will be carefully
reviewed in the next section of this review, Articulation.

Two different notations for the signal to noise ratio shall be used, � � � ��� , denoted
snr, and

��
 ���	� ��� � � 
� � � 
� � , denoted SNR, in dB. Each of these measures will be
indexed by � to indicate frequency, indexed by critical band. Thus snr

� � � ��� � � � � � �
in frequency band � .

Context and entropy: The concept of context in language is ubiquitous. Context
results from a time–correlated sequence of speech units, leading to the higher
probability of predicting a word, given the preceding words. Mathematically, this
can be expressed as

� � �	� � � 
 ! � � � 
 � � �
��� �� � � �	� � ��� ����� � ��� � � � � ����� � (1)

4In many of the early papers the level of a tone in noise above threshold, expressed in dB-SL, was
commonly denoted by the variable � (French and Steinberg, 1947, Eq. 2, page 97). This definition
explicitly accounts for the critical bandwidth of the ear.
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where
� � are speech units and 
 is the conditioning context. If

� � are random
unrelated units (i.e., words or phonemes), then the sequence

� � � � 
 � � � �
���

does
not change the score of

� � ; namely the conditional recognition of
� � is the same

as that in isolated speech.
It is critically important to control for context effects when studying speech

recognition. Real words have greater context than randomly ordered meaningless
speech sounds, which ideally, would have none. Meaningful HP sentences have
greater context than nonsense ZP sentences. One classic way of modeling context
is with Markoff models (Shannon, 1948; Shannon, 1951).

By redundancy we mean the repetition of events within a trial.5 Interestingly,
sometimes redundancy requires context to recognize the redundancy, as in the
example Sierra Mountains.6

Figure 2: Who is this monkey thinking of, an what does she want to say? How many
messages can a monkey type? This picture epitomizes the concept of Entropy. It is highly
likely, yet not impossible, that through random typing, this monkey will produce a work of
Shakespeare, corresponding to a astronomically small entropy. Even a single sentences
virtually impossible.

The information density � � is defined as the log base 2 of the reciprocal prob-
ability � � . The log base 2, is a simple transformation that gives units of bits. The
important concept here is reciprocal probability, so that a rare event (small proba-
bility) is defined as having large information. The concept of information requires a
set of outcomes. Thus � � requires an index � labeling � possible outcomes, while

� � measures the relative frequency (parts of a whole) of these outcomes, which
obey the constraint that � � � � ! � .

Entropy is the average amount of information, as computed by taking a weighted
average of the information density. When all the outcomes are equal (i.e., � � !

5This term has been mathematically defined by Shannon in his classic paper (Shannon, 1948,
Page 24).

6The word Sierra (redundancy) means mountain in Spanish (a language context).



November 29, 2004 – 10 : 13 DRAFT 10

Layer Layer

Event

k

Words

WSse

Cochlea Phones Syllables

Recognition level

s(t)

???Analog objects Discrete objects

"Back−end""Front−end"

F
ilt

er
s

La
ye

r

La
ye

r

AIk

Figure 3: Model block diagram summary of speech recognition by humans. At the top
of each block is a label that attempts to identify the physical operation, or a unit being
recognized. The labels below the boxes indicate the probability measure defined at that
level. See the text for the discussion of objects, at the very bottom. The speech �

�����
enters

on the left and is processed by the cochlea (first block), breaking the signal into a filtered
continuum of band-passed responses. The output of the cochlea is characterized by the
specific AI � , a normalized snr, expressed in dB units. The second box represents the work
of the early auditory brain, which is responsible for the identification of events in the speech
signal, such as onset transients and the detection of measures which define things like the
VOT. The third block puts these basic features together defining phones. The remaining
blocks account for context processing.

� � � ) the entropy � is maximum, and the information is minimum (Cover and
Thomas, 1991). Figure 2 fig:MonkeyTyping is an epitome of entropy. How many
monkeys would it take to produce a work of Shakespeare? The entropy of such a
document is very low. The number of monkeys required to produce such a docu-
ment is astronomical.

1.3 Modeling HSR

It is important to develop a model of human speech recognition (HSR) which sum-
marizes what we know in a succinct manner. A model is presented in Fig. 3
fig:RecMod which shows the structural relations between the various quantitative
probabilistic measures of recognition.

It is widely accepted, typically with no justification, that HSR is modeled by a
front-end driving a back-end. These terms have been used loosely in the past, and
they can have different meanings in different fields (e.g., speech, psychology and
physiology). We shall define the front-end as the acoustics processing and event
extraction, and the back-end as the context processing. An excellent quantitative
justification for doing this is provided by the work of Boothroyd (1968) and later
Bronkhorst (Bronkhorst et al., 1993), who defined a front-end and a back-end in a
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mathematical model of context processing. Bronkhorst et al. integrated Fletcher’s
AI model and generalized Boothroyd’s context models to include all possible combi-
nations of recognition errors, thereby quantitatively extending context models. They
also derived model weighting coefficients from first principles, using a lexicon. In
1968 Boothroyd modeled the effect of word recognition, given phone scores, as a
contextual constraint, and made empirical models to account for this context effect
(Boothroyd, 1968; Boothroyd and Nittrouer, 1988; Boothroyd, 1993).

Their is a long–standing unanswered question: Is there feedback from the
back–end to the front–end? The HSR model shown in Fig. 3 fig:RecMod , assumes
that events are extracted from the cochlear output in frequency regions (up to, say,
the auditory cortex ), and then these discrete events are integrated by a noiseless
state machine representing the cerebral cortex. One of the most important issues
developed here is that front–end phone feature recognition analysis appears to be
independent of the back-end context analysis. Thus in the model shown in Fig. 3
fig:RecMod there is no feedback.

Furthermore, in this model, all of the recognition errors in HSR are a result
of event extraction labeling errors, depicted by the second box of Fig. 3 fig:RecMod

, modeled by the articulation-band errors �
�
. In other words, sound recognition

errors are modeled as a noise in the conversion from analog objects to discrete
objects. I will argue that much of this event processing is implemented as par-
allel processing,7 which is equivalent to assuming that the event recognitions are
independent.

As shown in the figure, the input speech signal is continuous, while the output
stream is discrete. Somewhere within the auditory brain discrete decisions are
made. A critical aspect of our understanding is to identify at what point and at what
level this conversion from continuous to discrete takes place. I will argue that this
conversion is early, at the event level. Once these decisions have been made, the
processing is modeled as a noiseless state machine (i.e., a state machine having
no stochastic elements).

When testing either HSR or ASR systems, it is critical to control for language
context effects. This was one of the first lessons learned by Fletcher et al., that
context is a powerful effect, since the score is strongly affected by context.

The HSR model of Fig. 3 fig:RecMod is a “bottom–up,” divide and conquer strat-
egy. Humans recognize speech based on a hierarchy of context layers. Humans
have an intrinsic robustness to noise and filtering. In fact, the experimental evi-
dence shows that this robustness does not seem to interact with semantic context
(language), as reflected by the absents of feedback in the model block diagram.

The auditory system has many parallels to vision. In vision, features are first
extracted, such as edges in an image. As in vision, entropy decreases as we
integrate the features and place them in layers of context. This view is summarized
in Fig. 3 fig:RecMod as a feed-forward process. We recognize events, phones,
phonemes, and perhaps even words, without access to high level language context.
For designers of ASR systems, this is important and good news, because of its

7The idea behind parallel processing will be properly defined in Sec. 2.3 sec:CompositionLaws .
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simplicity.
As early as 1963 Miller and Isard made a strong case against the use of Markoff

models in speech recognition, using an argument based on robustness, in an ap-
parent reaction to the use of language (context) models (i.e., in ASR applications
this amounts to hidden Markov models, or HMM) for solving the robustness prob-
lem. While language context is key in reducing many types of errors, for both ASR
and HSR, the front-end robustness problem remains. While it is widely believed
that there is much room for improvement in such language models (Miller, 2001),
it now seems clear that even major context processing improvements will not solve
the ASR noise robustness problem. We know this from an analysis of data from the
literature which shows that humans attain their inherent robustness to background
noise early in the process, independent of and before, language context effects.

To obtain equal HSR performance between meaningful 5-7 word sentences
and randomized word order sentences, required degrading the SNR of the mean-
ingful sentences by 6 to 10 dB, a negligible change for HSR. They argue that a
word-randomizing transformation would have a major performance degradation on
a Markoff driven ASR system, which heavily depends on word order (see Sec. 1.3.1
sec:Miller62 ).

This leads to the following dilemma for ASR, as predicted in 1963 by Miller:
Both ASR’s front-end phone error rate and its back-end context processing are
significantly worse than those of HSR. Language models can never achieve the
desired goals of solving the robustness problem because it is the front-end that
accounts for the errors causing the robustness issues. Thus we must deal directly
with the front end problems of talker variation, noise and spectral modifications,
independent of context effects, as HSR does. This view is not to depreciate the
importance of the back end, rather is an attempt to clarify that improved context
processing cannot solve the robustness problem.

1.3.1 Context Models

An Example of a Context Effect: A detailed example of the utility of context in
HSR was demonstrated by Miller (1962). This example stands out because of the
early use of ideas from information theory to control for the entropy of the source,
with the goal of modulating human performance via context. The experiment was
simple, yet it provides an insight into the workings of context in HSR. In this ex-
periment 5 groups of 5 words each make up the test set. This is a closed–set 8

listening task with the number of words and the signal to noise ratio varied. There
are 4 conditions. For test condition 1 the subjects are shown 1 of the 5 lists, and
they hear a word from that list. For the other 3 conditions the subjects are shown
1 list of all the 25 words. The probability correct � � � snr � was measured for each of
the 4 conditions:

1. 5 words
8A closed–set test is one with a limited number of outcomes that are known a priori to the subjects.
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Figure 4: This figure, from Miller (1962), summarizes the results of a 4-way experiment,
performed as a function of the signal to noise ratio. Test 1 (open circles, dashed line)
shows

��� �
SNR

�
for 5 word vocabularies, with no context. In test 2 (closed circles, solid

line) 5 word sentences were made from the 5, 5 word lists. As an example “Don brought
his black socks.” The word “Don” was one of 5 possibilities [Don, He, Red, Slim, Who].
For tests 1 and 2,

��� �
snr

�
is the same. Test 3 (open triangles, dashed line) was to test

using the larger corpus of one of the 25 words, spoken in isolation. Test 4 (closed triangles,
solid line) was to generate “pseudo-sentences” by reversing the order of the sentences of
test 3. Going from 5 to 25 isolated words (test 1 to 3) causes a 4 dB SNR reduction in
performance at the 50% correct level. Presenting the 25 words as pseudo-sentences, that
make no sense (test 4), has no effect on

� � �
SNR

�
. However adding a grammar (test 2) to a

25 word test returns the score to the 5 word test. In summary, increasing the test size from
5 to 25 words reduces performance by 4 dB. Making 5 word meaningful sentences out of
the 25 words restores the performance to the 5 word low entropy case.

2. 5 word grammatically correct sentences, chosen from the 25 words

3. 25 words

4. non grammatical sentences chosen from the 25 words.

As described in the caption of Fig. 4 fig:Miller62Fig1 , in condition (1) 5 word lists
are used in each block of trials. The lists are randomized. The subject hears 1 of 5
words, degraded by noise, and is asked to pick the word from the list. In condition
(3) the number of words is increased from 5 to 25, causing a reduction of 4 dB
in performance (at the 50% level). These two conditions (1 and 3) were previously
studied in a classic paper (Miller et al., 1951) which observed that the size of the set
of CVCs has a large impact on the score, namely � � � SNR � depends on the entropy
of the task. In condition (2), the effect of context is measured. By placing the 25
words in a context having a grammar, the scores returned to the 5 isolated word
level (condition 1). When sentences having no grammar (pseudo-sentences) were
used (condition 4), generated by reversing the meaningful sentences of condition
2, the score remains equal to the 25 isolated word case of condition 3.

Thus the grammar in experiment (2) improves the score to the isolated word
level (1), but not beyond. It probably does this by providing an improved framework
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for remembering the words. Without the grammatical framework, the subjects be-
come confused and treat the pseudo-sentences as 25 random words (Miller and
Isard, 1963).

One may quantify context by measuring the change in the SNR at the 50% cor-
rect point on the � � � SNR � curve, in units of bits/dB. In this experiment the difference
in entropies (entropy of 25 words less the entropy of 5 words) is � �	� 
 � ����� � ���	� 
 � ��� !
� �
� � bits, which means that a change of 2.32 bits corresponds to a change in the

SNRof 4 dB. Thus the trading relation is 0.58 bits/dB (or 1.7 dB/bit). It is generally
useful to compare the bits/dB in this manner.

Outline: The paper is organized as follows: Sections 2.1 and 2.2 summarizes
important results from the 30 years of work (1921-1950) by Fletcher and his col-
leagues, which resulted in Articulation Index theory, a widely recognized method
of characterizing the information bearing frequency regions of speech. We shall
show that the AI (denoted mathematically as

� �
snr � ) is similar to a channel ca-

pacity, which is an important concept from information theory defining the max-
imum amount of information that may be transmitted on a channel. Section 2.4
sec:MillerEtAl summarizes the speech work of George Miller. Miller showed the im-
portance of source entropy (randomness) in speech perception. He did this by
controlling for both the cardinality (size of the test corpus) and the signal to noise
ratio of the speech samples. Section 2.8 sec:Validation discusses the validation and
Sec. 2.9 sec:Criticisms criticisms of articulation index theory. Section 3 sec:Intelligibility

discusses the importance of context on recognition, summarizing key results. For
continuity, research results are presented in chronological order.

Figure 5: The Acousticon LT was invented in about 1905.

2 Articulation

In 1908 Lord Rayleigh reported on his speech perception studies using the “Acous-
ticon LT,” a commercial electronic sound system, produced in 1905. As shown in
Fig. 5 fig:acousticon ,9 it consisted of a microphone and 4 loudspeakers, and was

9http://dept.kent.edu/hearingaidmuseum/AcousticonLTImage.html


