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SYSTEMS AND METHODS FOR 
IDENTIFYING SPEECHSOUND FEATURES 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 5 

This application claims priority to U.S. Provisional Appli 
cation No. 61/078.268, filed Jul. 3, 2008, U.S. Provisional 
Application No. 61/083,635, filed Jul. 25, 2008, and U.S. 
Provisional Application No. 61/151,621, filed Feb. 11, 2009, 10 
the disclosure of each of which is incorporated by reference in 
its entirety for all purposes. 

BACKGROUND OF THE INVENTION 
15 

The present invention is directed to identification of per 
ceptual features. More particularly, the invention provides a 
system and method, for Such identification, using one or more 
events related to coincidence between various frequency 
channels. Merely by way of example, the invention has been 20 
applied to phone detection. But it would be recognized that 
the invention has a much broader range of applicability. 

After many years of work, a basic understanding of speech 
robustness to masking noise often remains a mystery. Spe 
cifically, it is usually unclear how to correlate the confusion 25 
patterns with the audible speech information in order to 
explain normal hearing listeners confusions and identify the 
spectro-temporal nature of the perceptual features. For 
example, the confusion patterns are speech Sounds (such as 
Consonant-Vowel, CV) confusions vs. signal-to-noise ratio 30 
(SNR). Certain conventional technology can characterize 
invariant cues by reducing the amount of information avail 
able to the ear by synthesizing simplified CVs based only on 
a short noise burst followed by artificial formant transitions. 
However, often, no information can be provided about the 35 
robustness of the speech samples to masking noise, nor the 
importance of the synthesized features relative to other cues 
present in natural speech. But a reliable theory of speech 
perception is important in order to identify perceptual fea 
tures. Such identification can be used for developing new 40 
hearing aids and cochlear implants and new techniques of 
speech recognition. 

Hence it is highly desirable to improve techniques for 
identifying perceptual features. 

45 

BRIEF SUMMARY OF THE INVENTION 

The present invention is directed to identification of per 
ceptual features. More particularly, the invention provides a 
system and method, for Such identification, using one or more 50 
events related to coincidence between various frequency 
channels. Merely by way of example, the invention has been 
applied to phone detection. But it would be recognized that 
the invention has a much broader range of applicability. 

According to an embodiment of the present invention, a 55 
method for enhancing a speech Sound may include identify 
ing one or more features in the speech Sound that encode the 
speech Sound, and modifying the contribution of the features 
to the speech Sound. In an embodiment, the method may 
include increasing the contribution of a first feature to the 60 
speech Sound and decreasing the contribution of a second 
feature to the speech sound. The method also may include 
generating a time and/or frequency importance function for 
the speech Sound, and using the importance function to iden 
tify the location of the features in the speech sound. In an 65 
embodiment, a speech Sound may be identified by isolating a 
section of a reference speech Sound corresponding to the 

2 
speech Sound to be enhanced within at least one of a certain 
time range and a certain frequency range, based on the degree 
of recognition among a plurality of listeners to the isolated 
section, constructing an importance function describing the 
contribution of the isolated section to the recognition of the 
speech Sound; and using the importance function to identify 
the first feature as encoding the speech Sound. 

According to an embodiment of the present invention, a 
system for enhancing a speech Sound may include a feature 
detector configured to identify a first feature that encodes a 
speech Sound in a speech signal, a speech enhancer config 
ured to enhance said speech signal by modifying the contri 
bution of the first feature to the speech sound, and an output to 
provide the enhanced speech signal to a listener. The system 
may modify the contribution of the speech Sound by increas 
ing or decreasing the contribution of one or more features to 
the speech Sound. In an embodiment, the system may increase 
the contribution of a first feature to the speech sound and 
decrease the contribution of a second feature to the speech 
Sound. The system may use the hearing profile of a listener to 
identify a feature and/or to enhance the speech signal. The 
system may be implemented in, for example, a hearing aid, 
cochlear implant, automatic speech recognition device, and 
other portable or non-portable electronic devices. 

According to an embodiment of the invention, a method for 
modifying a speech Sound may include isolating a section of 
a speech Sound within a certain frequency range, measuring 
the recognition of a plurality of listeners of the isolated sec 
tion of the speech Sound, based on the degree of recognition 
among the plurality of listeners, constructing an importance 
function that describes the contribution of the isolated section 
to the recognition of the speech Sound, and using the impor 
tance function to identify a first feature that encodes the 
speech Sound The importance function may be a time and/or 
frequency importance function. The method also may include 
the steps of modifying the speech Sound to increase and/or 
decrease the contribution of one or more features to the 
speech Sound. 

According to an embodiment of the invention, a system for 
phone detection may include a microphone configured to 
receive a speech signal generated in an acoustic domain, a 
feature detector configured to receive the speech signal and 
generate a feature signal indicating a location in the speech 
Sound at which a speech Sound feature occurs, and a phone 
detector configured to receive the feature signal and, based on 
the feature signal, identify a speech Sound included in the 
speech signal in the acoustic domain. The system also may 
include a speech enhancer configured to receive the feature 
signal and, based on the location of the speech Sound feature, 
modify the contribution of the speech sound feature to the 
speech signal received by said feature detector. The speech 
enhancer may modify the contribution of one or more speech 
Sound features by increasing or decreasing the contribution of 
each feature to the speech Sound. The system may be imple 
mented in, for example, a hearing aid, cochlear implant, auto 
matic speech recognition device, and other portable or non 
portable electronic devices. 

Depending upon the embodiment, one or more of benefits 
may be achieved. These benefits will be described in more 
detail throughout the present specification and more particu 
larly below. Additional features, advantages, and embodi 
ments of the invention may be set forth or apparent from 
consideration of the following detailed description, drawings, 
and claims. Moreover, it is to be understood that both the 
foregoing Summary of the invention and the following 
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detailed description are exemplary and intended to provide 
further explanation without limiting the scope of the inven 
tion as claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 5 

The accompanying drawings, which are included to pro 
vide a further understanding of the invention, are incorpo 
rated in and constitute a part of this specification; illustrate 
embodiments of the invention and together with the detailed 
description serve to explain the principles of the invention. 
No attempt is made to show structural details of the invention 
in more detail than may be necessary for a fundamental 
understanding of the invention and various ways in which it 
may be practiced. 

FIG. 1 is a simplified conventional diagram showing how 
the AI-gram is computed from a masked speech signal s(t): 

FIG. 2 shows simplified conventional AI-grams of the 
same utterance of /to? in speech-weighted noise (SWN) and 20 
white noise (WN) respectively; 

FIG.3 shows simplified conventional CP plots for an indi 
vidual utterance from UIUC-S04 and MN05; 

FIG. 4 shows simplified comparisons between a “weak” 
and a “robust' /te/according to an embodiment of the present 25 
invention; 

FIG. 5 shows simplified diagrams for variance event-gram 
computed by taking event-grams of a ?tol? utterance for 10 
different noise samples according to an embodiment of the 
present invention; 30 

FIG. 6 shows simplified diagrams for correlation between 
perceptual and physical domains according to an embodi 
ment of the present invention; 

FIG. 7 shows simplified typical utterances from one group, 
which morph from /t/-/p/-/b/according to an embodiment of 35 
the present invention; 

FIG. 8 shows simplified typical utterances from another 
group according to an embodiment of the present invention; 

FIG. 9 shows simplified truncation according to an 
embodiment of the present invention; 40 

FIG. 10 shows simplified comparisons of the AI-gram and 
the truncation scores in order to illustrate correlation between 
physical AI-gram and perceptual scores according to an 
embodiment of the present invention; 

FIG. 11 is a simplified system for phone detection accord- 45 
ing to an embodiment of the present invention; 

FIG. 12 illustrates onset enhancement for channel speech 
signals, used by system for phone detection according to an 
embodiment of the present invention; 

FIG. 13 is a simplified onset enhancement device used for 50 
phone detection according to an embodiment of the present 
invention; 

FIG. 14 illustrates pre-delayed gain and delayed gain used 
for phone detection according to an embodiment of the 
present invention; 55 

FIG. 15 shows an AI-gram response an associated confu 
sion patternaccording to an embodiment of the present inven 
tion; 

FIG. 16 shows an AI-gram response an associated confu 
sion patternaccording to an embodiment of the present inven- 60 
tion; 

FIGS. 17A-17C show AI-grams illustrating an example of 
feature identification and modification according to an 
embodiment of the present invention; 

FIGS. 18A-18E3 show AI-grams illustrating an example of 65 
feature identification and modification according to an 
embodiment of the present invention; 

10 
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4 
FIGS. 19A-19B show AI-grams illustrating an example of 

feature identification and modification according to an 
embodiment of the present invention; 

FIG. 20 shows AI-grams illustrating an example of feature 
identification and modification according to an embodiment 
of the present invention; 

FIG. 21 shows AI-grams illustrating an example of feature 
identification and modification according to an embodiment 
of the present invention; 

FIG. 22A shows an AI-gram of an example speech Sound 
according to an embodiment of the present invention; 

FIGS. 22B-22D show various recognition scores of an 
example speech Sound according to an embodiment of the 
present invention; 

FIG. 23 shows the time and frequency importance func 
tions of an example speech Sound according to an embodi 
ment of the present invention; 

FIG. 24 shows an example of feature identification of the 
/pa/speech Sound according to embodiments of the present 
invention; 

FIG. 25 shows an example of feature identification of the 
?taf speech Sound according to embodiments of the present 
invention; 

FIG. 26 shows an example of feature identification of the 
/ka? speech Sound according to embodiments of the present 
invention; 

FIG. 27 shows the confusion patterns related to the speech 
sound in FIG. 24 according to embodiments of the present 
invention; 

FIG. 28 shows the confusion patterns related to the speech 
sound in FIG. 25 according to embodiments of the present 
invention; 

FIG. 29 shows the confusion patterns related to the speech 
sound in FIG. 26 according to embodiments of the present 
invention; 

FIG. 30 shows an example of feature identification of the 
fba/speech Sound according to embodiments of the present 
invention; 

FIG. 31 shows an example of feature identification of the 
fola? speech Sound according to embodiments of the present 
invention; 

FIG. 32 shows an example of feature identification of the 
/ga? speech Sound according to embodiments of the present 
invention; 

FIG.33 shows the confusion patterns related to the speech 
sound in FIG. 30 according to embodiments of the present 
invention; 
FIG.34 shows the confusion patterns related to the speech 

sound in FIG. 31 according to embodiments of the present 
invention; 
FIG.35 shows the confusion patterns related to the speech 

sound in FIG. 32 according to embodiments of the present 
invention; 

FIGS. 36A-36B show AI-grams of various generated super 
features according to an embodiment of the present invention; 

FIGS. 37A-37D show confusion matrices for an example 
listener for un-enhanced and enhanced speech Sounds accord 
ing to an embodiment of the present invention; 

FIGS. 38A-38B show experimental results after boosting 
/ka/s and fga?s according to an embodiment of the present 
invention; 

FIG.39 shows experimental results after boosting ?ka/s and 
fga?s according to an embodiment of the present invention; 

FIG. 40 shows experimental results after removing high 
frequency regions associated with morphing of ?taf and /da/ 
according to an embodiment of the present invention; 



US 8,983,832 B2 
5 

FIGS. 41A-41B show experimental results after removing 
?taf or /da/ cues and boosting ?ka/and/ga? features according 
to an embodiment of the present invention; 

FIGS. 42-47 show experimental results used to identify 
natural strong /ka/s and fga?s according to an embodiment of 
the present invention; 

FIG. 48 shows a diagram of an example feature-based 
speech enhancement system according to an embodiment of 
the present invention; 

FIGS. 49-64 show example AI-grams and associated trun 
cation data, hi-lo data, and recognition data for a variety of 
speech Sounds according to an embodiment of the present 
invention. 

FIG. 65 shows an example application of a multi-dimen 
sional approach to identify acoustic cues according to an 
embodiment of the invention. 

FIG. 66 shows the confusion patterns of ?ka/ when pro 
duced by an individual talker according to an embodiment of 
the invention. 

FIG. 67 shows an example of analysis of a Sound using a 
multi-dimensional method according to an embodiment of 
the invention. 

FIG. 68 shows an example analysis of /tal according to an 
embodiment of the invention. 

IG. 69 shows an example analysis of /ka? according to an 
embodiment of the invention. 

FIG. 70 shows an example analysis of/ba/according to an 
embodiment of the invention. 

FIG. 71 shows an example analysis of /da/according to an 
embodiment of the invention. 

FIG.72 shows an example analysis of/ga? according to an 
embodiment of the invention. 

FIG. 73 depicts a scatter-plot of signal-to-noise values 
versus the threshold of audibility for the dominant cue 
according to embodiments of the invention. 

FIG. 74 shows a scatter plot of burst frequency versus the 
time between the burst and the associated voice onset for a set 
of Sounds as analyzed by embodiments of the invention. 

FIG. 75 shows an example analysis of /fa/according to an 
embodiment of the invention. 

FIG. 76 shows an example analysis of/0a/according to an 
embodiment of the invention. 

FIG. 77 shows an example analysis of /sa/according to an 
embodiment of the invention. 

FIG. 78 shows an example analysis of /a/ according to an 
embodiment of the invention. 

FIG. 79 shows an example analysis of/Öa/according to an 
embodiment of the invention. 

FIG. 80 shows an example analysis of/va/according to an 
embodiment of the invention. 

FIG. 81 shows an example analysis of /Za? according to an 
embodiment of the invention. 

FIG. 82 shows an example analysis of /a/ according to an 
embodiment of the invention. 

FIG. 83 shows an example analysis of/ma/according to an 
embodiment of the invention. 

FIG. 84 shows an example analysis of /na? according to an 
embodiment of the invention. 

FIG. 85 shows a summary of events relating to initial 
consonants preceding /a/ as identified by analysis procedures 
according to embodiments of the invention. 

DETAILED DESCRIPTION OF THE INVENTION 

It is understood that the invention is not limited to the 
particular methodology, protocols, topologies, etc., as 
described herein, as these may vary as the skilled artisan will 
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6 
recognize. It is also to be understood that the terminology 
used herein is used for the purpose of describing particular 
embodiments only, and is not intended to limit the scope of 
the invention. It also is to be noted that as used herein and in 
the appended claims, the singular forms “a,” “an and “the 
include the plural reference unless the context clearly dictates 
otherwise. 

Unless defined otherwise, all technical and scientific terms 
used herein have the same meanings as commonly under 
stood by one of ordinary skill in the art to which the invention 
pertains. The embodiments of the invention and the various 
features and advantageous details thereofare explained more 
fully with reference to the non-limiting embodiments and/or 
illustrated in the accompanying drawings and detailed in the 
following description. It should be noted that the features 
illustrated in the drawings are not necessarily drawn to scale, 
and features of one embodiment may be employed with other 
embodiments as the skilled artisan would recognize, even if 
not explicitly stated herein. 
Any numerical values recited herein include all values 

from the lower value to the upper value in increments of one 
unit provided that there is a separation of at least two units 
between any lower value and any higher value. As an 
example, if it is stated that the concentration of a component 
or value of a process variable such as, for example, size, angle 
size, pressure, time and the like, is, for example, from 1 to 90. 
specifically from 20 to 80, more specifically from 30 to 70, it 
is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 
to 32 etc., are expressly enumerated in this specification. For 
values which are less than one, one unit is considered to be 
0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only 
examples of what is specifically intended and all possible 
combinations of numerical values between the lowest value 
and the highest value enumerated are to be considered to be 
expressly stated in this application in a similar manner. 

Particular methods, devices, and materials are described, 
although any methods and materials similar or equivalent to 
those described herein can be used in the practice or testing of 
the invention. All references referred to herein are incorpo 
rated by reference herein in their entirety. 
The present invention is directed to identification of per 

ceptual features. More particularly, the invention provides a 
system and method, for Such identification, using one or more 
events related to coincidence between various frequency 
channels. Merely by way of example, the invention has been 
applied to phone detection. But it would be recognized that 
the invention has a much broader range of applicability. 

1. Introduction 
To understand speech robustness to masking noise, our 

approach includes collecting listeners’ responses to syllables 
in noise and correlating their confusions with the utterances 
acoustic cues according to certain embodiments of the 
present invention. For example, by identifying the spectro 
temporal features used by listeners to discriminate conso 
nants in noise, we can prove the existence of these perceptual 
cues, or events. In other examples, modifying events and/or 
features in speech Sounds using signal processing techniques 
can lead to a new family of hearing aids, cochlear implants, 
and robust automatic speech recognition. The design of an 
automatic speech recognition (ASR) device based on human 
speech recognition would be a tremendous breakthrough to 
make speech recognizers robust to noise. 
Our approach, according to certain embodiments of the 

present invention, aims at correlating the acoustic informa 
tion, present in the noisy speech, to human listeners responses 
to the sounds. For example, human communication can be 
interpreted as an “information channel, where we are study 
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ing the receiver side, and trying to identify the ear’s most 
robust to noise speech cues in noisy environments. 
One might wonder why we study phonology (consonant 

Vowel sounds, noted CV) rather than language (context) 
according to certain embodiments of the present invention. 
While context effects are important when decoding natural 
language, human listeners are able to discriminate nonsense 
speech sounds in noise at SNRs below -16 dB SNR. This 
evidence is clear from an analysis of the confusion matrices 
(CM) of CV sounds. Such noise robustness appears to have 
been a major area of misunderstanding and heated debate. 

For example, despite the importance of confusion matrices 
analysis in terms of production features such as voicing, 
place, or manner, little is known about the spectro-temporal 
information present in each waveform correlated to specific 
confusions. To gain access to the missing utterance wave 
forms for Subsequent analysis and further explore the 
unknown effects of the noise spectrum, we have performed 
extensive analysis by correlating the audible speech informa 
tion with the scores from two listening experiments denoted 
MNO5 and UIUCSO4. 

According to certain embodiments, our goal is to find the 
common robust-to-noise features in the spectro-temporal 
domain. Certain previous studies pioneered the analysis of 
spectro-temporal cues discriminating consonants. Their goal 
was to study the acoustic properties of consonants /p/, /t/ and 
/k/ in different vowel contexts. One of their main results is the 
empirical establishment of a physical to perceptual map. 
derived from the presentation of synthetic CVs to human 
listeners. Their stimuli were based on a short noise burst (10 
ms, 400 Hz bandwidth), representing the consonant, followed 
by artificial formant transitions composed of tones, simulat 
ing the vowel. They discovered that for each of these voiceless 
stops, the spectral position of the noise burst was vowel 
dependent. For example, this coarticulation was mostly vis 
ible for /p/ and /k/, with bursts above 3 kHz giving the percept 
of ft/ for all vowels contexts. A burst located at the second 
formant frequency or slightly above would create a percept of 
/k/, and below /p/. Consonant /t/ could therefore be consid 
ered less sensitive to coarticulation. But no information was 
provided about the robustness of their synthetic speech 
samples to masking noise, nor the importance of the pre 
Sumed features relative to other cues present in natural 
speech. It has been shown by several Studies that a sound can 
be perceptually characterized by finding the source of its 
robustness and confusions, by varying the SNR, to find, for 
example, the most necessary parts of the speech for identifi 
cation. 

According to certain embodiments of the present inven 
tion, we would like to find common perceptual robust-to 
noise features across Vowel contexts, the events, that may be 
instantiated and lead to different acoustic representations in 
the physical domain. For example, the research reported here 
focuses on correlating the confusion patterns (CP), defined as 
speech sounds CV confusions versus SNR, with the speech 
audibility information using an articulation index (AI) model 
described next. By collecting a lot of responses from many 
talkers and listeners, we have been able to build a large data 
base of CP. We would like to explain normal hearing listeners 
confusions and identify the spectro-temporal nature of the 
perceptual features characterizing those sounds and thus 
relate the perceptual and physical domains according to some 
embodiments of the present invention. For example, we have 
taken the example of consonant /t/, and showed how we can 
reliably identify its primary robust-to-noise feature. In order 
to identify and label events, we would, for example, extract 
the necessary information from the listeners confusions. In 
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8 
another example, we have shown that the main spectro-tem 
poral cue defining the /t/ event is composed of across-fre 
quency temporal coincidence, in the perceptual domain, rep 
resented by different acoustic properties in the physical 
domain, on an individual utterance basis, according to some 
embodiments of the present invention. According to some 
embodiments of the present invention, our observations Sup 
port these coincidences as a basic element of the auditory 
object formation, the event being the main perceptual feature 
used across consonants and vowel contexts. 

2. The Articulation Index: An Audibility Model 
The articulation often is the score for nonsense sound. The 

articulation index (AI) usually is the foundation stone of 
speech perception and is the Sufficient statistic of the articu 
lation. Its basic concept is to quantify maximum entropy 
average phone scores based on the average critical band sig 
nal to noise ratio (SNR), in decibels resensation level dB 
SL. scaled by the dynamic range of speech (30 dB). 

It has been shown that the average phone score P(AI) can 
be modeled as a function of the AI, the recognition errore 
at AI-1, and the error et 
(AI-0). This relationship is: 

fia 

=1-/16 at chance performance 

A. 
characeni, 

The AI formula has been extended to account for the peak 
to-RMS ratio for the speech r in each band, yielding Eq. (2). 
For example, parameter K=20 bands, referred to as articula 
tion bands, has traditionally been used and determined 
empirically to have equal contribution to the score for conso 
nant-vowel materials. The AI in each band (the specific AI) is 
noted AI. 

AI = mi l 1 1 (2) = mir ogo? ti si) ) 

where Snr is the SNR (i.e. the ratio of the RMS of the 
speech to the RMS of the noise) in the k" articulation band. 
The total AI is therefore given by: 

1 : (3) 
A = 2. A 

The Articulation Index has been the basis of many stan 
dards, and its long history and utility has been discussed in 
length. 
The AI-gram, AI (t, f, SNR), is defined as the AI density as 

a function of time and frequency (or place, defined as the 
distance X along the basilar membrane), computed from a 
cochlear model, which is a linear filter bank with bandwidths 
equal to human critical bands, followed by a simple model of 
the auditory nerve. 

FIG. 1 is a simplified conventional diagram showing how 
the AI-gram is computed from a masked speech signal s(t). 
The AI-gram, before the calculation of the AT, includes a 
conversion of the basilar membrane vibration to a neural 
firing rate, via an envelope detector. 
As shown in FIG.1, starting from a critical band filter bank, 

the envelope is determined, representing the mean rate of the 
neural firing pattern across the cochlear output. The speech-- 
noise signal is scaled by the long-term average noise level in 
a manner equivalent to 1+O./O,. The scaled logarithm of 
that quantity yields the AI density AI(t, f, SNR). The audible 
speech modulations across frequency are stacked vertically to 
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get a spectro-temporal representation in the form of the AI 
gram as shown in FIG. 1. The AI-gram represents a simple 
perceptual model, and its output is assumed to be correlated 
with psychophysical experiments. When a speech signal is 
audible, its information is visible in different degrees of black 
on the AI-gram. If follows that all noise and inaudible sounds 
appear in white, due to the band normalization by the noise. 

FIG. 2 shows simplified conventional AI-grams of the 
same utterance of /to? in speech-weighted noise (SWN) and 
white noise (WN) respectively. Specifically, FIGS. 2(a) and 
(b) shows AI-grams of male speaker 111 speaking ?taf in 
speech-weighted noise (SWN) at 0 dB SNR and white noise 
at 10 dB SNR respectively. The audible speech information is 
dark, the different levels representing the degree of audibility. 
The two different noises mask speech differently since they 
have different spectra. Speech-weighted noise mask low fre 
quencies less than high frequencies, whereas one may clearly 
see the strong masking of white noise at high frequencies. The 
AI-gram is an important tool used to explain the differences in 
CP observed in many studies, and to connect the physical and 
perceptual domains. 

3. Experiments 
According to certain embodiments of the present inven 

tion, the purpose of the studies is to describe and draw results 
from previous experiments, and explain the obtained human 
CP responses P. (SNR) the AI audibility model, previously 
described. For example, we carry out an analysis of the 
robustness of consonant /t/, using a novel analysis tool, 
denoted the four-step method. In another example, we would 
like to give a global understanding of our methodology and 
point out observations that are important when analyzing 
phone confusions. 

3.1 PAO7 and MNO5 
This section describes the methods and results of two 

Miller-Nicely type experiments, denoted PAO7 and MN05. 
3.1.1 Methods 
Here we define the global methodology used for these 

experiments. Experiment PAO7 measured normal hearing lis 
teners responses to 64 CV sounds (16Cx4V, spoken by 18 
talkers), whereas MN05 included the subset of these CVs 
containing vowel /a/. For PAO7, the masking noise was 
speech-weighted (SNR=Q, 12, -2, -10, -16, -20, -22, Q 
for quiet), and white for MN05 (SNR=Q, 12, 6, 0, -6, -12, 
-15, -18, -21). All conditions, presented only once to our 
listeners, were randomized. The experiments were imple 
mented with MatlabC), and the presentation program was run 
from a PC (Linux kernel 2.4, Mandrake 9) located outside an 
acoustic booth (Acoustic Systems model number 27.930). 
Only the keyboard, monitor, headphones, and mouse were 
inside the booth. Subjects seating in the booth are presented 
with the speech files through the headphones (Sennheiser 
HD280 phones), and click on the corresponding file they 
heard on the user interface (GUI). To prevent any loud sound, 
the maximum pressure produced was limited to 80 dB sound 
pressure level (SPL) by an attenuator box located between the 
Soundcard and the headphones. None of the Subjects com 
plained about the presentation level, and none asked for any 
adjustment when suggested. Subjects were young Volunteers 
from the University of Illinois student and staff population. 
They had normal hearing (self-reported), and were native 
English speakers. 

3.1.2 Confusion Patterns 
Confusion patterns (a row of the CM vs. SNR), corre 

sponding to a specific spoken utterance, provide the repre 
sentation of the scores as a function of SNR. The scores can 
also be averaged on a CV basis, for all utterances of a same 
CV. FIG. 3 shows simplified conventional CP plots for an 
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10 
individual utterance from UIUC-S04 and MN05. Data for 14 
listeners for PAO7 and 24 for MN05 have been averaged. 

Specifically, FIGS. 3(a) and (b) show confusion patterns 
for /to/spoken by female talker 105 in speech-weighted noise 
and white noise respectively. Note the significant robustness 
difference depending on the noise spectrum. In speech 
weighted noise, /t/ is correctly identified down to 46 dB SNR 
whereas it starts decreasing at -2 dB in white noise. The 
confusions are also more significant in white noise, with the 
scores for /p/ and /k/ overcoming that of /t/ below -6 dB. We 
call this observation morphing. The maximum confusion 
score is denoted SNR. The reasons for this robustness dif 
ference depends on the audibility of the /t/ event, which will 
be analyzed in the next section. 

Specifically, many observations can be noted from these 
plots according to certain embodiments of the present inven 
tion. First, as SNR is reduced, the target consonant error just 
starts to increase at the saturation threshold, denoted SNR. 
This robustness threshold, defined as the SNR at which the 
error drops below chance performance (93.75% point). For 
example, it is located at 2 dB SNR in white noise as shown in 
FIG.3(b). This decrease happens much earlier for WN than in 
SWN, where the saturation threshold for this utterance is at 
-16 dB SNR. 

Second, it is clear from FIG. 3 that the noise spectrum 
influences the confusions occurring below the confusion 
threshold. The confusion group of this ?tol? utterance in white 
noise (FIG. 3(b)) is /p/-/t/-/k/. The maximum confusion 
scores, denoted SNR, is located at -18 dB SNR for /p/, and 
-15 dB for /k/, with respective scores of 50 and 35%. In the 
case of speech weighted noise (FIG. 3(a)), /d/ is the only 
significant competitor, due to the extreme robustness 
(SNR,--16 dB) to this noise spectrum, with a low SNR -20 
dB. Therefore, the same utterance presents different robust 
ness and confusion thresholds depending on the masking 
noise, due to the spectral support of what characterizes/t/. We 
shall further analyze this in the next section. The spectral 
emphasis of the masking noise will determine which confu 
sions are likely to occur according to some embodiments of 
the present invention. 

Third, as white noise is mixed with this ?to/, /t/ morphs to 
/p/, meaning that the probability of recognizing /t/ drops, 
while that of /p/ increases above the /t/ score. Atan SNR of -9 
dB, the /p/ confusion overcomes the target /t/ score. We call 
that morphing. As shown on the right CP plot of FIG. 3, the 
recognition of /p/ is maximum (P-50%) at SNR -16 dB, 
that of /k/ peaks at 35% at -12 dB, where the score for /t/ is 
about 10%. 

Fourth, listening experiments show that when the scores 
for consonants of a confusion group are similar, listeners can 
prime between these phones. For example, priming is defined 
as the ability to mentally select the consonant heard, by mak 
ing a conscious choice between several possibilities having 
neighboring scores. As a result of pruning, a listener will 
randomly chose one of the three consonants. Listeners may 
have an individual bias toward one or the other sound, causing 
scores differences. For example, the average listener ran 
domly primes between /t/ and /p/ and /k/ at around -10 dB 
SNR, whereas they typically have a bias for /p/ at -16 dB 
SNR, and for /t/ above –5 dB. The SNR range for which 
priming takes place is listener dependent; the CP presented 
here are averaged across listeners and, therefore, are repre 
sentative of an average priming range. 

Based on our studies, priming occurs when invariant fea 
tures, shared by consonants of a confusion group, are at the 
threshold of being audible, and when one distinguishing fea 
ture is masked. 
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In Summary, four major observations may be drawn from 
an analysis of many CP such as those of FIG. 3, which apply 
for our consonant studies: (i) robustness variability and (ii) 
confusion group variability across noise spectra, (iii) mor 
phing, and (iv) priming according to certain embodiments of 
the present invention. For example, we conclude that each 
utterance presents different saturation thresholds, different 
confusion groups, morphs or not, and may be subject to 
priming in some SNR range, depending on the masking noise 
and the consonant according to certain embodiments of the 
present invention. In another example, across utterances, we 
quantitatively relate the confusions patterns and robustness to 
the audible cues at a given SNR, as exampled in the above 
discussion. Finding this relation leads us to identify the 
acoustic features that map to the perceptual space. Using 
the four-step method, described in the next section, we will 
demonstrate that events are common across utterances of a 
particular consonant, whereas the acoustic correlates of the 
events, meaning the spectro-temporal and energetic proper 
ties, depend on the SNR, the noise spectrum, and the utter 
ance according to some embodiments. 

3.2 Four-step Method to Identify Events 
According to certain embodiments of the present inven 

tion, our four-step method is an analysis that uses the percep 
tual models described above and correlates them to the CP. It 
lead to the development of an event-gram, an extension of the 
AI-gram, and uses human confusion responses to identify the 
relevant parts of speech. For example, we used the four-step 
method to draw conclusions about theft? event, but this tech 
nique may be extended to other consonants. Here, as an 
example, we identify and analyze the spectral support of the 
primary /t/ perceptual feature, for two ?tef utterances in 
speech-weighted noise, spoken by different talkers. 

FIG. 4 shows simplified comparisons between a “weak” 
and a “robust' /te/according to an embodiment of the present 
invention. These diagrams are merely examples, which 
should not unduly limit the scope of the claims. One of 
ordinary skill in the art would recognize many variations, 
alternatives, and modifications. 

According to certain embodiments, step 1 corresponds to 
the CP (bottom right), step 2 to the AI-gram at 0 dB SNR in 
speech-weighted noise, step 3 to the mean AI above 2 kHz 
where the local maximum t in the burst is identified, leading 
to step 4, the event gram (vertical slice through AI-grams at 
t). Note that in the same masking noise, these utterances 
behave differently and present different competitors. Utter 
ance m117te morphs to ?pe/. Many of these differences can be 
explained by the AI-gram (the audibility model), and more 
specifically by the event-gram, showing in each case the 
audible ?t/ burst information as a function of SNR. The 
strength of the /t/ burst, and therefore its robustness to noise, 
is precisely correlated with the human responses (encircled). 
This leads to the conclusion that this across-frequency onset 
transient, above 2 kHz, is the primary /t/ event according to 
certain embodiments. 

Specifically, FIG. 4(a) shows simplified analysis of sound 
/te/spoken by male talker 117 in speech-weighted noise. This 
utterance is not very robust to noise, since the /t/ recognition 
starts to decrease at -2 dB SNR. Identifying t, time of the 
burst maximum at 0 dB SNR in the AI-gram (top left), and its 
mean in the 2-8 kHz range (bottom left), leads to the event 
gram (top right). For example, this representation of the 
audible phone /t/ burst information at time t is highly corre 
lated with the CP: when the burst information becomes inau 
dible (white on the AI-gram), /t/ Score decreases, as indicated 
by the ellipses. 
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FIG. 4(b) shows simplified analysis of sound /te/spoken by 

male talker 112 in speech-weighted noise. Unlike the case of 
m117te, this utterance is robust to speech-weighted nose and 
identified down to -16 dB SNR. Again, the burst information 
displayed on the event-gram (top right) is related to the CP 
accounting for the robustness of consonant /t/ according to 
Some embodiments of the present invention. 

3.2.1 Step 1: CP and Robustness 
In one embodiment, step 1 of our four-step analysis 

includes the collection of confusion patterns, as described in 
the previous section. Similar observations can be made when 
examining the bottom right panels of FIGS. 4(a) and 4(b). 

For male talker 117 speaking /te/ (FIG. 4(a), bottom right 
panel), the saturation threshold is s–6 dB SNR forming a /p/, 
/t/, /k/ confusion group, whereas SNR is at s–20 dB SNR for 
talker 112 (FIG. 4(b), bottom right panel). This weaker /t/ 
morphs to /p/ (FIG. 4(a)), the recognition of /p/ is maximum 
(P=60%)atan SNR of-16 dB, where the score for /t/ is 6%, 
after the start of decrease (ellipsed). Morphing not only 
occurs in white noise (FIG. 3) but also in speech-weighted 
noise for this weaker /te/ Sound. Confusion patterns and 
robustness vary dramatically across utterances of a given CV 
masked by the same noise: unlike for talker m117, /te/spoken 
by talker m112 does not morph to /p/ or /k/, and its score is 
higher (FIG. 4(b), bottom right panel). For this utterance, /t/ 
(solid line) was accurately identified down to -18 dB SNR 
(encircled), and was still well above chance performance 
(/16) at -22 dB. Its main competitors /d/ and /k/ have lower 
score, and only appear at -18 dB SNR. 

It is clear that these two /te? sounds are dramatically dif 
ferent. Such utterance differences may be determined by the 
addition of masking noise. There is confusion pattern vari 
ability not only across noise spectra, but also within a mask 
ing noise category (e.g., WN vs. SWN). These two /te/s are an 
example of utterance variability, as shown by the analysis of 
Step 1: two sounds are heard as the same in quiet, but they are 
heard differently as the noise intensity is increased. The next 
section will detail the physical properties of consonant /t/ in 
order to relate spectro-temporal features to the score using 
our audibility model. 

3.2.2 Step 2 and 3: Utilization of a Perceptual Model 
For talker 117, FIG. 4(a) (top left panel) at 0 dB SNR, we 

observe that the high-frequency burst, having a sharp energy 
onset, stretches from 2.8 kHz to 7.4 kHz, and runs in time 
from 16-18 cs (a duration of 20 ms). According to the CP 
previously discussed (FIG. 4(a), bottom right panel), at 0 dB 
SNR consonant /t/ is recognized 88% of the time. The burst 
for talker 112 has higher intensity and spreads from 3 kHzup, 
as shown of the AI-gram for this utterance (FIG. 4(b), top left 
panel), which results in a 100% recognition at and above 
about -10 dB SNR. 

These observations lead us to Step 3, the integration of the 
AI-gram over frequency (bottom right panels of FIGS. 4(a) 
and (b)) according to certain embodiments of the present 
invention. For example, one obtains a representation of the 
average audible speech information over a particular fre 
quency range Afas a function of time, denoted the short-time 
AI, ai(t). The traditional AI is the area under the overall 
frequency range curve at time t. In this particular case, ai(t) is 
computed in the 2-8 kHz bands, corresponding to the high 
frequency /t/ burst of noise. The first maximum, ai(t) (verti 
cal dashed line on the top and bottom left panels of FIGS. 4(a) 
and 4(b)), is an indicator of the audibility of the consonant. 
The frequency content has been collapsed, and t indicates 
the time of the relevant perceptual information for /t/. 
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3.2.3 Step 4: The Event-gram 
The identification of t allows Step 4 of our correlation 

analysis according to some embodiments of the present 
invention. For example, the top right panels of FIGS. 4(a) and 
(b) represent the event-grams for the two utterances. The 
event-gram, AI (t. X, SNR), is defined as a cochlear place (or 
frequency, via Greenwood's cochlear map) versus SNR slice 
at one instant of time. The event-gram is, for example, the link 
between the CP and the AI-gram. The event-gram represents 
the AI density as a function of SNR, at a given time t (here 
previously determined in Step 3) according to an embodiment 
of the present invention. For example, if several AI-grams 
were stacked on top of each other, at different SNRs, the 
event-gram can be viewed as a vertical slice through Such a 
stack. Namely, the event-grams displayed in the top right 
panels of FIGS. 4(a) and (b) are plotted att, characteristic of 
the ?t/burst. A horizontal dashed line, from the bottom of the 
burst on the AI-gram, to the bottom of the burst on the event 
gram at SNR=0 dB, establishes, for example, a visual link 
between the two plots. 

According to an embodiment of the present invention, the 
significant result visible on the event-gram is that for the two 
utterances, the event-gram is correlated with the average nor 
mal listener score, as seen in the circles linked by a double 
arrow. Indeed, for utterance 117te, the recognition of conso 
nant /t/ starts to drop, at -2 dB SNR, when the burst above 3 
kHz is completely masked by the noise (top right panel of 
FIG.4(a)). On the event-gram, below -2dB SNR (circle), one 
can note that the energy of the burst at t decreases, and the 
burst becomes inaudible (white). A similar relation is seen for 
utterance 112, but since the energy of the burst is much higher, 
the /t/ recognition only starts to fall at -15 dB SNR, at which 
point the energy above 3 kHZ become sparse and decreases, as 
seen in the top right panel of FIG. 4(b) and highlighted by the 
circles. A systematic quantification of this correlation for a 
large numbers of consonants will be described in the next 
section. 

According to an embodiment of the present invention, 
there is a correlation in this example between the variable /t/ 
confusions and the score for /t/ (step 1, bottom right panel of 
FIGS. 4(a) and (b)), the strength of the /t/ burst in the AI-gram 
(step 2, top left panels), the short-time AI value (step 3, 
bottom left panels), all quantifying the event-gram (step 4, top 
right panels). This relation generalizes to numerous other /t/ 
examples and has been here demonstrated for two ?te/sounds. 
Because these panels are correlated with the human score, the 
burst constitutes our model of the perceptual cue, the event, 
upon which listeners rely to identify consonant /t/ in noise 
according to some embodiments of the present invention. 

In the next section, we analyze the effect of the noise 
spectrum on the perceptual relevance of the /t/burst in noise, 
to account for the differences previously observed across 
noise spectra. 

3.3 Discussion 
3.3.1. Effect of the Noise Samples 
FIG. 5 shows simplified diagrams for variance event-gram 

computed by taking event-grams of a ?tol? utterance for 10 
different noise samples in SWN (PAO7) according to an 
embodiment of the present invention. These diagrams are 
merely examples, which should not unduly limit the scope of 
the claims. One of ordinary skill in the art would recognize 
many variations, alternatives, and modifications. We can see 
that all the variance is, for example, located on the edges of 
the audible speech energy, located between regions of high 
audibility and regions of noise. However, the spread is thin, 
showing that the use of different noise samples should not 
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14 
significantly impact perceptual scores according to some 
embodiments of the present invention. 

Specifically, one could wonder about the effect of the vari 
ability of the noise for each presentation on the event-gram. 
At least one of our experiments has been designed such that a 
new noise sample was used for each presentation, so that 
listeners would not hear the same sound mixed with a differ 
ent noise, even if presented at the same SNR. We have ana 
lyzed the variance when using different noise samples having 
the same spectrum. Therefore, we have computed event 
grams for 10 different noise samples, and calculated the vari 
ance as shown on FIG.5 for utterance f(03ta in SWN. We can 
observe that, for certain embodiments of the present inven 
tion, regions of high audibility are white (high SNRs), as well 
as regions where the noise has a strong masking effect (low 
SNRs). The noticeable variance is seen at the limit of audi 
bility. The thickness of the line is a measure of the trial 
variance. Such a small spread of the line indicates that using 
a new noise on every trial is likely not to impact the scores of 
our psychophysical experiment, and the correlation between 
noise and speech is unlikely to add features improving the 
SCOS. 

3.3.2 Relating CP and Audibility for /t/ 
We have collected normal hearing listeners responses to 

nonsense CV sounds in noise and related them to the audible 
speech spectro-temporal information to find the robust-to 
noise features. Several features of CP are defined, such as 
morphing, priming, and utterance heterogeneity in robustness 
according to Some embodiments of the present invention. For 
example, the identification of a saturation threshold SNR, 
located at the 93.75% point is a quantitative measure of an 
utterance robustness in a specific noise spectrum. The natural 
utterance variability, causing utterances of a same phone cat 
egory to behave differently when mixed with noise, could 
now be quantified by this robustness threshold. The existence 
of morphing clearly demonstrates that noise can mask an 
essential feature for the recognition of a Sound, leading to 
consistent confusions among our Subjects. However Such 
morphing is not ubiquitous, as it depends on the type of 
masking noise. Different morphs are observed in various 
noise spectra. Morphing demonstrates that consonants are not 
uniquely characterized by independent features, but that they 
share common cues that are weighted differently in percep 
tual space according to some embodiments of the present 
invention. This conclusion is also supported by CP plots for 
/k/ and /p/ utterances, showing a well defined fp/-/t/-/k/con 
fusion group structure in white noise. Therefore, it appears 
that /t/, /p/ and /k/ share common perceptual features. The /t/ 
event is more easily masked by WN than SWN, and the usual 
/k/-/p/ confusion for /t/ in WN demonstrates that when the /t/ 
burst is masked the remaining features are shared by all three 
voiceless stop consonants. When the primary /t/ event is 
masked at high SNRs in SWN (as exampled in FIG.4(a)), we 
do not see Such strong /p/-/t/-/k/ confusion group. It is likely 
that the common features shared by this group are masked by 
speech weighted noise, due to their localization in frequency, 
whereas the /t/ burst itself is usually robust in SWN. For 
hearing impaired Subjects with an increased sensitivity to 
noise (called an SNR-loss, when an ear needs a larger SNR for 
the same speech score), their score for utterance m112te 
should typically be higher than that of utterance m117te, at a 
given SNR. We shall show in section 4 that this common 
feature hypothesis is also supported by temporal truncation 
experiments. It is shown that confusions take place when the 
acoustic features for the primary /t/ event are inaudible, due to 
noise or truncation, and that the remaining cues are part of 
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what perceptually characterizes competitors /p/ and /k/. 
according to certain embodiments of the present invention. 

Using a four-step method analysis, we have found that the 
discrimination of /t/ from its competitors is due to the robust 
ness of /t/ event, the sharp onset burst being its physical 
representation. For example, robustness and CP are not utter 
ance dependant. Each instance of the /t/ event presents differ 
ent characteristics. In one embodiment, the event itself is 
invariant for each consonant, as seen on FIG. 4. For example, 
we have found a single relation between the masking of the 
burst on the event-gram and human responses, independent of 
noise spectrum. White noise more actively masks high fre 
quencies, accounting for the decrease of the /t/ at high SNRs 
recognition as compared to speech-weighted noise. Once the 
burst is masked, the /t/ score drops below 100%. This supports 
that the acoustic representations in the physical domain of the 
perceptual features are not invariant, but that the perceptual 
features themselves (events) remain invariant, since they 
characterize the robustness of a given consonant in the per 
ceptual domain according to certain embodiments. For 
example, we want to verify here that the burst accounts for the 
robustness of /t/, therefore being the physical representation 
of what perceptually characterizes /t/ (the event), and having 
various physical properties across utterances. The unknown 
mapping from acoustics to event space is at least part of what 
we have demonstrated in our research. 

FIG. 6 shows simplified diagrams for correlation between 
perceptual and physical domains according to an embodi 
ment of the present invention. These diagrams are merely 
examples, which should not unduly limit the scope of the 
claims. One of ordinary skill in the art would recognize many 
variations, alternatives, and modifications. 

FIG. 6(a) is a scatter plot of the event-gram thresholds 
SNR above 2 kHz, computed for the optimal burst bandwidth 
B, having an AI density greater than the optimal threshold T. 
compared to the SNR of 90% score. Utterances in SWN (+) 
are more robust than in WN (o), accounting for the large 
spread in SNR. We can see that most utterances are close from 
the 45-degree line, showing the high correlation between the 
AI-gram audibility model (middle pane), and the event-gram 
(right pane) according an embodiment. The detection of the 
event-gram threshold, SNR, is shown on the event gram in 
SWN (top pane of FIG. 6(b)) and WN (top pane of FIG. 6(c)), 
between the two horizontal lines, for f106ta, and placed 
above their corresponding CP. SNR is located at the lowest 
SNR where there is continuous energy above 2 kHz, spread in 
frequency with a width of Babove AI threshold T. We can 
notice the effect of the noise spectrum on the event-gram, 
accounting for the difference in robustness between WN and 
SWN. 

Specifically, in order to further quantify the correlation 
between the audible speech information as displayed on the 
event-gram, and the perceptual information given by our lis 
teners in a quantitative manner, we have correlated event 
gram thresholds, denoted SNR, with the 90% score SNR, 
denoted SNR(P=90%). The event-gram thresholds are com 
puted above 2 kHz, for a given set of parameters: the band 
width, B, and AI density threshold T. For example, the thresh 
old correspond to the lowest SNR at which there is continuous 
speech information above threshold T. and spread out in fre 
quency with bandwidth B, assumed to be relevant for the /t/ 
recognition as observed using the four-step method. Such 
correlations are shown in FIG. 6(a), and have been obtained 
for a different set of optimal parameters (computing by mini 
mizing the mean square error) in the two experiments, show 
ing that the optimized parameters depend on the noise spec 
trum. Optimized parameters are B 570 Hz in SWN, for T 
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0.335, and B=450 Hz for T 0.125 in WN. Bandwidths have 
been tested as low as 5 Hz steps when close to the minimum 
mean square error, and thresholds in steps of 0.005. The 14/C/ 
utterances in PAO7 are present in MN05, therefore each sound 
common to both experiments appears twice on the scatter 
plot. Scatters for MN05 (in WN), are at higher SNRs than for 
PA07 (in SWN), due to the strong masking of the /t/ burst in 
white noise, leading to higher SNR and SNR(P=90%). We 
can see that most utterances are close from the 45-degree line, 
proving that our AI-gram audibility model, and the event 
gram are a good predictor of the average normal listener 
score, demonstrated at least here in the case of /t/. The 120 Hz 
difference between optimal bandwidths for WN and SWN 
does not seem to be significant. Additionally, an intermediate 
value for both noise spectra can be identified. 

For example, the difference in optimal AI thresholds T is 
likely due to the spectral emphasis of the each noise. The 
lower value obtained in WN could also be the result of other 
cues at lower frequencies, contributing to the score when the 
burst get weak. However, it is likely that applying T for WN 
in the SWN case would only lead to a decrease in SNR of a 
few dB. Additionally, the optimal parameters may be identi 
fied to fully characterize the correlation between the scores 
and the event-gram model. 
As an example, FIG. 6(b) shows an event-gram in SWN, 

for utterance f106ta, with the optimal bandwidth between the 
two horizontal lines leading to the identification of SNR. 
Below are the CP, where SNR (P=90%)=-10 dB is noted 
(thresholds are chosen in 1 dB steps, and the closest SNR 
integer above 90% is chosen). FIG. 6 (c) shows event-gram 
and CP for the same utterance in WN. The points correspond 
ing to utterance f106ta are noted by arrows. Regardless of the 
noise type, we can see on the event-grams the relation 
between the audibility of the 2-8 kHz range at t (in dark) and 
the correct recognition of /t/, even if thresholds are lower in 
SWN than WN. More specifically, the strong masking of 
white noise at high frequencies accounts for the early loss of 
the /t/ audibility as compared to speech-weighted noise, hav 
ing a weaker masking effect in this range. We can conclude 
that the burst, as an high-frequency coinciding onset, is the 
main event accounting for the robustness of consonant /t/ 
independently of the noise spectrum according to an embodi 
ment of the present invention. For example, it presents differ 
ent physical properties depending on the masker spectrum, 
but its audibility is strongly related to human responses in 
both cases. 
To further verify the conclusions of the four-step method 

regarding the /t/ burst event, we have run a psychophysical 
experiment where the /t/ burst would be truncated, and study 
the resulting responses, under less noisy conditions. We 
hypothesize that since the /t/ burst is the most robust-to-noise 
event, it is the strongest feature cueing the ?t/percept, even at 
higher SNRs. The truncation experiment will therefore 
remove this crucial ft/ information. 

4. Truncation Experiment 
We have strengthened our conclusions drawn from FIG. 4 

based on a confusion patterns and the event-gram analysis. 
We have truncated CV sounds in 5 ms steps and studied the 
resulting morphs. At least one of our goals is to answer a 
fundamental research question raised by the four-step analy 
sis of /t/: can the truncation of /t/ cause a morph to /p/, 
implying that the /t/ event is prefixed to consonant /p/, and 
therefore that they share common features? This conclusion 
would be in agreement with our observation that some /t/ 
strongly morph to /p/ when the energy at high frequencies 
around t is masked by the noise. 
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4.1 Methods 
Two SNR conditions, 0 and 12 dB SNR, were used in 

SWN. The noise spectrum was the same as used in PA07. The 
listeners could choose among 22 possible consonants 
responses. The Subjects did not express a need to add more 
response choices. Ten Subjects participated in the experiment. 

4.1.1 Stimuli 
The tested CVs were, for example, ?to/, /pCi/, /sC/, /ZO/, and 

(?ou? from different talkers for a total of 60 utterances. The 
beginning of the consonant and the beginning of the Vowel 
were hand labeled. The truncations were generated every 5 
ms, including a no-truncation condition and a total truncation 
condition. One half second of noise was prepended to the 
truncated CVs. The truncation was ramped with a Hamming 
window of 5 ms, to avoid artifacts due an abrupt onset. We 
report /t/ results here as an example. 

4.2 Results 
An important conclusion of the ?to/truncation experiment 

is the strong morph obtained for all of our stimuli, when less 
than 30 ms of the burst are truncated. Truncation times are 
relative to the onset of the consonant. When presented with 
our truncated ?to/ Sounds, listeners reported hearing mostly 
/p/. Some other competitors, such as /k/ or /h/ were occasion 
ally reported, but with much lower average scores than /p/. 
Two main trends can be observed. Four out of ten utter 

ances followed a hierarchical /t/ /p/ /b/ morphing pattern, 
denoted group 1. The consonant was first identified as /t/ for 
truncation times less than 30 ms, then /p/ was reported over a 
period spreading from 30 ms to 11.0 ms (an extreme case), to 
finally being reported as /b/. Results for group 1 are shown in 
FIG. 7. 

FIG. 7 shows simplified typical utterances from group 1. 
which morph from /t/-/p/-/b/according to an embodiment of 
the present invention. These diagrams are merely examples, 
which should not unduly limit the scope of the claims. One of 
ordinary skill in the art would recognize many variations, 
alternatives, and modifications. For each panel, the top plot 
represents responses at 12 dB, and the lower at 0 dB SNR. 
There is no significant SNR effect for sounds of group 1. 

According to one embodiment, FIG. 7 shows the nature of 
the confusions when the utterances, described in the titles of 
the panels, are truncated from the start of the sounds. This 
confirms the nature of the events locations in time, and con 
firms the event-gram analysis of FIG. 6. According to another 
embodiment, as shown in FIG. 7, there is significant variabil 
ity in the cross-over truncation times, corresponding to the 
time at which the target and the morph scores overlap. For 
example, this is due to the natural variability in the /t/ burst 
duration. The change in SNR from 12 to 0 dB had little impact 
on the scores, as discussed below. In another example, the 
second trend can be defined as utterances that morph to /p/, 
but are also confused with /h/ or /k/. Five out often utterances 
are in this group, denoted Group 2, and are shown in FIGS. 8 
and 9. 

FIG. 8 shows simplified typical utterances from group 2 
according to an embodiment of the present invention. These 
diagrams are merely examples, which should not unduly limit 
the scope of the claims. One of ordinary skill in the art would 
recognize many variations, alternatives, and modifications. 
Consonant /h/strongly competes with /p/ (top), along with /k/ 
(bottom). For the top right and left panels, increasing the 
noise to 0 dB SNR causes an increase in the ?h/confusion in 
the fp? morph range. For the two bottom utterances, decreas 
ing the SNR causes a /k/ confusion that was nonexistent at 12 
dB, equating the scores for competitors /k/ and /h/. 

FIG.9 shows simplified truncation off113ta at 12 (top) and 
0 dB SNR (bottom) according to an embodiment of the 
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present invention. These diagrams are merely examples, 
which should not unduly limit the scope of the claims. One of 
ordinary skill in the art would recognize many variations, 
alternatives, and modifications. Consonant /t/ morphs to /p/, 
which is slightly confused with /h/. There is no significant 
SNR effect. 
As shown in FIGS. 8 and 9, the /h/ confusion is represented 

by a dashed line, and is stronger for the two top utterances, 
m102ta and m104ta (FIGS. 8(a) and (b)). A decrease in SNR 
from 12 to 0 dB caused a small increase in the ?hi score, 
almost bringing scores to chance performance (e.g. 50%) 
between those two consonants for the top two utterances. The 
two lower panels show results for talkers m107 and m117, a 
decrease in SNR causes a /k/ confusion as strong as the /h/ 
confusion, which differs from the 12 dB case where competi 
tor /k/ was not reported. Finally, the truncation of utterance 
f113ta (FIG. 9) shows a weak/h/ confusion to the /p/ morph, 
not significantly affected by an SNR change. 
A noticeable difference between group 2 and group 1 is the 

absence of /b/ as a strong competitor. According to certain 
embodiment, this discrepancy can be due to a lack of greater 
truncation conditions. Utterances m104ta, m117ta (FIGS. 
8(b) and (d) show weak /b/ confusions at the last truncation 
time tested. 
We notice that both for group 1 and 2 the onset of the 

decrease of the /t/ recognition varies with increased SNR. In 
the 0 dB case, the score for /t/ drops 5 ms earlier than in the 12 
dB case in most cases. This can be attributed to, for example, 
the masking of each side of the burst energy, making them 
inaudible, and impossible to be used as a strong onset cue. 
This energy is weaker than around t, where the /t/ burst 
energy has its maximum. One dramatic example of this SNR 
effect is shown in FIG. 7(d). 
The pattern for the truncation of utterance m120ta was 

different from the other 9 utterances included in the experi 
ment. First, the score for /t/ did not decrease significantly after 
30 ms of truncation. Second, /k/ confusions were present at 12 
but not at 0 dB SNR, causing the /p/score to reach 100% only 
at 0 dB. Third, the effect of SNR was stronger. 

FIGS. 10(a) and (b) show simplified AI-grams of m120ta, 
Zoomed on the consonant and transition part, at 12 dB SNR 
and 0 dB SNR respectively according to an embodiment of 
the present invention. These diagrams are merely examples, 
which should not unduly limit the scope of the claims. One of 
ordinary skill in the art would recognize many variations, 
alternatives, and modifications. Below each AI-gram and 
time aligned are plotted the responses of our listeners to the 
truncation of /t/. Unlike other utterances, theft? identification 
is still high after 30 ms of truncation due to remaining high 
frequency energy. The target probability even overcomes the 
score for /p/ at 0 dB SNR at a truncation time of 55 ms, most 
likely because of a strong relative /p/ event present at 12 dB, 
but weaker at 0 dB. 
From FIG. 10, we can see that the burst is very strong for 

about 35 ms, for both SNRs, which accounts for the high /t/ 
recognition in this range. For truncation times greater than 35 
ms, /t/ is still identified with an average probability of 30%. 
According to one embodiment, this effect, contrary to other 
utterances, is due to the high levels of high frequency energy 
following the burst, which by truncation is cued as a coincid 
ing onset of energy in the frequency range corresponding to 
that of theft? event, and which duration is close to the natural 
ft/burst duration. It is weaker than the original strong onset 
burst, explaining the lower /t/ Score. A score inversion takes 
place at 55 ms at 0 dBSNR, but does not occurat 12dB SNR, 
where the score for /p/ overcomes that of /t/. This /t/ peak is 
also weakly visible at 12 dB (left). One explanation is that a 
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/p/ event is overcoming the /t/ weak burst event. In one 
embodiment, there is some mid frequency energy, most likely 
around 0.7 kHz, cueing /p/ at 12 dB, but being masked at 0 dB 
SNR, enabling the relative /t/ recognition to rise again. This 
utterance therefore has a behavior similar to that of the other 
utterances, at least for the first 30 ms of truncation. According 
to one embodiment, the different pattern observed for later 
truncation times is an additional demonstration of utterance 
heterogeneity, but can nonetheless be explained without vio 
lating our across-frequency onset burst event principle. 
We have concluded from the CV-truncation data that the 

consonant duration is a timing cue used by listeners to distin 
guish /t/ from /p/, depending on the natural duration of the /t/ 
burst according to certain embodiments of the present inven 
tion. Moreover, additional results from the truncation experi 
ment show that natural/pa/utterances morph into (bo/, which 
is consistent with the idea of a hierarchy of speech Sounds, 
clearly present in our ?tol? example, especially for group 1. 
according to some embodiments of the present invention. 
Using such a truncation procedure we have independently 
verified that the high frequency burst accounts for the noise 
robust event corresponding to the discrimination between /t/ 
and /p/, even in moderate noisy conditions. 

Thus, we confirm that our approach of adding noise to 
identify the most robust and therefore crucial perceptual 
information, enables us to identify the primary feature 
responsible for the correct recognition of /t/ according to 
certain embodiments of the present invention. 

4.3 Analysis 
The results of our truncation experiment found that the /t/ 

recognition drops in 90% of our stimuli after 30 ms. This is in 
strong agreement with the analysis of the AI-gram and event 
gram emphasized by our four-step analysis. Additionally, this 
also reinforce that across-frequency coincidence, across a 
specific frequency range, plays a major role in the /t/ recog 
nition, according to an embodiment of the present invention. 
For example, it seems assured that the leading-edge of the /t/ 
burst is used across SNR by our listeners to identify /t/ even in 
Small amounts of noise. 

Moreover, the /p/ morph that consistently occurs when the 
ft/burst is truncated shows that consonants are not indepen 
dent in the perceptual domain, but that they share common 
cues according to some embodiments of the present inven 
tion. The additional results that truncated /p/ utterances 
morph to /b/ (not shown) strengthen this hierarchical view, 
and leads to the possibility of the existence of “root” conso 
nants. Consonant /p/ could be thought as a voiceless stop 
consonant root containing raw but important spectro-tempo 
ral information, to which primary robust-to-noise cues can be 
added to form consonant of a same confusion group. We have 
demonstrated here that ?t/ may share common cues with /p/, 
revealed by both masking and truncation of the primary /t/ 
event, according to some embodiments of the present inven 
tion. When CVs are mixed with masking noise, morphing, 
and also priming, are strong empirical observations that Sup 
port this conclusion, showing this natural event overlap 
between consonants of a same category, often belonging to 
the same confusion group. 

The important relevance of the /t/ burst in the consonant 
identification can be further verified by an experiment con 
trolling the spectro-temporal region of truncation, instead of 
exclusively focusing on the temporal aspect. Indeed, in this 
experiment, all frequency components of the burst are 
removed, which is therefore in agreement with our analysis 
but does not exclude this existence of low frequency cues, 
especially at high SNRs. Additionally work can verify that the 
/t/ recognition significantly drops when about 30 ms of the 
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above 2 kHz burst region is removed. Such an experiment 
would further prove that this high frequency /t/ event is not 
only sufficient, but also necessary, to identify /t/ in noise. 

5. Extension to other Sounds 
The overall approach has taken aims at directly relating the 

AI-gram, a generalization of the AI and our model of speech 
audibility in noise, to the confusion pattern discrimination 
measure for several consonants. This approach represents a 
significant contribution toward Solving the speech robustness 
problem, as it has successfully led to the identification of 
several consonant events. Theft? event is common across CVS 
starting with /t/, even if its physical properties vary across 
utterances, leading to different levels of robustness to noise. 
The correlation we have observed between event-gram 
thresholds and 90% scores fully confirms this hypothesis in a 
systematic manner across utterances of our database, without 
however ruling out the existence of other cues (such as for 
mants), that would be more easily masked by SWN than WN. 
The truncation experiment, described above, leads to the 

concept of a possible hierarchy of consonants. It confirms the 
hypothesis that consonants from a confusion group share 
common events, and that the /t/burst is the primary feature for 
the identification of fit? even in small amounts of noise. Pri 
mary events, along with a shared base of perceptual features, 
are used to discriminate consonants, and characterize the 
consonant's degree of robustness. 
A verification experiment naturally follows from this 

analysis to more completely study the impact of a specific 
truncation, combined with band pass filtering, removing spe 
cifically the high frequency /t/ burst. Our strategy would be to 
further investigate the responses of modified CV syllables 
from many talkers that have been modified using the Short 
Time Fourier transform analysis synthesis, to demonstrate 
further the impact of modifying the acoustic correlates of 
events. The implications of Such event characterization are 
multiple. The identification of SNP loss consonant profiles, 
quantifying hearing impaired losses on a consonant basis, 
could be an application of event identification; a specifically 
tuned hearing aid could extract these cues and amplify them 
on a listener basis resulting in a great improvement of speech 
identification in noisy environments. 

According to certain embodiments, normal hearing listen 
ers responses is related to nonsense CV Sounds (confusion 
patterns) presented in speech-weighted noise and white 
noise, with the audible speech information using an articula 
tion-index spectro-temporal model (AI-gram). Several obser 
Vations, such as the existence of morphing, or natural robust 
ness utterance variability are derived from the analysis of 
confusion patterns. Then, the studies emphasize a strong cor 
relation between the noise robustness of consonant ft/ and the 
its 2-8 kHz noise burst, which characterizes the /t/ primary 
event (noise-robust feature). Finally, a truncation experiment, 
removing the burst in low noise conditions, confirms the loss 
of /t/ recognition when as low as 30 ms of burst are removed. 
Relating confusion patterns with the audible speech informa 
tion visible on the AI-gram seems to be a valuable approach to 
under-stand speech robustness and confusions. The method 
can be extended to other sounds. 

For example, the method may be extended to an analysis of 
the /k/ event. FIG. 15 shows the AIgram response for a female 
talker f103 speaking ?ka/presented at 0 dB SNR in speech 
weighted noise (SWN) and having an added noise level of -2 
dB SNR, and the associated confusion pattern (lower panel) 
according to an embodiment of the invention. FIG.16 shows 
an AIgram for the same sound at 0db SNR and the associated 
confusion pattern according to an embodiment of the inven 
tion. It can be seen that the human recognition score for the 
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two Sounds for these conditions is the score is nearly perfect 
at 0 dB SNR. The sound in FIG. 15 starts being confused with 
/pa/ at -10 dB SNR while the sound in FIG. 16 is also heard 
as ?pa/at and below -6 dB SNR. In each drawing, the dashed 
vertical line shows the SNR threshold, called the confusion 
threshold, where the scores begin to drop. This threshold is 
just below -2 dB for SWN, and 0 dB in white noise (WN). 
When adding white noise, almost all the information above 2 
kHz is masked once the SNR reaches 0 dB, as seen in the 
AIgram in FIG.16 compared to that shown in FIG. 15. Speech 
weighted noise does not mask the speech at -2 dB SNR even 
at the highest shown frequency of 7.4 kHz. 

Each of the confusion patterns in FIGS. 15-16 shows a plot 
of a row of the confusion matrix for ?ka/, as a function of the 
SNR. Because of the large difference in the masking noise 
above 1 kHz, the perception is very different. In FIG. 15, /k/ 
is the most likely reported sound, even at-16 dB SNR, where 
it is reported 65% of the time, with /p/ reported 35% of the 
time. 
When /k/ is masked by white noise, a very different story is 

found. At and above the confusion threshold at 0 dB SNR, the 
subjects reported hearing /k/. However starting at-6 dB SNR 
the subjects reported hearing /p/ 45% of the time, /ka/35% of 
the time, and ?taf about 15% of the time. At -12 dB the sound 
is reported as /p/, /k/ /f/ and /t/, as shown on the CP chart. At 
lower SNRs other sounds are even reported such as /m/, /n/ 
and /v/. Starting at 15 dB SNR, the sound is frequently not 
identified, as shown by the symbol “k-?”. 
As previously described, when a non-target Sound is 

reported with greater probability than the target sound, the 
reported Sound may be referred to as a morph. Frequently, 
depending on the probabilities, a listener may prime near the 
crossoverpoint where the two probabilities are similar. When 
presented with a random presentation, as is done in an experi 
ment, subjects will hear the sounds with probabilities that 
define the strength of the prime. 

FIGS. 17A-17C show AI-grams for speech modified by 
removing three patches in the time-frequency spectrum, as 
shown by the shaded rectangular regions. There are eight 
possible configurations for three patches. When just the lower 
square is removed in the region of 1.4 kHz, the percept of /ka/ 
is removed, and people report (i.e., prime) /pa/ or ?ta?, similar 
to the case of white masking noise of FIGS. 15-16 at-6 dB 
SNR. 
As previously described, such ambiguous conditions may 

be referred to as primes since a listener may simply “think” of 
one of these three sounds, and that is the one they will “hear.” 
Under this condition, many people are able to prime. The 
conditions of priming can be complex, and can depend on the 
state of the listener's cochlea and auditory system. 
When the mid-frequency and the first high frequency patch 

is removed, as shown in FIG. 17A, the sound/pa/ is robustly 
reported. When the short duration residual /t/ burst above 2 
kHz is removed, the Sound no longer primes and /p/ is 
robustly heard. When the second high frequency longer dura 
tion patch shown in the middle panel is removed, the high 
frequency short duration /t/ burst remains, and the Sound is 
reported as ?ta/. Finally when both high frequency patches are 
removed, as shown in FIG. 17C, /fa/ is reported. If the low 
frequency /k/ burst is left on, and either or both of the high 
frequency patches is either on or off /kaf is heard. 

Thus we conclude that the presence of the 1.4 kHz burst 
both triggers the /k/report, and renders the /t/ and /p/ bursts 
either inaudible, via the upward spread of masking (“USM.' 
defined as the effect of a low frequency sound reducing the 
magnitude of a higher frequency Sound), or irrelevant, via 
Some neural signal processing mechanism. It is believed that 
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the existence of a USM effect may make high frequency 
Sounds unreliable when present with certain low frequency 
Sounds. The auditory system, knowing this, would thus learn 
to ignore these higher frequency Sounds under these certain 
conditions. 

It has also been found that the consonants /ba/, /da/and/ga? 
are very close to ?pa/, /ta/, /ka/. The main difference is the 
delay between the burst release and the start of the sonerate 
portion of the speech sound. For example, FIG. 18B shows a 
fola? Sound in top panel. The high frequency burst is similar to 
the /t/ burst of FIG. 17B, and as more fully described by 
Regnier and Allen (2007), just as a /t/ may be converted to a 
/k/ by adding a mid-frequency burst, the fa/ Sound may be 
converted to /g/ using the same method. This is shown in FIG. 
18B (top panel). By scaling up the low-level noise to become 
an audible mid-frequency burst, the natural ?claf is heard as 
/ga/. In the lower two panels of FIGS. 18A-B, a progression 
from a natural /ga? (FIG. 18B, lower panel) to a /da/ (FIG. 
18A, lower panel) is shown. As with ?ka/, when a low fre 
quency burst is added to the speech, the high frequency burst 
can become masked. This is easily shown by comparisons of 
the real or synthetic /ka/ or /ga?, with and with the 2-8 kHz/ta/ 
or fola? burst removed. 

Under some conditions when the mid-frequency boost is 
removed there is insufficient high-frequency energy for the 
labeling of a /d/. FIGS. 19 A-B show such a case, where the 
mid-frequency burst was removed from the natural ga? and 
/Tha/ or /Da? was heard. A 12 dB boost of the 4 kHz region 
was sufficient to convert this sound to the desired fola?. FIG. 
19A shows the unmodified AI-gram. FIG. 19B shows the 
modified sound with the removed mid-frequency burst 1910 
in the 1 kHz region, and the added expected high-frequency 
burst 1920 at 4 kHz, which comes on at the same time as the 
vocalic part of the speech. FIG. 19A includes the same 
regions as identified in FIG. 19B for reference. 
A similar relationship has been identified for the high con 

fusions between /m/ and /n/. In this case the distinction is 
related to a mid-frequency timing distinction. This is best 
described using an example, as shown in FIG. 20. The top left 
panel shows the AIgram of ?ma/spoken by female talker 105, 
at 0 dB SNR. The lower left panel shows the AIgram of the 
same talker for /na/, again at 0 dB SNR. In both cases the 
masker is SWN. For the case of/m/ as the lips open, the sound 
is abruptly released, whereas for the case of /n/, as the tongue 
leaves the soft pallet (velum), the length of the vocal tract 
changes over a time-span of some 10 ms, causing the resonant 
Vocal tract frequencies (formants) to change with time. This 
induces a time delay in the mid frequency range, at 1 kHz in 
this example. It has been found that that a major noise-robust 
cue for the distinction between ?m/ and /n/ is this mid-fre 
quency timing difference. When a delay is artificially intro 
duced at 1 kHz, the /m/ is heard as /n/, and when the delay is 
removed either by truncation or by filling in the onset, the /n/ 
is heard as /m/. The introduction of the 1 kHz delay is created 
by Zeroing the shaded region 2010 in the upper-right panel. To 
remove the delay, the sound was Zeroed as shown by the 
shaded region 2020 in the lower right. In this case it was 
necessary to give a 14 dB boost in the small patch 2030 at 1 
kHz. Without this boost, the onset was not well defined and 
the sound was not widely heard as /m/. With the boost, a 
natural /m/ is robustly heard. 

Other relationships may be identified. For example, FIG. 
21 shows modified and unmodified AI-grams fora/sha/utter 
ance. In top panel, the F2 forman transition was removed, as 
indicated by the shaded region 2110. In direct comparisons, 
subjects were unable to identify which has the removed for 
mant region relative to the natural sound. In the lower panel, 
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the utterance is sha/. There are four shaded regions corre 
sponding to regions that were removed. When a first region 
from 10-35cs and 2.5-4 kHz is removed, the sound is univer 
sally reported as /sa/. When this bandlimed region is short 
ened from its natural duration of 15-25 cs, down to 26-28 cs, 5 
the sound is reported as either /za/ or /tha/. Finally when the 
three regions are all remove, leaving only a very short burst 
from 30-32cs and 4-5.4 kHz, the sound is heard as fola?. When 
the region around 30 cs, between 1.2-1.5 kHz, is amplified by 
14 dB (again of 5 times), the Sound is usually heard as /ga?. 

6. Feature Detection Using Time and Frequency Measures 
As previously described, speech Sounds may be modeled 

as encoded by discrete time-frequency onsets called features, 
based on analysis of human speech perception data. For 
example, one speech Sound may be more robust than another 
because it has stronger acoustic features. Hearing-impaired 
people may have problems understanding speech because 
they cannot hear the weak sounds whose features are missing 
due to their hearing loss or a masking effect introduced by 20 
non-speech noise. Thus the corrupted speech may be 
enhanced by selectively boosting the acoustic features. 
According to embodiments of the invention, one or more 
features encoding a speech Sound may be detected, described, 
and manipulated to alter the speech sound heard by a listener. 25 
To manipulate speech a quantitative method may be used to 
accurately describe a feature in terms of time and frequency 

According to embodiments of the invention, a systematic 
psychoacoustic method may be utilized to locate features in 
speech sounds. To measure the contribution of multiple fre 
quency bands and different time intervals to the correct rec 
ognition of a certain Sound, the speech stimulus is filtered in 
frequency or truncated in time before being presented to 
normal hearing listeners. Typically, if the feature is removed, 
the recognition score will drop dramatically. 
Two experiments, designated HL07 and TR07, were per 

formed to determine the frequency importance function and 
time importance function. The two experiments are the same 
in all aspects except for the conditions. 40 
HL07 is designed to measure the importance of each fre 

quency band on the perception of consonant Sound. Experi 
mental conditions include 9 low-pass filtering, 9 high-pass 
filtering and 1 full-band used as control condition. The cutoff 
frequencies are chosen such that the middle 6 frequencies for 45 
both high-pass and low-pass filtering overlap each other with 
the width of each band corresponds to an equal distance on the 
basilar membrane. 
TRO7 is designed to measure the start time and end time of 

the feature of initial consonants. Depending on the duration of 
the consonant Sound, the speech stimuli are divided into mul 
tiple non-overlapping frames from the beginning of the Sound 
to the end of the consonant, with the minimum frame width 
being 5 ms. The speech sounds are frontal truncated before 
being presented to the listeners. 

FIGS. 22A-22D show an example of identifying the ?ka/ 
feature by using the afore-mentioned method of measuring 
recognition scores of time-truncated or high/low-pass filtered 
speech. It is found that the recognition score of ?ka/changes 60 
dramatically when t=18 cs and f1.6 kHz, thus indicating the 
position of the ?ka/feature. 
FIG.22A shows an AI-gram of ?ka? (by talker f103) at 12 

dB SNR: FIGS. 22B, 22C, and 22D show recognition scores 
of ?ka/, denoted by S. S., and S, as functions of truncation 65 
time and low/high-pass cutoff frequency, respectively. These 
values are explained in further detail below. 
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Let S, S., and S denote the recognition scores of /ka? as 

a function of truncation time and low/high-pass cutoff fre 
quency respectively. The time importance function is defined 
aS 

IT(t)=s. (1) 

The frequency importance function is defined as 
IF(f)=log(1-se,')-log(1 -si?) for high-pass 

data (2) 

and 

IF, (f)=log(1-s,')-log(1-s,') for low-pass 
data (3) 

where s, and s, denotes the recognition score at the kth 
cutoff frequency. The total frequency importance function is 
the average of IF and IF. 

Based on the time and frequency importance function, the 
feature of the sound can be detected by setting a threshold for 
the two functions. As an example, FIG. 23 shows the time and 
frequency importance functions of/ka? by talker f103. These 
functions can be used to locate the ?ka? feature in the corre 
sponding AI-gram, as shown by the identified region 300. 
Similar analyses may be performed for other utterances and 
corresponding AI-grams. 

According to an embodiment of the invention, the time and 
frequency importance functions for an arbitrary utterance 
may be used to locate the corresponding feature. 

7. Experiments 
A. Subjects 

Nineteen normal hearing subjects were enrolled in the 
experiment, of which 6 male and 12 female listeners finished. 
Except for one subject in her 40s, all the subjects were college 
students in their 20s. The subjects were born in the U.S. with 
their first language being English. All students were paid for 
their participation. IRB approval was attained for the experi 
ment. 
TRO7 
Nineteen normal hearing subjects were enrolled in the 

experiment, of which 4 male and 15 female listeners finished. 
Except for one subject in her 40s, all the subjects were college 
students in their 20s. The subjects were born in the U.S. with 
their first language being English. All students were paid for 
their participation. IRB approval was attained for the experi 
ment. 

B. Speech Stimuli 
HLO7 & TRO7 
In this experiment, we used the 16 nonsense CVs /p, t, k, f, 

T. S. S., b, d, g. V, D, Z, Z. m, n/+ vowel /a/. A Subset of 
wide-band syllables sampled at 16,000 HZ were chosen from 
the LDC-2005S22 corpus. Each CV has 18 talkers. Among 
which only 6 utterances, half male and half female, were 
chosen for the test in order to reduce the total length of the 
experiment. The 6 utterances were selected such that they 
were representative of the speech material in terms of confu 
sion patterns and articulation score based on the results of 
similiar speech perception experiment. The speech Sounds 
were presented to both ears of the subjects at the listener's 
Most Comfortable Level (MCL), within 75-80 dB SPL. 

C. Conditions 
HLO7 
The subjects were tested under 19 filtering conditions, 

including one full-band (250-8000 Hz), nine high-pass and 
nine low-pass conditions. The cut-off frequencies were cal 
culated by using Greenwood inverse function so that the 
full-band frequency range was divided into 12 bands, each 
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has an equal length on the basilar membrane. The cut-off 
frequencies of the high-pass filtering were 6185, 4775, 3678, 
2826, 2164, 1649, 1250, 939, and 697 Hz, with the upper 
limit being fixed at 8000 Hz. The cut-off frequencies of the 
low-pass filtering were 3678, 2826, 2164, 1649, 1250, 939, 
697, 509, and 363 Hz, with the lower-limit being fixed at 250 
HZ. The high-pass and low-pass filtering shared the same 
cut-off frequencies over the middle frequency range that con 
tains most of the speech information. The filters were 6th 
orderelliptical filter with skirts at-60 dB. To make the filtered 
speech Sound more natural, white noise was used to mask the 
stimuli at the signal-to-noise ratio of 12 dB. 
TRO7 
The speech stimuli were frontal truncated before being 

presented to the listeners. For each utterance, the truncation 
starts from the beginning of the consonant and stops at the end 
of the consonant. The truncation times were selected such that 
the duration of the consonant was divided into non-overlap 
ping intervals of 5 or 10 ms, depending on the length of the 
Sound. 

D. Procedure 
HLO7 & TRO7 
The speech perception experiment was conducted in a 

sound-proof booth. Matlab was used for the collection of the 
data. Speech stimuli were presented to the listeners through 
Sennheisser HD 280-pro headphones. Subjects responded by 
clicking on the button labeled with the CV that they thought 
they heard. In case the speech was completely masked by the 
noise, or the processed token didn't sound like any of the 16 
consonants, the Subjects were instructed to click on the 
“Noise Only” button. The 2208 tokens were randomized and 
divided into 16 sessions, each lasts for about 15 mins. A 
mandatory practice session of 60 tokens was given at the 
beginning of the experiment. To prevent fatigue the Subjects 
were instructed to take frequent breaks. The subjects were 
allowed to play each token for up to 3 times. At the end of each 
session, the Subjects test score, together with the average 
score of all listeners, were shown to the listener for feedback 
of their relative progress. 

Examples of feature identification according to an embodi 
ment of the invention are shown in FIGS. 24-26, which illus 
trate feature identification of ?pa/, /ta/, and /ka/, respectively. 
FIGS. 27-29 show the confusion patterns for the three sounds. 
As shown, the ?pa? feature (0.6 kHz, 3.8 kHz) is in the 
middle-low frequency, the ?ta/feature (3.8 kHz, 6.2 kHz) is 
in the high frequency, and the ?ka/feature (1.3 kHz, 2.2 kHz) 
is in the middle frequency. Further, when the ?taf feature is 
destroyed by LPF, it morphs to ?ka, pa? and when the ?ka/ 
feature is destroyed by LPF, it morphs to /pa/. 

Additional examples of feature identification according to 
an embodiment of the invention are shown in FIGS. 30-32, 
which illustrate feature identification of /ba/, /da/, and /ga?, 
respectively. FIGS. 33-35 show the associated confusion pat 
terns. The /ba/feature (0.4 kHz, 2.2 kHz) is in the middle 
low frequency, the /da/feature (2.0 kHz, 5.0 kHz) is in the 
high frequency, and the /ga? feature (1.2 kHz, 1.8 kHz) is in 
the middle frequency. When the /ga? feature is destroyed by 
LPF, it morphs to /da/, and when /da/feature is destroyed by 
LPF, it morphs to /ba/. 

Additional examples of AI-grams and the corresponding 
truncation and hi-lo data are shown in FIGS. 49-64, which 
show AI-grams for ?pa/, /ta/, /ka/, /fa/, /Ta/, /sa/, /Sa/, /baf, 
fola, ga/, /va/, /Da/, /Za/, /Za/, /ma/, and final for several 
speakers. Results and techniques such as those illustrated in 
FIGS. 24-35 and 49-64 can be used to identify and isolate 
features in speech Sounds. According to embodiments of the 
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invention, the features can then be further manipulated. Such 
as by removing, altering, or amplifying the features to adjust 
a speech Sound. 
The data and conclusions described above may be used to 

modify detected or recorded Sounds, and Such modification 
may be matched to specific requirements of a listeneror group 
of listeners. As an example, experiments were conducted in 
conjunction with a hearing impaired (HI) listener who has a 
bilateral moderate-to-severe hearing loss and a cochlear dead 
region around 2-3 kHz in the left ear. A speech study indicated 
that the listener has difficulty hearing /ka/ and ga?, two 
Sounds characterized by a small mid-frequency onset, in both 
ears. Notably, NAL-R techniques have no effect for these two 
COnSOnantS. 

Using the knowledge obtained by the above feature analy 
sis method, “super ?ka/s and fga?s were created in which a 
critical feature of the sound is boosted while an interfering 
feature is removed or reduced. FIGS. 36A-B show AI-grams 
of the generated ?ka/s and /ga/s. The critical features for ?ka/ 
3600 and /ga? 3605, interfering ?ta? feature 3610, and inter 
fering /da/feature 3620 are shown. 

It was found that that for the subjects right ear removing 
the interfering /t/ or /d/ feature reduces the /k-t/ and /g-d/ 
confusion considerably under both conditions, and feature 
boosting increased /k/ and /g/ scores by about 20% (6/30) 
under both quiet and 12 dB SNR conditions. It was found that 
the same technique may not work as well for her left ear due 
to a cochlear dead region from 2-3 kHz in the left ear, which 
counteracts the feature boosting. FIGS. 37A-37B show con 
fusion matrices for the left ear, and FIGS. 37C-37D show 
confusion matrices for the right ear. In FIGS. 37A-D, “ka-t-- 
x” refers to a sound with the interfering ?t/feature removed 
and the desired feature /k/ boosted by a factor of X. 

According to an embodiment of the invention, a Super 
feature may be generated using a two-step process. Interfer 
ing cues of other features in a certain frequency region may be 
removed, and the desired features may be amplified in the 
signal. The steps may be performed in either order. As a 
specific example, for the Sounds in the example above, the 
interfering cues of ?ta/3710 and /da/ 3720 may be removed 
from or reduced in the original ?ka/and/ga? sounds. Also, the 
desired features /ka/3700 and /ga/3705 may be amplified. 

Another set of experiments was performed with regard to 
two subjects, AS and DC. It was determined that subject AS 
experiences difficulty in hearing and/or distinguishing ?ka/ 
and fga/, and Subject DC has difficulty in hearing and/or 
distinguishing /fa? and fival. An experiment was performed to 
determine whether the recognition scores for the subjects 
may be improved by manipulation of the features. Multiple 
rounds were conducted: 

Round-1 (EN-1): The ?ka/s and /ga/s are boosted in the 
feature area by factors of 0, 1, 10, 50 with and without 
NAL-R: It turns out that the speech are distorted too much due 
to the too-big boost factors. As a consequence, the Subject had 
a score significantly lower for the enhanced speech than the 
original speech Sounds. The results for Round 1 are shown in 
FIGS 38A-B. 
Round-2 (EN-2): The ?ka/s and /ga/s are boosted in the 

feature area by factors of 1, 2, 4, 6 with NAL.-R. The subject 
show slight improvement under quiet condition, no difference 
at 12 dB SNR. Round 2 results are shown in FIG. 39. 

Round-3 (RM-1): Previous results show that the subject 
has some strong patterns of confusions, such as /ka? to ?taf and 
/ga? to ?caf. To compensate, in this experiment the high 
frequency region in ?ka/s and fga?s that cause the afore-men 
tioned morphing of/ta/and/da/were removed. FIG. 40 shows 
the results obtained for Round 3. 






























